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Abstract ― Parallel constant-stress accelerated degradation testing 
(PCSADT) is widely used to assess the reliability of highly reliable 
products in a timely manner when the products’ degradation can be 
measured. Under a time-censored PCSADT, several groups of units 
are tested simultaneously, but under different stress levels, until a 
pre-specified censoring time is reached. At this time, degradation 
values from the censored units, and failure times of the failed units 
are obtained. When the degradation follows a Wiener process where 
the parameters depend on the stress level through a life-stress model 
containing an unknown nuisance parameter, estimating this 
parameter often biases the maximum likelihood and least squares 
estimators of the lifetime parameters. In this paper, we propose a 
two-stage procedure to address this problem. In the first stage, we 
transform the data under the different stress levels of a PCSADT so 
that the resulting data can be considered to have been obtained 
under normal stress. In the second stage, we introduce a latent 
variable for the unobserved degradation after the failure time for 
each failed unit to obtain a pseudo-degradation value at the 
censoring time. We then use all degradation values (pseudo or 
observed) at the censoring time to develop latent variable estimators 
for all model parameters. Unlike other existing estimators, the 
proposed estimators are shown to be s-consistent, have closed form 
expressions, and are easy to interpret. We use a real example of 
light-emitting diodes (LEDs) to illustrate the proposed method. In 
addition to proving s-consistencies, we conduct a simulation study to 
demonstrate that the proposed estimators also perform well in finite 
samples. 
 
Index Terms―Degradation test, latent variable, decay acceleration 
factor, time-censored, Wiener process, inverse Gaussian 
distribution, s-consistent estimator. 
 
ACRONYMS AND ABBREVIATION 
  
ADT               accelerated degradation test 
PCSADT           parallel constant-stress ADT 

 
Manuscript received 21-Nov-2015; revised 23-Apr-2017; accepted 

12-Jun-2017. This work was supported by a research grant from the National 
Science Council of Taiwan (NSC 98-2118-M-126 -002 -). Associate Editor: Li, 
Steven. (Corresponding author: M.-Y. Lee ) 

M.-Y. Lee is with the Statistics and Informatics Department, Providence 
University, Taichung City, 43301, Taiwan (email: mylee@pu.edu.tw).  

C.-H. Hu is with the Department of Industrial and Information Management, 
National Cheng Kung University, Tainan City, 701, Taiwan (email: 
chhu@mail.ncku.edu.tw). 

J. Tang is with the Krannert Graduate School of Management, Purdue 
University, 403 West State Street, West Lafayette, IN 47907-2056 (email: 
jtang@purdue.edu). 

IG                          inverse Gaussian lifetime distribution under 
normal stress 

EM                        Expectation–Maximization algorithm 
LVE                    latent variable estimator 
MMLE                modified maximum likelihood estimator 
MEME, MEME2 modified expectation-maximization 

estimators 
GMLE                generalized maximum likelihood estimator 
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lth stress level for 0,...,l k=  
degradation of test unit i under ls  at time t 
drift, and diffusion parameters of standard    
Wiener process  
censoring time  
failure threshold for degradation 
failure time of failed unit i under ls   
mean, and scale parameter of 0T  under 0s   
mean, and scale parameter for lT   under ls   
estimators of lµ , and ll using data under ls   
LVEs of µ , and λ  using all data 
sample size, and number of failures under ls   
total sample size 
decay-acceleration factor for ls   
Arrhenius decay-acceleration factor  
estimate of θ  using data under ls   
time-transformed censoring time for units  
under ls   
time-transformed liT   for 1,...l k=   
pdf, and cdf of 0T   

 

I. INTRODUCTION 

NTENSE competition and technological advances in the 
manufacturing sector have resulted in products that may last 
a long time, making it more difficult for engineers to obtain a 

sufficient amount of failure data to effectively assess the 
products’ reliabilities in a timely manner. In such cases, if the 
degradation of a product’s critical quality characteristic can be 
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measured, degradation measurements from an accelerated 
degradation test (ADT) can provide useful information about 
the product’s reliability. This is because the failure time of a 
product is often defined as the first time when the product’s 
degradation path passes a “failure” threshold. ADT has been 
used in various studies. For example, Meeker and Escobar [15] 
consider alloys, where an alloy is defined as failed when its 
crack length reaches 1.6 inches. Tseng et al. [32] examine 
light-emitting diodes (LEDs), and an LED is defined as failed 
when its brightness (light intensity) reaches the half-point of the 
initial value. For some elastomers, which are critical materials 
for hoses and dampers, the failure time is related to its hardness 
measure (Elsayed [4]). 

In an ADT, the engineer needs to determine what stress 
levels are applied to the test units over time. Several stress 
loadings have been used in industry, including constant-stress, 
parallel constant-stress, step-stress, and continuous-stress 
loadings (Elsayed [4]).  In the current paper, we focus on 
parallel constant-stress ADT (PCSADT), in which test units are 
divided into groups and then tested under different stress levels 
in parallel. Compared with other types of ADTs, a PCSADT is 
easier to implement and requires a less complicated statistical 
model for data analysis. For research on other types of stress 
loadings, one can refer to Tang et al. [25], Liao and Tseng [12], 
and Tseng et al. [29]. For an overview of degradation test 
models as well as the design problem, refer to Meeker and 
Escobar [15], Nelson [17] [18], and Yum et al. [41]. 

Various models have been proposed for modeling the 
degradation path. These include the mixed-effects non-linear 
regression model (Lu and Meeker [14]), the Gamma process 
model (Tsai et al. [27], and Tseng et al. [29]), the inverse 
Gaussian process model (Wang and Xu [36]), and the Wiener 
process model (Doksum and Hoyland [3], and Lee and Tang 
[8]). In this paper, we follow Doksum and Hoyland [3], and 
assume that the degradation path follows a Wiener process with 
parameters depending on the stress level via a stress-life model 
with an unknown (nuisance) parameter.  

The Wiener process model is a growth/decay model based 
on Nelson’s [19] cumulative exposure (CE) assumption and, 
unlike the Gamma and inverse Gaussian process models, it 
allows temporal fluctuations in the degradation process from 
the monotone mean degradation path. This type of fluctuation 
occurs in the light outputs of LEDs (see, for example, [43, 
Figure 3], and Vakrilov and Stoynova [33, Figure 6]) and can 
be caused by current fluctuations (higher current increases light 
intensity and lower current decreases the light intensity) and 
other known or unknown factors, or is simply due to 
measurement errors. Furthermore, unlike the standard 
mixed-effect model where bootstrapping and simulations are 
generally required in the analysis, the lifetime distribution 
under the Wiener process model can be represented in terms of 
the inverse Gaussian distribution. Therefore, the key 
distribution parameters such as the mean and scale parameter 
can be estimated from both censored and failure data using 
maximum likelihood methods. The estimators obtained have 
closed forms and are easy to interpret. Asymptotic results such 
as the s-consistency given in this paper for the parameter 

estimates can be obtained analytically. (An estimator is 
s-consistent if the estimator converges in probability to the 
parameter as the sample size approaches infinity.) The Wiener 
model has been used in various studies, including the resistance 
of self-regulating heating cables (Whitmore and Schenkelberg 
[38]), cracks caused by fatigue with healing (Singpurwalla 
[24]), light intensity of LED lamps (Tseng et al. [32]), and chip 
resistors (Tsai et al. [26]). Other examples can be found in 
Balka et al. [1], Horrocks and Thompson [5], Lehmann [9], 
Padgett and Tomlinson [20], Park and Padgett [21], Tseng and 
Peng [30], Wang [35], and Whitmore et al. [37]. The Wiener 
process model has been and continues to be a standard model 
for analyzing LED degradation data; for more recent references, 
see Huang et al. [6], Liu et al. [13], Tsai et al. [28], and 
references wherein.  

When nuisance parameters exist in a model, both the 
Maximum Likelihood (ML) and least-squares estimations may 
suffer because the effect of estimating these nuisance 
parameters may bias the estimators of the main parameters of 
interest, which can lead to s-inconsistencies in the estimators 
when the number of nuisance parameters increases with the 
sample size (Morton [16]). In addition, the ML approach often 
fails to provide closed-form solutions, thus requiring the use of 
numerical algorithms to obtain the estimates.  To overcome 
these difficulties, we propose a two-stage latent variable 
approach to obtaining latent variable estimators (LVEs) for all 
model parameters based on data from a time-censored 
PCSADT. We note that, when time censoring is used, the 
failure times of the censored units are unobserved, and hence 
are latent. Furthermore, units that failed before the censoring 
time are typically removed from the test; therefore, 
degradations occurring after “failure” times are also latent.  Lee 
and Tang [8] use a modified expectation-maximization (EM) 
algorithm to predict the failure times of censored units. (An EM 
algorithm is an iterative method to find maximum likelihood 
estimators of parameters, when the model depends on 
unobserved latent variables.) Then, along with the observed 
failure times from the failed units, they propose a modified EM 
estimator (MEME) and a modified maximum likelihood 
estimator (MMLE) for both the mean and scale parameter of 
the lifetime distribution. Their test is an un-accelerated 
degradation test. The above authors also prove that the MEME 
for the mean failure time is s-consistent. The MEME of the 
scale parameter, however, turns out to be s-inconsistent; so, 
they propose another estimator (MEME2) to numerically 
reduce the asymptotic bias. In this paper, instead of predicting 
the unobserved failure times for the censored units, we predict 
the unobserved degradation values at the censoring time for the 
failed units.  This enables us to obtain complete degradation 
values (pseudo or observed) at the censoring time for all units. 
With this data, we obtain easy-to-interpret and closed-form 
LVEs for the decay-acceleration factor, and the two lifetime 
parameters, respectively. We also prove the s-consistencies of 
these LVEs. 

The rest of this paper is organized as follows. In Section II, 
we describe the degradation model and the PCSADT data. 
Section III develops the LVEs for the lifetime parameters using 
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only data under normal stress. In Section IV, we propose the 
two-stage estimation procedure for obtaining LVEs of all 
model parameters based on all data from the PCSADT. We also 
prove the s-consistencies of the proposed LVEs. Section V 
provides a real example of LED lamps to illustrate the proposed 
two-stage estimation method. Section V also gives the results 
of a simulation study of the finite-sample performance of the 
proposed LVEs relative to several other estimators. The results 
show that in general the LVEs have a smaller bias and standard 
error than the generalized maximum likelihood estimators 
(GMLEs), and the estimators in Lee and Tang [8]. These results 
confirm Morton’s [16] comments on the biasing effect when 
estimating a nuisance parameter. Finally, some concluding 
remarks are made in Section VI, and proofs of the 
s-consistencies of the proposed LVEs are given in the 
Appendix A.  
 

II. DEGRADATION MODEL AND PCSADT DATA 

Let 0( ; )W t s  be the degradation of a test unit under normal 

stress 0s  at time t.  The degradation path is assumed to follow a 
standard Wiener process (Doksum and Hoyland [3]) 

0( ; ) ( )W t s t B tη s= + ,  0t ≥  ,                            (1)                                       

where 0η > , 0σ > , and B(⋅) is a standard Brownian motion. 

The unit’s lifetime 0T  is defined as the first passage time of 

0( ; )W t s  over ( 0)a a > : 

00 0 ( ; ) }inf{t W t s aT ≥ ≥= .                               (2)                                                                                

It is well known that 0T  follows an inverse Gaussian 
distribution (IG) with mean, and scale parameter   

/aµ η= ,   and  2 2/aλ σ= ,                                (3)                                                         

respectively. Our goal is to estimate these two lifetime 
parameters, based on data from a time-censored PCSADT. For 
further information about the IG distribution, refer to Chhikara 
and Folks [2], and Seshadri [23]. These references also provide 
the maximum likelihood estimators (MLEs) and the uniform 
minimum variance unbiased estimators (UMVUEs) of both µ  
and λ  when complete data on 0T  are available.  

In our PCSADT, products are first divided into k + 1 groups 
with sizes ln , and then tested under stress ls 0( )ls s≥ , 

0,...,l k= , respectively. The total sample size is 0
k

llN n== ∑ .  
Under ls , the degradation path is assumed to be (Doksum and 
Hoyland [3], and Tsai et al. [26]) 

( ; ) ( ) ( ( ) )l l lW t s s t B s tη β s β= ⋅ + ,                         (4) 

where ( )ls tη β⋅  is the expected accumulated degradation at 
time t, and ( )β ⋅  is the decay-acceleration factor assumed to be 
a non-decreasing function with 0( ) 1sβ =  so a higher stress 

level is expected to result in higher accumulated degradation. 
This ( )β ⋅  describes the life-stress relationship, and the 
Arrhenius model and inverse power law are quite common in 
practice (Meeker and Escobar [15]).  Similar to (2), the failure 
time of ( ; )lW t s  is defined as    

 inf{ 0 | ( ; ) }l lT t W t s a= ≥ ≥ ,   1,2,...,l k= .               (5)                                                         

Let α  be the pre-specified censoring time.  If test unit i 
under ls  is a failed unit, we observe its failure time, say liT  
( α≤ ). On the other hand, if unit i is a censored unit, we observe 
its degradation value, say ( ; )i lW sα , at α . This degradation 

value is sometimes written as ( )liW α  for simplicity. We 
assume lM  (a random variable) of the ln  test units failed with 
failure times 1, , ,

ll lMT T  and the remaining units were censored 

with observed degradation values , 1( ),...,
ll MW α+  ( )

llnW α . 

Then we have the following data 

0 0 0

1 1 1

0 01 0 0, 1 0

1 11 1 1, 1 1

1 , 1

Under :  ( ) ( );

Under :  ( ) ( );

Under :  ( ) ( ).
k k k

M M n

M M n

k k kM k M kn

s T T W W

s T T W W

s T T W W

α α

α α

α α

+

+

+

 

 

  

 

   

(6)                       

  This type of data has previously been considered in Padgett and 
Tomlinson ([20], Example 1), and Lee and Tang [8]. However, 
their tests are un-accelerated. 

 

III. LATENT VARIABLE ESTIMATES USING DATA UNDER 0s   

In this section, we propose a latent variable approach for 
estimating the lifetime parameters based only on data under 0s  
(first row in (6)).  

A. LVE for µ  Using Data Under Normal Stress 0s  

If we have a complete sample of degradation values at α 
from all units, these values are random samples from a normal 
distribution with mean ηα . Therefore, the sample mean is the 
UMVUE of ηα . However, units that “failed” before α  are 
typically removed from the test in practice so that the 
degradations after their failure times are unobserved. We create 
latent variables for these unobserved degradations, as follows. 

For the ith failed unit ( 01,...,i M= ), the degradation value at 

its failure time is 0 0( )i iW T a=   according to the definition of 

0iT  and the fact that 0 ( )iW t  is a continuous process. Because it 
is a failed unit, 0 0 0 0 0( ) ( ) ( ) ( )i i i i iW W W T W aaaa  ∆ ≡ − = − is a 
latent variable. This unobserved degradation will be estimated 
by its expected value in our proposed method. From (1), 
conditioned on the failure time 0 0i iT t= , the unobserved 
degradation can be written as 
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0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ( ) ( )).i i i i i i i iW W W t t B B tα α η α σ α∆ ≡ − = − + −
(7)  

This increment follows 2
0 0( ( ), ( ))i iN t tη α σ α− − , by the 

independent increments property of a Brownian motion.  
Estimating 0 ( )iW α∆  by its expectation above, we obtain a 
pseudo-degradation value 0 0 0 0( ) ( ) ( )i i i iW W T W aaa = + ∆ = +   

0( )iTη α − for 01,..., .i M= Then, along with the observed 
degradation values at α  from the censored units, we have a 
complete pseudo sample of degradation values 

0 0 001 0 0, 1 0( ( ), , ( ), ( ), , ( ))M M nW W W Wα α α α+   for all units. 

Motivated by the UMVUE discussed earlier, we obtain the 
LVE of η  (denoted by 0η̂ ) by solving η̂ : 

( )
00 0

0

00 0
11 1

0 0 0

( )ˆ( ) ( )
ˆ .

nn M

ii i
i Mi i

WW a T

n n n

aa η a
ηa = += =

+ ⋅ −
= = +

∑∑ ∑
 

That is, 
0

0

0

0 0
1

0

0 0 0
1

( )
ˆ

( )

n

i
i M

M

i
i

W aM

n M T

a
η

a

= +

=

+
=

− +

∑

∑
 .                                  (8) 

                                                                                 
In view of (3), the LVE of µ  is given by 
 

0

0

0

0 0 0
1

0

0 0
1

( )
ˆ .

( )

M

i
i

n

i
i M

T n M

M W a

a
µ

a

=

= +

+ −
=

+

∑

∑
                                     (9) 

The LVE in (9) turns out to be identical to the MEME and 
MMLE proposed by Lee and Tang [8] but under a different 
approach, and is an s-consistent estimator of µ.  Furthermore, 

0µ̂  is a weighted average of two average “lifetimes”: the 

average observed lifetime of the failed units ( 0
0 01 /M

ii T M=∑ ), 
and the average “predicted (pseudo-) lifetime” of the censored 
units 0

00 0 01( ) / ( ( ) / )n
ii Mn M W aaa = +− ∑ . To explain the latter, 

we note that the average predicted lifetime of all censored units 
is  ( )0

0 0 0 01 ( ( )) / / ( )n
ii M a W n Maa  η= + + − −∑ , where 

0( ( )) /ia W a η−  is the predicted (pseudo-) remaining time after 
α for unit i. Estimating the unknown slope η  by 

0

0 0 0 01( ( ) / ( ) 0) / ( 0)n
ii M W n Mα α= + − − −∑ , we obtain the average 

predicted (pseudo-) lifetime of the censored units mentioned 
earlier.  The two weights used to obtain 

0µ̂  in (9) are
0

00 0 0/( ( )/ )n
ii MM M W aa=+ ∑ , and 0

0 01( ( ) / ) /n
ii M W aa= +∑  

0

00 01( ( ) / ))n
ii MM W aa= ++ ∑ , respectively. 0M  is the number of 

failed units. For the censored units, 0( )iW aa <  so that 

0( ) /iW aa  can be interpreted as (pseudo-) censoring ratio and 
0

0 01 ( ) /n
ii M W aa= +∑  as the (pseudo-) total number of censored 

units. So, the weights are the proportion of failed units and the 
(pseudo-) proportion of censored units, respectively, in the 
experiment.  

B. LVE for λ  Using Data Under Normal Stress 0s  

To estimate λ , we first use a modified EM algorithm with 
M- and E-steps to obtain an LVE of 2σ , as follows.   
Step 1.  Let 2

(0)σ̂  be an initial estimate of 2σ .  
Step 2 (M-Step).  If we have complete random degradation 
values 0 ( )iW α , these values form a random sample from a 
normal distribution with mean ηα , and variance 2ασ . Hence, 
assuming η   is known, the MLE of 2σ  is given by 

0
2 2

0
10

1ˆ ( ( ) )
n

i
i

W
n

σ α ηα
α =

= −∑  

      

0 0

0

2 2
0 0

1 10

1 ( ( ) ) ( ( ) )
M n

i i
i i M

W W
n

α ηα α ηα
α = = +

 
 
 
 

= − + −∑ ∑                                                   

      

0 0

0

2 2
0 0

1 10

1 ( ( ) ) ( ( ) )
M n

i i
i i M

a W W
n

a ηaa  ηa
a = = +

 
 
 
 

= + ∆ − + −∑ ∑  

 ( )
0

2 2 2
0 0 0 0

10

1 ( ) 2( ) ( ) ( )
M

i i i i
i

a T a T B B
n

η η σ a σ a
a =





= − + − ∆ + ∆∑  

          
0

0

2
0

1
( ( ) )

n

i
i M

W α ηα
= +





+ −∑ ,                                    (10) 

where 0 0 0 0( ) ( ) ( )i i i iB B B Tα α∆ ≡ −  are independent of the 
failure times 0iT . The last equality in (10) follows from (7). 

Step 3 (E-Step).  Because 0 ( )iB α∆  and 2
0 ( )iB α∆  in (10) are 

unobserved (because 0 ( )iW α∆  are unobserved), they are 
estimated by their respective expected values: 

0 0( )( ( )) 0
i iBE B α⋅ ∆ = , and 

0

2
0 0( )( ( ) )

i i iBE B Tα α⋅ ∆ = − .  In this 

step, we also replace 2σ  on the right side of (10) with its initial 
estimate ( 2

(0)σ̂ ) from Step 1 to obtain the first updated estimate 

of 2σ :   
 0

2 2
0(1) (0)

10

1ˆ ˆ ( )
M

i
i

T
n

σ σ α
α =

 
  
 

= −∑
   

0 0

0

2 2
0 0

1 10
         1 ( ) ( ( ) )

M n

i i
i i M

a T W
n

η a ηa
a = = +

 
 
 
 

+ − + −∑ ∑  (11) 

Step 4.  2
(1)σ̂  in (11) will replace 2

(0)σ̂ in Step 2 (M-Step) and 

Step 3 (E-Step) to obtain another updated estimate 2
(2)σ̂ .

 
This 

process is repeated so we have 

0 0
2 2 2

0 0( 1) ( )
1 10 0

1 1ˆ ˆ ( ) ( )
M M

i ik k
i i

T a T
n n

σ σ a η
aa +

= =

  
    
  

= − + −∑ ∑  

0

0

2
0

1
( ( ) )

n

i
i M

W α ηα
= +






+ −∑ , 0,1, ....k = . 
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Assume 2 2
( )ˆ ˆkσ σ→ . Then, by taking the limits on both sides 

and solving for 2σ̂ , we obtain the proposed LVE of 2σ . 
Because this LVE uses only data under 0s , it will be denoted 

by 2
0σ̂ : 

0 0

0

0

2 2
0 0

1 12
0

0 0 0
1

( ) ( ( ) )
ˆ

( )

M n

i i
i i M

M

i
i

a T W

T n M

η a ηa
σ

a

= = +

=

− + −
=

+ −

∑ ∑

∑
.                 (12)                                   

This 2
0σ̂  is also easy to interpret because it is a weighted 

average of two estimates of 2σ . First we note that the second 
moment of the degradation values 0

0

2
01 /( ( ) )n

ii M W α ηα= + −∑

0 0( )n M−  from the censored units is an MLE of the population 
variance 2ασ , assuming η   and 0M  are given. Second, the 

sample mean lifetime 0
0 01 /M

ii T M=∑ , and the sample variance 
0 2

0 01 ( ) /M
ii T Mµ= −∑ , from the failed units are estimates of the IG 

mean µ (= /a η ), and  variance 3 /µ λ  (= 2 3 2( / )aσ µ ), 
respectively. With some algebraic manipulation, we obtain a 
second estimate of 2σ  as  0 02

0 01 1( )M M
i ii ia T Tη= =−∑ ∑ .  The 

weights used to obtain 2
0σ̂  above are 0 0( ) /n Mα −  

0
0 0 01( ( ))M

ii T n Mα= + −∑ and  0
01 /M

ii T=∑  0
0 0 01( ( ))M

ii T n Mα= + −∑ . 

Note that 0
01

M
ii T=∑  is the total testing time (or observed lifetime) 

of the failed units, while 0 0( )n Mα −  is the total testing time (or 
(pseudo-) lifetime) of the censored units. So the two weights are 
the fractions of time used in testing failed and censored units, 
respectively.   

Finally, estimating the unknown η  in (12) by 0η̂ , we obtain 
the LVE of λ  (use (3)): 

0

0 0

0

0 0 0
1

0
2 2

LVE LVE0 0
1 1

( )
ˆ .

ˆ ˆ(1 ) ( ( ) )

M

i
i

M n

i i
i i M

T n M

T W a

a
λ

µ aa  µ

=

= = +

+ −
=

− + −

∑

∑ ∑
  (13) 

While the MEME of λ  in Lee and Tang [8] is not 
s-inconsistent, the LVEs in (9) and (13) provide 
easy-to-interpret, s-consistent, and closed-form estimators for 
both IG lifetime parameters. Proof of the s-consistency of  0̂λ  
for λ  is given in the Appendix A.    

IV. TWO-STAGE LATENT VARIABLE ESTIMATION 
USING ALL DATA  

In this section, we propose a two-stage estimation procedure 
using all PCSADT data in (6). The approach is to first 
transform the data in (6) so that the resulting data can be viewed 
as data all obtained under 0s . Then, we follow the development 
in Section III to obtain our proposed LVEs for all model 
parameters in the second stage. 

A. First Stage: Estimation of Decay-Acceleration Factors 
( )lsβ  

Under ls , the accelerated degradation process in (4) can be 
considered as a standard Wiener process (1) but with a drift 
parameter ( )l lsη η β≡ ⋅ . Hence from (8), we obtain an LVE for 

lη  as 

1

1

( )
ˆ

( )

l

l

l

n

li l
i M

l M

l l li
i

W aM

n M T

a
η

a

= +

=

+
=

− +

∑

∑
 , 0,1,..., .l k=                      (14)                                                              

In view of (3), an LVE of the mean failure time under ls  (say 
/l laµ η= ) is given by ˆˆ /l laµ η= . Furthermore, from the 

assumption that 0( ) 1sβ = , we obtain 0η η= .  Consequently, an 

estimator of ( )lsβ  is given by 
0

0

0

0 0
1 1

0
0 0 0

11

( ) ( )
ˆˆ( )
ˆ

( )( )

l

l

l

n n

il li
i M i Ml

l M M

il l li
ii

aM W aM W
s

n M Tn M T

a a
ηβ
η

aa

= + = +

==

+ +
= =

− +− +

∑ ∑

∑∑
,  

1,... ,l k= .        (15) 
These estimates require no explicit functional form for ( )β ⋅ , 
which can be difficult to obtain because it often depends on the 
material features of the product, and the type of stress used. 
Now, based on our discussion of the s-consistency of the LVE 
of mean lifetime in the last section, l̂η  is s-consistent for lη , 

and consequently ˆ( )lsβ is an s-consistent estimator of ( )lsβ for 
1,...,l k= , by the Slusky’s theorem (Lehmann [10], p.70).   
For certain products, on the other hand, the 

decay-acceleration functions have long been established. For 
example, Padgett and Tomlison [20] consider both the power 
law and the Arrhenius model for ( )β ⋅  in their experiment for 
certain carbon-film resistors, where temperature is used as the 
stress. Indeed, the Arrhenius model is commonly used in 
accelerated life tests and ADTs, when the stress is temperature 
(Meeker and Escobar [15]). A one-parameter Arrhenius model 
has the following functional form 

0

1 1( ; ) exp
273.15 273.15b

s
k s s
θb θ

  
      

= −
+ +

,  0s s≥ ,  (16) 

where θ  is unknown, the temperature s is in Celsius scale (oC), 
and bk = 1/11,605 is the Boltzmann’s constant. Then, θ  can be 
expressed as  

    
( )

1

0

ln( )( ; )
1 (273.15 ) 1 (273.15 )

bks
s s

bθ bb −= =
+ − +

,          (17)                                             

where 1( ; )sβ − ⋅  is the inverse function of (16), and β denotes a 
value of ( ; )sβ θ .   
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Now, because ˆ( )lsβ  in (15) is s-consistent for ( ; )lsβ θ , and
1( ; )sβ − ⋅ is a continuous function, each 1ˆ ˆ( ( ); )l l ls sθ β β−≡  is an 

s-consistent estimator of 1( ( ; ), )l ls sβ β θ θ− =  for 1, ..., .l k=   
To estimate θ  using all data, we propose the 

asymptotically best linear unbiased estimator as follows 

LVE
1

ˆ ˆ
k

l l
l

aθ θ
=

= ∑ ,                                                      (18)                                                                                   

where la  are obtained by minimizing the asymptotic variance 

of (18), subject to 1 1k
ll a= =∑  so that LVEθ̂  is also s-consistent 

for θ .  To compute la , we write  

           1

0

ˆln( ( ))ˆ ˆ( ( ); )
1 ( ) 1 ( )

b l
l l l

l

k ss s
c s c s

bθ bb −= =
+ − +

  

( )0ˆ ˆln( ) ln( )l lh µ µ= − ,  say,                                     (19)                                              

where c = 273.15, and ( )01 ( ) 1 ( )l b lh k c s c s≡ + − + . The 
estimator (18) becomes           

    ( )0
1 1 0

ˆ ˆ ˆ ˆln( ) ln( )  ln( )
k k k

l l l l l l l
l l l

a a h bθ µ µ µ
= = =

= − =∑ ∑ ∑ ,    (20)              

where ˆln( )lµ  are s-independent, l l lb h a= − for 1,...,l k= , and 

10 1
k

ll
k

l ll bb h a == = −= ∑∑ . Denote 2 ˆ(ln( ))l lVarδ µ≡ . Then from 
(20), the variance of (18) is   

          
1 0

ˆ ˆ ln( )
k k

l l l l
l l

V Var a Var bθ µ
= =

   
      
   

≡ =∑ ∑                

( )
2

2 2 2 2
0

0 1 1
ˆln( ) .

k k k

l l l l l
l l l

b Var b bµ δ δ
= = =

 
  
 

= = +∑ ∑ ∑               (21) 

Because  1 1k
l ll b h= = −∑ , we have  ( )1

11 k
k k l llb h b h−

== − + ∑ , 

and consequently 
221 1 1 1

2 2 2 2 2
0

1 1 1 1
1 1

k k k k
l l

l l k k l k
l l l ll l

b bV b h b h
h h

δ δ δ
− − − −

= = = =

                       
= + + + − +∑ ∑ ∑ ∑ .  

(22)                           
In general, an iterative procedure is required to numerically 
obtain lb  and la  when 3k ≥ . However, for a three-level 
PSCADT with k = 2 (the example we consider in Section V), by 
taking the derivatives with respect to lb  to (22), we can obtain 
closed-form expressions for lb  and hence la : 

22 2
02 2 2 2

2 2 2
1 11 1 11

1 2 22 21 02 2 2
2 2 2

11 1 1

1

1 1

h h h
h hhba

h h h
hh

δδ
δ δ

δδ
δ δ

 
  
 

 
  
 

− −
= − =

+ + −
 

, and 2 11a a= − , where 1a  can be negative if 2
2δ  is too small, 

or 2
0δ  is too large. We provide some remarks in Appendix B to 

give an alternative method for obtaining the LVE of θ , or θ  if 
one wants to use our method for cases with multiple stress 
factors.  

Notice that both lb  and la  depend on the unknown 2
lδ . 

Using the Delta method (Meeker and Escobar [15], pp. 619- 
620), ( )2 2ˆ ˆ ˆ ˆ ˆ(ln( )) ( ) ( ) ( ),l l l l l lVar Var E Var Eδ µ µ µ µ µ≡ ≅ =  

0,1,l = ..., k .  Above, both the numerator and denominator 

also need to be estimated. Because ˆlµ  is s-consistent for lµ , 
ˆ( )lE µ will be estimated by ˆlµ . Furthermore, from Lee and 

Tang [8], we can obtain 

( )4

1
2ˆ( ) ( ) exp ( ) 1 ( ) ,l l l

l l l l l
ll

n
Var A B F

ll
µ µ aa

µµ

−
     ≈ F − F − + −           

where / ( / 1),l l lA l α α µ= − / ( / 1),l l lB l α α µ= +  and

( )lF α is the individual failure probability under stress ls  
(Chhikara and Folks [2]):  

2( ) 1 exp 1l l l
l

l l l
F lll  α αα

α µ µ α µ
        
                        

= F − + F − + . (23)                                   

Again, the unknown lµ  in (23) is estimated by ˆlµ .  As we will 
show in the next section, ll  can be estimated by 

     

       1

2 2

1 1

( )
ˆ .

ˆ ˆ(1 ) ( ( ) )

l

l l

l

M

li l l
i

l M n

li l li l
i i M

T n M

T W a

a
l

µ aa  µ

=

= = +

+ −
=

− + −

∑

∑ ∑
       (24) 

With the above results, we can now estimate la  to obtain LVEθ̂  
in (18). 

B. Second Stage: Estimation of ( , )µ λ  Using All Data in (6) 

In this section, we first transform the data in (6) so that the 
resulting data can be viewed as data all obtained under 0s . 

Again, we note that the value of ( ; )lW t s  in (4) at time t can be 

viewed as a value of 0( ; )lW t sβ  but at time ltβ  ( lβ  stands for 
( )lsβ for simplicity). Hence, if we transform the time from t to 

l lt tβ≡ , then the transformed failure times l l lT Tβ≡  are 
s-independent random variables such that 

~ ( , )lT IG µ l , 0, ..., .l k=                                    (25) 

The corresponding censoring times are 

,   0,...,l l l kα β α≡ ⋅ = .                                          (26)  

In terms of the transformed time, the degradation value ( )liW α
in (6) is rewritten as ( )li lW α , even though they have the same 

value. Estimating lβ  in (26) by l̂β  in (15), we have the 
following data, all under 0s : 
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0 0 0

1 1 1

01 0 0, 1 0

11 1 1, 1 1 1 1

1 , 1

( ) ( ),

( ) ( ),
...

( ) ( ).
k k k

M M n

M M n

k kM k M k kn k

T T W W

T T W W

T T W W

α α

α α

α α

+

+

+

 

 

 
 

    

 

 
 

                (27) 

The method given in Section III can then be extended to obtain 
the LVEs of  µ, and λ , based on all data in (27). 

B.1.   LVE for µ  Based on All Data (27) 

To estimate µ , we first estimate the drift parameter η , as 
before. If we have all degradation data, then  

2
1 1

( ) ( )
~ , ,

l l

l

M n

li l li l
i i M

l l l l

W W
N

n n

α α
ση

α α
= = +  

  
 

+∑ ∑ 

 

 0,1,...,l k= . 

Hence, the optimal linear unbiased estimator of η  under 
quadratic loss is given by (Kagan et al. [7], p. 227) 

1 1

0

0

0 1 1

0

( ) ( )
1

ˆ
11

( ) ( )
   .

l l

l

l l

l

M n

li l li lk
i i M

l l l l l

k

l l l

M nk

li l li l
l i i M

k

l l
l

W W

n n

n

W W

n

α α

α α

η

α

α α

α

= = +

=

=

= = = +

=

  
  
  
  
  
     

 
  
 

 
 
 
 

+

=

+

=

∑ ∑
∑

∑

∑ ∑ ∑

∑

 

 



 



 

Because ( ) ( ) ( ( ) ( )) ( )li l li li li l li li li lW W T W W T a Waaa  = + − = + ∆ 

    
where ( )li lW α∆   is latent, we estimate this latent variable by its 

expectation ( )l liTη α −   (with respect to the distribution of 
( )liW ⋅ ) to obtain 

0 10 1

0 0

( )( )
ˆ 1

l
l

l

nkMk
li l ll li l i Ml i

k k

l l l l
l l

W aMT

n n

aa
η

aa

= = += =

= =

       
   
 
  
 

+−
− =

∑ ∑∑∑

∑ ∑







 

. 

Then, from the fact that ( )li lW α  and ( )liW α have the same 
value, we have 

0 1 0 1

0 0 10 0 1

( ) ( )
ˆ

( )

l l

l l

ll

n nk k

li l li l
l i M l i M

MM k kk k

l l l ljl l l l lj
l l il l i

W aM W aM

n M Tn M T

aa
η

aaa

= = + = = +

= = == = =

   
   
   
   

 
  
 

+ +

= =
− +− −

∑ ∑ ∑ ∑

∑ ∑∑∑ ∑ ∑ 





 

 . 

Finally, estimating lα , and liT  by l̂β α , and l̂ liTβ , respectively, 
we obtain the LVE of µ as   

0 1
LVE

0 1

ˆ ( )
ˆ

( )

l

l

l

Mk

l l l li
l i

nk

li l
l i M

n M T

W a M

β a
µ

a

= =

= = +

 
  
 

 
 
 
 

− +
=

+

∑ ∑

∑ ∑
.                              (28) 

This LVE is again a linear combination of LVEs of µ  from 

different stress levels, adjusted by l̂β . Since LVEµ̂  is the LVE 

of the normal mean lifetime (under 0s ), we need l̂β  to adjust 

the accelerated lifetime liT  so that ˆ  (= )l li liT Tβ   is the predicted 
normal lifetime for unit i. Furthermore, using the same 
discussion for 0µ̂  in (9), we see that the weights for the linear 
combination are each level’s relative (pseudo-) number of test 
units. LVEµ̂  is also the total (pseudo-) predicted normal lifetime 
divided by the total (pseudo-) number of test units. Finally the 
proposed LVEµ̂  in (28) is an s-consistent estimator of µ  (proof 
is given in the Appendix A). 

B.2.  LVE for λ  Based on All Data (27) 

To estimate λ , we first estimate 2σ . We normalize 
( )li lW α  such that 2( )/ ( , )li l l lW Nα α α η σ  

  for 1,li M= +

..., ln . Temporally assuming η  and lβ  are known, we follow 
the same argument as in Section III to obtain the estimate of 2σ  
as 

( ) ( )
2 2

0 1 12

0 1

( )
ˆ .

( )

l l

l

l

M nk

li li l l l
l i i M

Mk

li l l l l
l i

a T W

T n M

η aa  η a
σ

aa

= = = +

= =

 
 
  

 
 
  

− + −

=

+ −

∑ ∑ ∑

∑ ∑



  



 

  (29)                                          

This estimator is a weighted average of separate independent 
estimators of 2σ  and can be rewritten as 

2 2 21

0 0

0 1

( )
ˆ ˆ ˆ

( )

l

l

M

li l l lk k
i

l l lMkl l
li l l l

l i

T n M
w

T n M

α
σ σ σ

α

=

= =

= =

 
 
 
 

  
      

+ −
= =

+ −

∑
∑ ∑

∑ ∑
,  say, 

where 2ˆlσ  is the LVE of 2σ  using only data under stress level 

ls  (cf. (12)): 

( ) ( )
2 2

1 12

1

( )
ˆ

( )

l l

l

l

M n

li li l l
i i M

l M

li l l l
i

a T W

T n M

η aa  η
σ

a

= = +

=

− + −
≡

+ −

∑ ∑

∑



 





 . 

Hence, using the same discussion for 2
0σ̂  in (12), we see that 

the weights lw  are proportions of the total time used in testing 

the units under stress levels ls , 0,1,...,l k= .  Note that l̂l  in 

(24) is 2 2ˆ ˆ/l lal σ=  with η  estimated by l̂η .  
Using (3), the conditional estimate of λ  is  
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       ( ) ( )

0 1

2 2

0 1 1

( )
ˆ .

1 ( )

l

l l

l

Mk

li l l l l
l i

M nk

li li l l l
l i i M

T n M

T W a

aa
l

µ aa  µ a

= =

= = = +

 
 
  

 
 
  

+ −

=

− + −

∑ ∑

∑ ∑ ∑



 



  

 

Finally, we estimate the unknown µ , and lβ  by their 

s-consistent estimators LVEµ̂ , and  l̂β , respectively.  The 

proposed LVE of λ  using all data is given by (recall ( )li lW α

and ( )liW α have the same value) 

( ) ( )( )
0 1

LVE 2 2

LVE LVE
0 1 1

.

( )
ˆ

1 ˆ ˆˆ ˆ1ˆ

l

l l

l

Mk

li l l
l i

M nk

l li li l
l i i Ml

T n M

T W a

a
l

β µ a β a µ
β

= =

= = = +

 
 
  

 
 
  

+ −

=

− + −

∑ ∑

∑ ∑ ∑
                          (30) 

To interpret LVEλ̂ , we note that the numerator is the sum of 
numerators in (13) over all stress levels, and that the 
denominator is a weighted sum of denominators in (13) also 
over all stress levels, where the weights are ˆ1 lβ . This LVEλ̂  is 
an s-consistent estimator of λ  (proof of this result is also given 
in the Appendix A).  

To obtain the LVEs of the mean and scale parameter of the 
accelerated failure time distribution under a specific stress 
level ls , we note that under ls , the failure time / ( )l lT T sβ=

( , )l lIG µ l  with / ( )l lsµ µ β=  and / ( )l lsll  β=  (see 
Chhikara and Folks [2]). Hence, the LVEs of lµ and ll  based 

on all data are LVE,LVE
ˆˆ ˆ / ( )l lsµ µ β=  and LVE,LVE

ˆ ˆ ˆ/ ( )l lsll  β= , 
respectively. If one does not want to use data from a particular 
stress level, simply let the sample size be 0 for that level in our 
procedure.     

V. LED EXAMPLE  

In this section, we use a real LED dataset to illustrate the 
proposed method. The lifetime of an LED is related to its 
normalized light intensity or brightness (denoted ( )liL t ). 
Specifically, the lifetime of an LED lamp is defined as the first 
time when its ( )liL t reaches a certain “failure” threshold, which 
is typically 50% of its starting value of (0) 1liL = .  

The procedure for conducting an LED accelerated 
degradation test is fairly standard (see, for example, Huang et al. 
[6], Wang et al. [34], and [44]). The main test equipment is a 
high temperature aging degradation chamber. As to stress 
factors, IES LM-80-08 [42], which is an industry standard 
developed by the Illuminating Engineering Society of North 
America and sponsored by the U.S. Department of Energy, 
suggests using only one stress factor, namely temperature, at 
three different levels when analyzing the lumen degradation 
and the lifetime of LEDs. Our data are obtained from one of the 
leading LED manufacturers in Taiwan (see Tseng et al. [31]), 

 
Fig. 1. The Original LED Data from a Three-level PCSADT. 

based on a three-level (k = 2) PCSADT with temperatures (in 
oC) set at 0 1 2( , , )s s s = (25, 65, 105). The electric current was set 
at the normal level of 10 mA. All other factors were also set at 
their respective normal levels. The censoring time for this 
PCSADT is 6,480 hours. The sample sizes for the three stress 
levels are 0n = 15, 1n  = 18, and 2n  = 24, respectively. Under 

0s  = 25oC, and 1s  = 65oC, no LED lamp failed; so 0 1 0m m= = . 
However, under 2s  = 105oC, 2m =  18 units failed. Failure 
times and degradation values at the censoring time are depicted 
in Fig. 1.      

According to Yu and Tseng [39] [40], Tseng et al. [32], and 
Liao and Elsayed [11], ( )liL t  can be linearized so that 

0.6( ) ln( ( ))li liW t L t≡ −  follows a Wiener process (4).  
Consequently, failure times, degradation values, and the 
censoring time shown in Fig. 1 are transformed. These 
transformed values are our liT  and ( )liW t , with 0.66480α =  = 

193.62. The transformed failure threshold for ( )liW t  is a =
ln(0.5) 0.6932− = . Because temperature is the stress factor, the 

parameter-stress relationship is modeled by an Arrhenius law in 
(16) with an unknown θ .  

A.  Various Estimates of the Model Parameters 

Following the proposed two-stage LV procedure, we obtain 

LVEθ̂  = 0.1499 from (18) in the first stage. Then, the estimated 

decay-acceleration factor is {LVE
ˆ ˆ( ; ) exp (0.1499 )l l bs kbb  θ= =  

}(1 (273.15 25) 1 (273.15 ))ls× + − + with 2
ˆ 1.9941β = and 3β̂

=3.4361. In the second stage, we first multiply these estimated 
decay-acceleration factors to the respective failure times (under 
different stress levels) to obtain liT  in (27). The transformed 
censoring times are 1α = 386.093, and 2α = 665.305. These 
transformed data are depicted in Fig. 2. Using these data, we 
obtain LVEµ̂ = 618.97, and LVEλ̂ = 42,676.2 (Table I).  

We now compare our two-stage LVEs with several existing 
estimators. The first set is the General Maximum Likelihood 
Estimators (GMLEs) below. The likelihood function for the 
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Fig. 2. The Transformed LED Data in the Form of (21). 

data in (6) consists of two parts: one from the observed failure 
times of the failed units, and the other from the observed 
degradation values of the censored units. First, liT

independently follows ( )( ; ), ( ; )l lIG s sµ β θ l β θ  for 

1,..., li M= . Second, the ( )liW α  of the ith censored unit has the 
following likelihood function (cf. Lee and Tang [8])   
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Therefore, the general likelihood function of all data in (6) is  
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where ( )lf ⋅ is the pdf of ( )( ; ), ( ; )l lIG s sµ β θ l β θ , and can be 
obtained from Chhikara and Folks [2]. The GMLEs of θ , µ , 

and λ  (denoted GMLEθ̂ , GMLEµ̂ , and GMLEλ̂ , respectively) are 
obtained by maximizing the general likelihood function above, 
and therefore satisfy the following equations 
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Table I. Estimation Results for the LED Example. 
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               (34) 

A numerical procedure is required to iteratively obtain the 
GMLEs, and the results may depend on the starting values used 
in the procedure. For the LED example, GMLEθ̂ = 0.1655,  

GMLEµ̂ = 682.86, and GMLEλ̂ = 40,642.2 (Table I). 
In addition to LVEs and GMLEs, we also obtain the 

two-stage MMLEs, MEMEs, and MEME2s of µ , and λ . To 
obtain these three two-stage estimates, we replace LVEs with 
the estimates from (9), (16), and (26)  of Lee and Tang [8], 
respectively, in our proposed two-stage procedure. Results are 
also given in Table I.   

Because all two-stage estimates start with the same first 
stage, they have the same estimate of θ .  GMLEθ̂  = 0.1655 is 

much larger than LVEθ̂  = 0.1499. For estimating µ , GMLEµ̂  = 

682.86 is also much larger than LVEµ̂ = 618.97. When 

estimating λ , LVEλ̂ = 42,676.2, GMLEλ̂ = 40,642.2, MMLEλ̂ = 

40,585.9, and MEME2λ̂ = 39214.1 are fairly close to each other, 

except that MEMEλ̂  = 44,887.4, which is expected.  In the next 
section, we will evaluate the finite-sample performances of our 
proposed LVEs via a simulation study. The results show that 
our LVEs of all model parameters in Table I for this LED 
example are quite reasonable. 

B. Simulation Study 

In this study, we choose baseline values for the lifetime 
parameters around the estimated values in Table I: µ = 600, 
and λ = 40,000. Then, with a  = 0.6, we obtain η  = 0.001, and 
σ = 0.003 for the degradation process (1). For the Arrhenius 
law, we use θ = 0.15. We consider two censoring times: α  = 
200 (short), and 320 (long). We also consider 3 lower stress 
levels 0 1 2( , , )s s s  = (25, 40, 55), and a larger IG scale parameter 

Parameter LVE GMLE MMLE MEME   MEME2 

θ 0.1499 0.1655 0.1499 0.1499 0.1499 

µ 618.97 682.86 618.97 618.97 618.97 

λ 42676.2 40642.2 40585.9 44887.4 39214.1 
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Table II. The Experimental Settings and Failure Probabilities for 
the Three-Level PCSADT with θ = 0.15, µ = 600, and λ =

40,000 (60,000)*. 

Censoring  
Times 

Stress  Levels 

25oC 40oC 55oC 25oC 65oC 105oC 

a = 200 0.000 0.000 0.000 (0.000) (0.000) 0.859# 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.902) 

a = 320 
(0.000) 0.002 0.223 (0.000) 0.694 1.000# 
(0.000) (0.000) (0.169) (0.000) (0.724) (1.000) 

a = 450 
0.011 0.488 0.979 0.011 0.999 1.000 

(0.002) (0.475) (0.993) (0.002) (1.000) (1.000) 

 
λ = 60,000. Table II shows the failure probability for each 
scenario. By choosing the baseline values above, we have 
considered cases ranging from those with just a few or no 
failures to those with many failures. The failure probability is 
computed from (23). 

For each scenario in Table II, we further consider four sets 
of sample sizes for the three stress levels of the PCSADT: 

0 1 2n n n= = = 6 (N = 6 × 3), 0 1 2n n n= = = 12 (N = 12 × 3), 

0 1 2n n n= = = 24 (N = 24 × 3), and 0 1 2n n n= = = 96 (N = 96 × 3), 
respectively. Using all baseline values, we simulate the 
degradation path for each test unit according to (4) to obtain 
data in the form of (6). We then estimate θ , µ , and λ under 
each method. For each case, we repeat the simulation 2,000 
times, and obtain the average estimate (AvgEst), standard error 
(s.e.), and square root of mean square error (sqrtMSE) for each 
estimator. Results for α  = 200, and 320, under stress levels (25, 
65, 105) and 40,000λ =  are summarized in Tables III and IV. 
Results for the other 10 cases in Table II are similar, and hence 
given in the Supplemental Document. Our comparisons below 
are based on results from all cases. 

Estimating θ 
For estimating the life-stress parameter θ , the proposed 

asymptotically best linear unbiased estimates LVEθ̂  are 
consistently close to the baseline value of 0.15 for all cases 
considered in this study. The s.e. of LVEθ̂  is inversely 
proportional to the square root of the total sample size N, 
approximately, and hence decreases with N.  On the other hand, 

GMLEθ̂  consistently, and sometimes significantly, overestimates 
the baseline value, and increasing N does not necessarily reduce  
the bias of GMLEθ̂  (bias is defined as AvgEst – baseline value). 

Nevertheless, its s.e. is similar to that of LVEθ̂ . We also note 
that a longer censoring time, or higher stress, leads to a smaller 
s.e. for both LVEθ̂  and GMLEθ̂ . Overall, LVEθ̂  is a better 
estimator of θ .  

Estimating µ 

For the mean lifetime µ , we show only the results of the 

comparison between LVEµ̂  and GMLEµ̂  because MEMEµ̂  and 

MMLEµ̂  are identical to LVEµ̂ (see our discussions in Section III). 

First, we observe that LVEµ̂ consistently outperforms GMLEµ̂ in 
terms of bias. In particular, GMLEµ̂  significantly overestimates 
the baseline value of µ = 600, and its bias is larger when the 
censoring time is short (e.g., α = 200, or even 320), regardless 
of the stress levels. The s.e. of LVEµ̂ and GMLEµ̂  are similar, and 
have similar relationships with N as the s.e. of the two 
estimators for θ . We also observe clear correlations between 

GMLEθ̂  and GMLEµ̂  . That is, GMLEµ̂  with a larger bias always 

corresponds to a GMLEθ̂  which also has a larger bias. This result 
confirms Morton’s [16] comments on the biasing effect of 
estimating a nuisance parameter. In fact, this effect can be 
explained by the fact that GMLEθ̂  affects GMLE

ˆ ˆ( ; )lsβ θ  

exponentially through (16), and the latter in turn affects GMLEµ̂  

linearly through (33).  Overall, LVEµ̂  is a better estimator of 
µ .  

Estimating λ 
For estimating the scale parameter λ , the proposed LVEλ̂  

consistently estimates the baseline value (40,000, or 60,000) 
with a small s.e., regardless of the experimental settings. 
Furthermore, except for the cases with a long censoring time 
(e.g., α = 450) where MEME2λ̂  is slightly better, LVEλ̂ in general 
outperforms the other four estimators in both bias and s.e. 
These four estimators can have a large bias and s.e., particularly 
when sample sizes are small ( 6 3N = × , and 12 3N = × ). LVEλ̂ , 

GMLEλ̂ , and MMLEλ̂  are less sensitive to the censoring time α  

than MEMEλ̂  and MEME2λ̂ , although the latter two improve with 
a longer censoring time.  Finally, with some derivations, we can 
show that, if complete failure times, say iT , from ( , )IG µ λ  are 

available, the UMVUE of λ  is UMVUEλ̂ ( 3) /N −=  

1(1/ 1/ )N
ii T T= −∑  with a standard deviation of 22 / ( 5)Nλ − . 

When λ  = 40,000, the standard deviations are 15,689.3, 
10160.0, 6,910.9, and 3,362.7 for N = 6×3, 12×3, 24×3, and 
96×3, respectively. From Tables III and IV, we see that the s.e. 
of the proposed LVEλ̂  are close to the standard deviations of 
their corresponding UMVUEs (assuming failure times of all 
experimental units are available).  This is also true when λ = 
60,000.  

In summary, our proposed LV method provides better 
estimators for all model parameters than the methods 
considered in this study in finite as well as infinite samples.   
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VI. CONCLUSION 

To estimate parameters of the lifetime distribution of 
manufactured products, we propose a two-stage estimation 
method, assuming that the failure times of failed units, and the 
degradation values of censored units under a time-censored 
PCSADT are available. We assume that the (transformed) 
degradation path of a test unit follows a Wiener process. The 
objective is to estimate the mean and scale parameter of the 
lifetime distribution under normal stress. 

In the first stage of our estimation method, we obtain 
s-consistent estimates of the decay-acceleration factors for all 
stress levels. These estimates are then used to transform the 
available data so that the resulting data can be considered as 
data obtained under normal stress. In the second stage, we  

 

propose LVEs of the decay factor, µ , and λ  by adding latent 
variables for the unobserved degradations that occur after the 
failure to obtain pseudo degradation values at the censoring 
times for the failed units. These values, along with the observed 
degradation values from the censored units, are then used to 
develop the LVEs. The proposed estimators of all model 
parameters are shown to be s-consistent and easily interpretable, 
and have closed-form expressions. Our simulation results show 
that the proposed two-stage LVEs are in general less biased, 
and have standard errors smaller than those from the traditional 
maximum likelihood method in various finite-sample scenarios. 
One possible direction for future research is to see whether the 
proposed two-stage estimation method can be applied to other 
types of stress tests, such as the step-stress ADT, or to other 

Table III. Results underα = 200, and Stress = (25oC, 65oC, 105oC). 
 

Simulated 
Estimates  LVEθ̂  GMLEθ̂  LVEµ̂  GMLEµ̂  

LVEλ̂  GMLEλ̂  MMLEλ̂  MEMEλ̂  MEME2λ̂  

 N=6×3 
AvgEst 0.1500  0.1602  603.22  639.10  42692.2 51563.9 51112.3 63612.4 45408.6 
s.e. 0.0134  0.0129  52.26  55.92  19981.6 24817.1 24060.3 32873.7 23282.1 
sqrtMSE 0.0134  0.0164  52.36  68.23  20162.1 27379.0 26502.5 40475.0 23902.1 

 N=12×3 
AvgEst 0.1502  0.1608  602.94  640.64  41101.1 44437.0 44823.4 60926.7 44658.7 
s.e. 0.0097  0.0095  38.16  41.06  10565.6 11592.0 11470.6 16656.3 12172.7 
sqrtMSE 0.0097  0.0145  38.27  57.77  10622.8 12412.1 12443.4 26746.2 13033.8 

 N=24×3 
AvgEst 0.1499  0.1610  600.98  640.08  40501.3 41686.7 42284.3 60298.2 44729.3 
s.e. 0.0066  0.0064  26.00  27.99  7286.6 7654.8 7528.6 11443.5 8449.1 
sqrtMSE 0.0066  0.0127  26.02  48.88  7303.9 7838.4 7867.5 23301.7 9682.6 

 N=96×3 
AvgEst 0.1500  0.1613  600.03  640.31  40025.7 39777.4 40469.5 59547.9 44548.7 
s.e. 0.0034  0.0034  13.29  14.30  3280.5 3376.1 3308.1 5386.2 4014.3 
sqrtMSE 0.0034  0.0118  13.29  42.77  3280.6 3383.4 3341.3 20276.4 6066.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table IV. Results underα = 320, and Stress = (25oC, 65oC, 105oC). 

Simulated 
Estimates  LVEθ̂  GMLEθ̂  LVEµ̂  GMLEµ̂  

LVEλ̂  GMLEλ̂  MMLEλ̂  MEMEλ̂  MEME2λ̂  

 N=6×3 
AvgEst 0.1495  0.1566  598.78  621.08  42712.0  50271.9  50751.0  49990.0  42133.0  
s.e. 0.0118  0.0113  41.79  42.94  17642.9  21249.7  21045.4  21552.9  18087.6  
sqrtMSE 0.0118  0.0131  41.81  47.84  17850.1  23602.1  23632.5  23755.6  18212.9  

 N=12×3 
AvgEst 0.1496  0.1574  599.67  624.16  40952.3  43518.1  44352.5  48182.0  41177.4  
s.e. 0.0082  0.0078  29.29  29.93  10657.2  11209.0  11224.9  12581.5  10680.6  
sqrtMSE 0.0082  0.0107  29.29  38.47  10699.7  11748.1  12039.2  15008.0  10745.3  

 N=24×3 
AvgEst 0.1499  0.1579  599.51  624.67  40425.4  40985.7  42068.0  47710.1  41040.3  
s.e. 0.0057  0.0054  19.65  20.28  6746.4  6699.3  6733.9  7964.5  6796.2  
sqrtMSE 0.0057  0.0096  19.66  31.94  6759.8  6771.5  7044.3  11085.1  6875.4  

 N=96×3 
AvgEst 0.1498  0.1583  600.00  626.56  40022.7  39254.0  40452.6  47379.5  40934.0  
s.e. 0.0026  0.0025  9.18  9.56  3213.4  3190.4  3187.4  3952.4  3394.4  
sqrtMSE 0.0026  0.0087  9.18  28.23  3213.5  3276.4  3219.4  8371.3  3520.5  
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types of degradation data, such as the first-passage times of the 
degradation paths over certain multiple non-failure thresholds. 
 

APPENDIX A 

Proof of s-Consistency of LVE of λ   in (13)     

Proof:  To prove the s-consistency, we rewrite the LVE of 
λ under 0s  in (13) as 
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where ˆnµ  is the LVE, or any other s-consistent estimator of µ . 
We study the weak convergence of each term in the numerator 
and the denominator of (35) in (i), (ii), and (iii), respectively, 
below.  
 (i)  For the numerator of (35), we first note that the number 
of failed units M in a sample of n units follows a binomial 
distribution with failure probability ( )F α . Thus, 

/ ( )PM n F α→ .  The conditional expectation of  1 /M
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in (35) is
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where ( )Φ ⋅  is the standard normal cdf, / ( / 1)A λ α α µ= − , 

and / ( / 1)B λ α α µ= + . Similarly, using Wald’s equation, we 
have 
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which converges to 0 as n → ∞ . This implies that 1
M

ii T n=∑  
converges in probability to its expectation in (36). Hence, the 
numerator in (35) is 
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(ii)  For the first term in the denominator of (35), we write 
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Because ˆ P
nµ µ→ , 0 / 1M n≤ ≤  with probability 1, and 
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ii T n M Nα α=≤ ≤ ≤∑   with probability 1, the last three 

terms in (38) converge in probability to 0. For the first term in 
(38), we obtain  

     2 2

0
1

( )
M

i i
i

E T T n t f t dt
α

α
=

 
≤ = 

 
∑ ∫   

 

3
2 2 / 2 /

3

( ) ( ) ( ) ( )

( ) ( )

A e B A e B
n

A B A

λ µ λ µµµ
λ

µ φ
λ

 
        

 
     

Φ + Φ − + Φ − Φ −
=

− +

,
 

 
and

 
hence 

  

2

1

2 2 1

1 1

1 (1 )

1   = | 2 | ( )

M

i i
i

M M

i i i i
i i

E T T
n

E T T E T T E M
n

µ α

µ α µ α

=

− −

= =

 
 
 

    
            

− ≤

≤ − ≤ +

∑

∑ ∑
         

2 / 2 /( ) ( ) 4 ( ) ( ) ( )A e B e B A B Aλ µ λ µµ µ φ
λ λ

 
 = Φ − Φ − + Φ − − +   

 2 / 2 /( ) ( ) 4 ( ) 2 ( )A e B e B Aλ µ λ µµ α φ
λ λ

 
 = Φ − Φ − + Φ − − , (39)  

where ( )φ ⋅ is the standard normal pdf.  Now, because 
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in (38) converges in probability 
to its expectation in (39), thus, the first term in the denominator 
of (35) converges in probability to (39). 

(iii)  For the second term in the denominator of (35), we note 
that 
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−+ −                                            (40) 

Again, because ˆ P
nµ µ→  and / ( )pM n F α→ , the third 

term in (40) converges in probability to 0. Furthermore, 
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because all iW  have a finite conditional variance, the 

conditional variance of 1
n

ii M W n= +∑  converges to 0 as n → ∞ . 

Consequently, 1
n

ii M W n= +∑  will converge in probability to its 
expectation  

( )
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i i
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α α
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1 ( )(1 ( )) ( )
1 ( )

a ah wn F w dw wh w dw
n F

a
a−∞ −∞

= − =
−∫ ∫ , 

where ( )h ⋅ is the joint likelihood of ( )W α  given in (31) with 
( ; ) 1lsβ θ = . It is understood that ( , )W T  above is i.i.d. as 

( , )i iW T  for 1,...,i M n= + . So, the second term in (40) 
converges in probability to 0. For the first term in (40),  

2 2
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Furthermore, the conditional variance is 
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2
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a
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pa λ
−≡ − > , 

and is proportional to a normal pdf. Thus, the first term in (40) 
also converges in probability to its expectation in (41).  Hence, 
the denominator of (35) is 

2 2

1 1

1 (1 ) ( )
M n

i i
i i M

T W a
n

µ a µ
= = +

 
 
 

− + −∑ ∑  

2 / 2 /( ) ( ) 1 ( ) ( )P A e B A e Bλ µ λ µµ α
λ λ

   →    Φ − Φ − + − Φ − Φ − .      

(42)                
 Finally, from (37), (42), and the Slusky’s theorem, we prove  
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.    █ 

                                              

Proofs of s-Consistencies of LVEµ̂  in (28), and LVEλ̂  in (30) 

Proof.  To prove that LVEµ̂

 

is s-consistent for µ , we first 
note that 
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From ˆ p
l lβ β→  and ˆ/ /p

l la aη η→ , we have ˆ ˆ( / )l laβ η  
( / )P

l laβ η µ→ =  by (15) and (3). Because the weights in (43) 

always sum to 1, it is straightforward to show LVEˆ pµ µ→ .   

The proof of s-consistency of LVEλ̂  in (30) is similar to the 
earlier proof for the LVE in (13), and therefore is briefly 
described below. First, we rewrite (30) as (44). Then, using the 

fact that l liTβ  independently follow ( , )IG µ λ , ˆ P
l lβ β→  , 

LVEˆ Pµ µ→ , and ( )liW α is a standard Wiener process at time 

lβ α , we can show that the numerator of (44) converges in 
probability to (cf. (37))             
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where /l ln N π→  as N → ∞ , lA  and lB  are obtained from 
A and B, respectively, by replacing α  with lα .  Similarly, the 
denominator of (44) converges in probability to (cf. (42))      

2 / 2 /

0

1 ( ) ( ) 1 ( ) ( )
k

l
l l l l l

l l
A e B A e Bl µ l µαµπ

β ll =

         
Φ − Φ − + − Φ − Φ −∑



.                         (46) 
Finally, LVEλ̂  converges in probability to (45)/(46), which is

λ . Hence, we prove the s-consistency of  LVEλ̂ .         █ 
 

APPENDIX B 

For cases where multiple stress factors are included in the 
analysis, the technique in this paper can be extended with only 
some minor modifications in the notation and a generalization 
of the Arrhenius law. Consider the 2-factor case, for example. 
We will put all factors in a factor vector, 1 2(  )l l ls s s ′≡  and use 
the following Generalized Eyring Model (GEM), of which the 
univariate Arrhenius law, the power law, and the exponential 
law model are all special cases (Meeker and Escobar [15]):  

0 1 1 2 2 12 1 21 2 1 2( , ) exp( ( ) ( ) ( ) ( ))l l l l l ls g s g s g s g sβ β θ θ θ θ θ≡ = + + + , 
for 1,...,l k= , 

where 0 1 2 12( , , , )θ θ θ θ θ ′= ; 1g and 2g are some functions. In 
matrix form, we have 

ln Aβ θ= , 

where  
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β
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β
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≡  , 

0

1

2

12 4 1

θ
θ

θ
θ
θ

×

 
 
 
 
  
 

≡ , 

1 11 2 21 1 11 2 21

1 2 1 21 2 1 2 4
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1 ( ) ( ) ( ) ( )k k k k k

g s g s g s g s

g s g s g s g s
×

 
 
 
 
 

⋅
≡

⋅
, 

and A is called the design matrix. Since we have data on lβ , 

namely ˆ ˆ( )l lsβ β≡ in (15), the model for estimating θ  is  

ˆln Aβ θ ε= + , 

where ε  is an error vector with the covariance matrix
ˆcov(ln )βΣ ≡ . Note that ˆln lβ  are correlated with unequal 

variances: 2 2
0

ˆ(ln )l lVar β δ δ= +  and 2
0

ˆ ˆ(ln , ln )l lCov β β δ′ =  for

1 ,l l k′≤ ≤ . Let 1/2−Σ  be a symmetrical matrix such that 
1/2 1/2 I− −Σ ΣΣ = , then the Best Linear Unbiased Estimator 

(BLUE) of θ  is (see Seber and Lee [22]): 
 

( ) 11 1ˆ ˆA A A lnθ β
−− −′ ′= Σ Σ . 

When k = 2 with 0 0θ =  (hence, there is no need to estimate), it 

can be verified that the θ̂  obtained above is identical to the 

LVEθ̂  given in (18). In other words, our LVE of θ  is BLUE.  
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