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Saikkonen ~1991, Econometric Theory 7, 1–21! developed an asymptotic optimal-
ity theory for the estimation of cointegrated regressions+ He proposed the dynamic
ordinary least squares ~OLS! estimator obtained by augmenting the static cointe-
grating regression with leads and lags of the first differences of the I~1! regres-
sors+ However, the assumptions imposed preclude the use of information criteria
such as the Akaike information criterion ~AIC! and Bayesian information crite-
rion ~BIC! to select the number of leads and lags+We show that his results remain
valid under weaker conditions that permit the use of such data dependent rules+
Simulations show that, relative to sequential general to specific testing proce-
dures, the use of such information criteria can indeed produce estimates with
smaller mean squared errors and confidence intervals with better coverage rates+

1. INTRODUCTION

The estimation of cointegrated systems has received a great deal of attention
in the econometrics literature+ Several methods to estimate the cointegrating
vectors have been proposed, which are asymptotically equivalent and yield
estimates with some optimality properties as defined, e+g+, by Saikkonen ~1991!+
A popular method is based on estimating the full system by maximum likeli-
hood assuming normal errors ~Johansen, 1991!+ On the other hand, several
single equation methods have been developed that yield estimates that are also
optimal and lead to Wald tests with the usual chi-square limiting distribution+
Phillips and Hansen ~1990! developed a fully modified estimator based on a
semiparametric two-step procedure+ An alternative very simple method is the
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so-called leads and lags, or dynamic ordinary least squares ~OLS! estimator,
proposed by Saikkonen ~1991! and Stock and Watson ~1993!+ This estimator
is obtained by augmenting the static cointegrating regression with leads and
lags of the first differences of the I~1! regressors+ The idea is to remove the
asymptotic inefficiency of the least squares estimate in the static regression by
using the relevant information in the system to account for the correlation
between the regressors and the dependent variable+ Monte Carlo simulation
studies ~e+g+, Carrion-i-Silvestre and Sansó-i-Rosselló, 2004! show that the
dynamic OLS estimator performs better in finite samples compared to the fully
modified estimation procedure+1

An issue that arises when using the dynamic OLS regression is how to choose
the number of leads and lags+ A possibility is to use an a priori fixed rule+ Ng
and Perron ~1995! show, however, that the Dickey and Fuller ~1979! and Said
and Dickey ~1984! augmented Dickey–Fuller ~ADF! unit root test constructed
with such an a priori rule for the truncation lag exhibits size distortions and0or
power loss unless the value happens to be chosen appropriately+ Similar con-
clusions are obtained for the ADF-based cointegration test in Haug ~1996!+ These
results point to the need for data dependent rules to select the number of leads
and lags+A popular method is to use an information criterion such as the Akaike
information criterion ~AIC! ~Akaike, 1973! or the Bayesian information crite-
rion ~BIC! of Schwarz ~1978!+ This was also suggested by Saikkonen ~1992,
p+ 10! for the dynamic OLS regression+ The problem is that, for common pro-
cesses, such as a finite-order autoregressive moving average ~ARMA! process,
the conditions imposed by Saikkonen ~1991! preclude the use of such informa-
tion criteria+ This is because, in such cases, the information criteria select a lag
order that increases with the sample size at a logarithmic rate+ However, to
derive the limit distribution of the estimates and test statistics, a lower bound
that precludes this logarithmic rate is imposed+

We build on the work of Ng and Perron ~1995!, who analyzed the choice of
the truncation lag in the context of the ADF unit root test in a general ARMA
model+ They show that the lower bound condition imposed by Said and Dickey
~1984!, a rate of increase at some polynomial rate, is not needed to obtain the
usual limit distribution applicable in the fixed lag case ~for a relaxation of the
upper bound condition, see Chang and Park, 2002!+ A related paper is that by
Lütkepohl and Saikkonen ~1999!, who study data dependent rules for choosing
the truncation lag in the context of testing for cointegration+

We show that the lower bound condition in Saikkonen ~1991! is not neces-
sary to obtain asymptotically efficient estimates and perform hypothesis testing
using standard Wald tests with a chi-square null limit distribution+ In particu-
lar, we impose a weaker condition that does not preclude a logarithmic rate of
increase ~in the case of an ARMA process or a linear process with geometri-
cally decaying weights! so that data dependent rules such as the AIC and the
BIC can be used+ This is an important practical result as empirical researchers
often use such data dependent rules to select the order of the model+We further
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show that the upper bound condition can also be relaxed, with the implication
that our results are valid even if the estimates of the nuisance parameters ~the
coefficients on the leads and lags of the first-differenced regressors! are incon-
sistent+ Section 2 presents the model and assumptions, and Section 3 states the
main results+ Section 4 presents simulations showing that, relative to sequential
general to specific testing procedures, the use of such information criteria can
indeed produce estimates with smaller mean-squared errors ~MSEs! and confi-
dence intervals with better coverage rates+ Section 5 offers some concluding
remarks, and all technical derivations are included in an Appendix+

2. MODEL AND ASSUMPTIONS

We consider a scalar random variable yt ~t � 1, + + + ,T ! generated by the cointe-
grating relation

yt � zt
'd� u1t ,

Dzt � u2 t

(1)

with zt a ~q � 1! vector of variables and ut � @u1t
' ,u2 t

' # ' +2 We impose the same
conditions as in Saikkonen ~1991!, which are stated in the following assumption+

Assumption DGP.

~a! The errors ut are a stationary process with zero mean and continuous
spectral density matrix fuu~l!+

~b! The spectral density matrix fuu~l! is bounded away from zero so that
fuu~l! � aIn, n � q � 1,l � @0,p# , and a � 0+

~c! The covariance function of ut is absolutely summable; i+e+,
�k��`
` 7G~k!7 � ` where E~ut ut�k

' ! � G~k! and 7{7 is the standard
euclidian norm+

~d! The fourth-order cumulants of ut , cum~m1,m2,m3!, satisfy

�
m1��`

`

�
m2��`

`

�
m3��`

`

6cum~m1,m2 ,m3 !6 � `+

First note that part ~a! implies that ut satisfy a multivariate invariance principle
~see Hall and Heyde, 1980, p+ 146! such that T �102 �t�1

@Tr# ut n B~r!, 0 � r � 1,
where n denotes weak convergence in distribution under the Skorohod topol-
ogy and B~r! is a vector Brownian motion with a positive definite covariance
matrix V � 2pfuu~0!, which we partition as

V � �s11
2 V12

V21 V22
� , fuu~l!��fu1 u1

~l! fu1 u2
~l!

fu2 u1
~l! fu2 u2

~l!
� +
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When parts ~b! and ~c! of Assumption DGP hold,

u1t � �
j��`

`

u2, t�j
' Pj � vt ,

where �j��`
` 7Pj7 � ` and vt is a stationary process such that E~u2 t vt�k!� 0

for all k and fvv~l! � fu1 u1
~l! � fu1 u2

~l! fu2 u2
~l!�1 fu2 u1

~l!+ Also,
T �1 �t�1

T vt
2 p
&& limTr` T �1 �t�1

T E~vt
2! [ sv

2 , say+ We thus have 2pfvv~0! �
s1+2

2 � s11
2 � V12V22

�1V21 ~see, e+g+, Brillinger, 1975, p+ 296!+ Hence, the
cointegrating relation specified by ~1! can be represented by3

yt � zt
'd� �

j��kT

kT

Dzt�j
' Pj � vt

*, t � kT � 1, + + + ,T � kT , (2)

where vt
* � vt � et with et � �6 j 6�kT

Dzt�j
' Pj + We now state the conditions on

the rate of increase of kT as the sample size increases+

Assumption K. As T r `, kT r ` in such a way that

~a! ~Upper bound condition! kT
20T r 0 and

~b! ~Lower bound condition! kT �6 j 6�kT
7Pj7 r 0+

Saikkonen ~1991! assumed kT
30T r 0, which is stronger than our upper

bound+ More importantly, he specified T 102 �6 j 6�kT
7Pj7 r 0, which is much

more restrictive than our lower bound+ For instance, when the data are gener-
ated by a finite-order ARMA process, it precludes using popular information
criteria such as the AIC or BIC because these data dependent methods to select
kT imply a logarithmic rate of increase that his lower bound condition does
not permit+ In contrast, Assumption K merely requires that kT r ` at any
rate in the case of ARMA processes, thereby allowing the use of information
criteria+

In this framework, the estimate of the cointegrating vector is simply the OLS
estimate of d from regression ~2!, and inference can be carried using the stan-
dard normal or chi-square distribution provided the standard errors are adjusted
for potential serial correlation in vt

*+We show in the next section that all results
derived by Saikkonen ~1991! remain valid under our less restrictive assump-
tions on kT +

3. MAIN RESULTS

As a matter of notation, we let BT
* � T �102 �j�1

@Tr#wj , where wt � ~vt ,u2 t
' !' +

Note that BT
* converges weakly to B* as T r `, where B* is a vector Brown-

ian motion with block diagonal covariance matrix V* � diag~s1+2
2 ,V22 !+

We partition B* as B* [ ~B1+2 ,B2
' !' conformably with ~vt ,u2 t

' !' , where B1+2 �
B1 � V12V22

�1 B2 + Note that B1+2 is independent of B2+
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We first state a proposition about the limiting distribution of the OLS esti-
mate of d, denoted Zd, obtained from regression ~2!, and also the limit of the
sample variance of the errors [sv

*2 � T �1 �t�1
T [vt

*2 , where [vt
* are the OLS resid-

uals from ~2!+

PROPOSITION 1+ Under Assumptions DGP and K,

(i) T ~ Zd � d! n ~�0
1 B2 B2

' !�1~�0
1 B2 dB1+2 ! and

(ii) [sv
*2 p
&& sv

2.

Hence, Zd has the usual mixed normal distribution, and, because B2 and B1+2

are independent, inference can be carried out using the standard normal or chi-
square distributions when the errors vt

* are martingale differences+ In the gen-
eral case where the errors vt

* are serially correlated, we need to replace [sv
*2 by

an estimate of ~2p times! the spectral density function at frequency zero of vt ,
namely, s1+2

2 ~the so-called long-run variance!+We consider a class of estimates
based on a weighted sum of the sample autocovariances of [vt

* defined by

[s1+2
2 � [sv

*2 � 2 �
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

[vt
* [vt�j
* + (3)

We impose the following conditions on the kernel function w~{! and the band-
width mT , which are satisfied for well-known kernels such as the Bartlett and
the quadratic spectral, and data dependent methods to select the bandwidth ~e+g+,
Andrews, 1991; Newey and West, 1994!+

Assumption W. The kernel function w~{! is a continuous and even function
with 6w~{!6 � 1, w~0! � 1, and ��`

` w 2~x! dx � `; and the bandwidth is such
that mT r ` and mT � o~T 102! as T r `+

We then have the following result+

PROPOSITION 2+ Under Assumptions DGP, K, and W, [s1+2
2 p
&& s1+2

2 .

Now that we have shown the consistency of the long-run variance estimator,
Wald tests of hypotheses on the cointegrating vectors can be constructed straight-
forwardly and have the usual chi-square asymptotic distribution ~see, e+g+, Phil-
lips and Hansen, 1990!+

We have thus shown that standard asymptotic inference on the I~1! regres-
sion coefficients is still valid even if we relax both the lower and upper bound
conditions+4 It is important to stress that our condition kT � o~T 102! is not suf-
ficient for the consistency of the estimates of the nuisance parameters Pj + To
guarantee the consistency of such estimates, we would need to strengthen
Assumption K to kT � o~T 103! as in Berk ~1974!+ Also, to obtain estimates that
are MT consistent ~more precisely that �j��kT

j�kT 7 ZPj � Pj72 � Op~kT 0T !! the
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lower bound used by Saikkonen ~1991! is needed+ But as shown previously
these are not needed insofar as inference on the cointegrating vector is concerned+

Remark 1. For models with a constant and0or time trend included in the
regression, we simply replace the Brownian motion by its demeaned or
detrended counterpart+ With only a constant we have OB2 t � B2 t � �0

1 B2s ds,
whereas including a constant and a time trend we have DB2 t � B2 t � ~6t � 4!
�0

1 B2s ds � ~12 t � 6!�0
1 sWs ds+

4. SIMULATIONS

In this section, we assess the adequacy of different information criteria to select
the number of leads and lags in finite samples via a small-scale simulation exper-
iment+ Our goal is not to provide a comprehensive treatment or to come up
with definite conclusions about the best method to select the number of leads
and lags+ Our aim is more modest in that we wish to show that, using a class of
data generating processes ~DGPs! that have been used in other studies, the use
of selected information criteria can indeed lead to estimates with smaller MSEs
and confidence intervals with better coverage rates relative to sequential gen-
eral to specific testing procedures+

We consider three information criteria: the AIC, the BIC, and the PIC ~pos-
terior information criterion! suggested by Phillips and Ploberger ~1994!+ We
compare their performance to a general to specific sequential testing procedure
as described in Ng and Perron ~1995! for the selection of the autoregressive
order in the context of testing for a unit root+ The latter starts by imposing
some maximal value kmax to the number of leads and lags of the first differ-
ences of the regressors in regression ~2!+ Usually, kmax is some function of the
sample size that increases at some polynomial rate, e+g+, T 104 + Then for each of
the leads and lags, it assesses whether the last lag is significant using a two-
sided test on the last coefficient+ We start with the lags+ If a rejection occurs,
the number of lags selected is kmax, and we assess the number of leads sequen-
tially+ Otherwise, the model is reestimated with kmax lags and the test is applied
to the last coefficient on the leads+ Upon a nonrejection, we then return to assess
if the ~kmax � 1!th coefficient on the leads is significant in a regression esti-
mated with kmax � 1 leads and lags+ And so on, until a rejection occurs for the
leads and lags+We consider two variations of this procedure: one based on 10%
two-sided tests, labeled tsig10, and one based on 5% two-sided tests, labeled
tsig05+

The simulation design closely follows Haug ~1996!+ The DGP considered is

yt � x1t � vt ,

a1 yt � a2 x1t � ct ,
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where vt � rvt�1 � wt , ct � ct�1 � rt , and rt � wt � uwt�1, with

�wt

wt
� � i+i+d+ N��wt

wt
� ,� 1 hs

hs s 2�� +
We set v0 � 0 and c0 � 0+ The parameters that are held fixed throughout are
a1 � 1, a2 � �1, and s � 4+ We also consider a single sample size T � 200,
and 1,000 replications are used+ We use three values for the correlation coeffi-
cient of the disequilibrium errors, namely, r � ~0, 0+5, 0+85!, and three values
for the correlation between wt and wt , h � ~�0+5, 0, 0+5!+ The base case sets
u � 0, but we also consider u � 0+8 when r � 0+85+ The estimate of the long-
run variance [s1+2

2 as defined by ~3! is calculated based on a quadratic spectral
kernel and an AR~1! approximation to select the bandwidth ~see Andrews, 1991!+
We also use AR~1! prewhitening as suggested by Andrews and Monahan ~1992!+
Finally, for all methods we consider two maximal values for the number of
leads and lags, kmax � 5, 10+

Table 1 reports the MSE of the estimate of the cointegrating coefficient
obtained using the different procedures and also the coverage rates of the 95%
confidence intervals constructed using the estimate [s1+2

2 +
Consider first the case with r� u� 0+ Here, all methods lead to confidence

intervals with a coverage rate close to the 95% nominal level+ Using an infor-
mation criterion generally leads to results with smaller MSE than using the
sequential tsig method+ However, none of the three considered dominates in all
cases+ When h� 0 or 0+5, the BIC works relatively well, and when h� �0+5,
using the PIC is as good as using the BIC+ Consider now keeping u � 0 but
setting r � 0+5+ The coverage rates become somewhat liberal when h � 0+
However, it is the same across methods to select the number of leads and lags,
and it is accordingly due to the fact that [s1+2

2 is a less precise estimate of s1+2
2 +

Things are similar when r � 0+85, except that using the AIC or BIC generally
leads to better coverage rates+ For the MSE, with r � 0+5 or 0+85, using the
AIC is clearly best when h � 0+5+ When h � 0, the AIC and BIC are compa-
rable with kmax � 5 but using the BIC is better when kmax � 10+ When h �
�0+5, the PIC and the two tsig methods yield lower MSE than the AIC or BIC+
Consider now the case with r � 0+85 and u � 0+8+ Using the AIC is clearly
preferable when h� 0+5+When h � 0, using the tsig05 leads to smallest MSE
though the gains over what can be achieved using the BIC or the PIC are mar-
ginal+ The coverage rates are a bit off the 95% nominal level but are generally
closer using the AIC+

In summary, when the errors do not contain a moving average ~MA! compo-
nent, at least one of the information criteria performs at least as well as tsig100
tsig05 for all values of h and both choices for the maximum number of leads
and lags+With an MA component in rt , the information criteria outperform the
sequential procedures for h � 0 but not otherwise+ However, although the
sequential procedures are only slightly better than the information criteria when
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h � 0, the gain from using the information criteria can be quite substantial
when h � 0+ With respect to the coverage rates of the 95% asymptotic confi-
dence intervals, at least one of the information criteria performs at least as well
as tsig100tsig05 for all values of h and both choices for the maximum number
of leads and lags+ They offer a substantial improvement when h � 0+ Hence,
overall our limited simulations show that using an information criterion can
lead to estimates with smaller MSE and confidence intervals with better cover-
age rates compared to sequential testing procedures+ Finally, a word on the rank-

Table 1. Mean-squared errors of the estimates and coverage rates of the con-
fidence intervals

r � 0, u � 0 r � 0+5, u � 0

kmax � 5 kmax � 10 kmax � 5 kmax � 10

h h h h

�0+5 0 0+5 �0+5 0 0+5 �0+5 0 0+5 �0+5 0 0+5

~a! MSE of the estimates ~�105!
AIC 6+39 8+27 6+35 7+57 9+91 7+40 25+3 33+2 25+9 30+1 39+9 30+4
BIC 5+94 7+76 6+40 6+54 8+63 7+16 23+3 33+5 28+6 25+9 37+1 32+2
PIC 5+93 7+87 6+68 6+55 8+69 7+39 22+6 34+5 33+3 25+1 38+5 36+7
tsig10 6+88 9+46 6+63 9+38 12+20 8+91 22+6 35+0 30+4 28+8 42+2 33+8
tsig05 6+62 8+52 6+57 9+23 11+77 8+60 22+2 35+2 34+3 27+2 39+4 38+9

~b! Coverage rates of 95% confidence intervals
AIC 0+94 0+94 0+94 0+94 0+94 0+94 0+93 0+93 0+93 0+93 0+92 0+92
BIC 0+95 0+95 0+94 0+95 0+95 0+93 0+94 0+92 0+91 0+94 0+92 0+92
PIC 0+95 0+95 0+93 0+95 0+95 0+93 0+94 0+92 0+90 0+95 0+92 0+91
tsig10 0+93 0+94 0+93 0+94 0+94 0+94 0+94 0+92 0+91 0+94 0+91 0+90
tsig05 0+94 0+93 0+93 0+94 0+95 0+94 0+94 0+92 0+91 0+94 0+92 0+90

r � 0+85, u � 0 r � 0+85, u � 0+8

kmax � 5 kmax � 10 kmax � 5 kmax � 10

h h h h

�0+5 0 0+5 �0+5 0 0+5 �0+5 0 0+5 �0+5 0 0+5

~a! MSE of the estimates ~�105!
AIC 252 313 357 330 382 372 84+5 94+7 97+3 106+6 123+1 109+0
BIC 248 303 405 287 338 448 83+0 86+8 105+0 96+9 97+0 115+2
PIC 229 299 510 260 331 557 79+6 82+9 124+4 89+8 92+7 136+7
tsig10 230 299 526 261 332 576 74+0 82+5 124+3 83+2 91+7 137+1
tsig05 230 299 530 259 331 580 73+3 82+3 124+6 82+6 91+5 137+0

~b! Coverage rates of 95% confidence intervals
AIC 0+92 0+89 0+86 0+90 0+88 0+86 0+92 0+93 0+91 0+91 0+92 0+91
BIC 0+92 0+90 0+84 0+91 0+89 0+84 0+91 0+92 0+90 0+90 0+92 0+89
PIC 0+92 0+90 0+81 0+92 0+89 0+81 0+90 0+92 0+88 0+89 0+92 0+86
tsig10 0+92 0+90 0+81 0+92 0+89 0+80 0+89 0+92 0+88 0+88 0+92 0+86
tsig05 0+92 0+90 0+81 0+91 0+89 0+80 0+89 0+91 0+88 0+88 0+92 0+87
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ing among the three information criteria in terms of their performance in finite
samples+ The PIC performs best when h � 0, but its performance deteriorates
when h � 0, in which case AIC0BIC perform relatively better+ This is true
whether the errors contain an MA component or not+

5. CONCLUSION

We have shown that it is possible to relax both the upper and lower bound
conditions on the number of leads and lags in the dynamic cointegrating regres-
sion estimated by OLS+ The assumptions on the errors and regressors are fairly
general, thus making our result valid for a wide range of empirical applica-
tions+ The result on the lower bound condition is especially important because
it allows the use of data dependent rules such as information criteria, which are
widely used in applied work+ Simulations showed that, relative to sequential
general to specific testing procedures, the use of such information criteria can
indeed produce estimates with smaller MSEs and confidence intervals with bet-
ter coverage rates+

NOTES

1+ A related procedure is that of Phillips and Loretan ~1991!, which introduces lags of the dis-
equilibrium error as regressors to make the residuals approximately uncorrelated+ This has the advan-
tage of not having to correct the standard errors for correlation in the residuals at the cost of dealing
with a nonlinear regression+

2+ Deterministic components could be included at the expense of additional complexities in the
proofs+ All results stated in the text remain valid with minor changes related to the exact nature of
the distributions stated+

3+ Note that the number of leads and lags of Dzt need not be the same+We specify the same value
for simplicity+ Alternatively, one can interpret kT as the maximum of the number of leads and lags+

4+ Chang, Park, and Song ~2006! claim that the lower bound condition is not needed+ The DGP
they consider is, however, different and more restrictive than that considered by Saikkonen ~1991!+
Hence, their conclusions are of less practical interest+ They also do not consider the conditions
under which s1+2

2 can be consistently estimated, and their results are therefore also not applicable to
the problem of inference+
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APPENDIX

As a matter of notation, throughout we use the matrix norm 7B71 � sup7x7�1 7Bx7, with
7{7 the standard euclidean norm+ Note that 7B71 equals the square root of the largest
eigenvalue of B 'B and that 7Bx7� 7B717x7+Also, we use the usual norm 7B72 � tr~B 'B!,
such that 7B71

2 � 7B72 + Finally, for any conformable matrices B1 and B2, 7B1 B27 �
7B177B271+

Proof of Proposition 1. Let ht � ~Dzt�kT

' , + + + ,Dzt�kT

' !', P � ~P�kT

' , + + + ,PkT

' !' + We
can write ~2! as

yt � zt
'd� ht

'P� vt
*, t � kT � 1, + + + ,T � kT

or in matrix form as

Y � Zd� hP� V *,
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where Z � ~z1, + + + , zT !
', h � ~h1, + + + ,hT !

', V * � ~v1
*, + + + , vT

* !' � V � E with V �
~v1, + + + , vT !' and E � ~e1, + + + eT !

' + Also let Mh � I � h~h 'h!�1h ' + We have

Zd� d � ~Z 'Mh Z!�1 Z 'MhV * � ~Z 'Mh Z!�1 Z 'Mh~V � E!

so that

T ~ Zd� d! � ~A1T !
�1~A2T � A3T !, (A.1)

where

A1T � T �2 Z 'Z � T �2 Z 'h~h 'h!�1h 'Z,

A2T � T �1 Z 'V � T �1 Z 'h~h 'h!�1h 'V,

A3T � T �1 Z 'E � T �1 Z 'h~h 'h!�1h 'E+

We first prove the following lemma+

LEMMA A+1+ Under Assumptions DGP and K: (i) 7~h 'h!�171 � Op~T �1!, (ii) 7Z 'h7�
Op~TkT

102! , ~iii! 7h 'V 7� Op~T
102kT

102! , ~iv! 7h 'E7� op~TkT
�102! , ~v! 7Z 'E7� op~TkT

�1! ,
~vi! 7E 'E7 � op~T ! , (vii) 7E 'V 7 � op~T ! , (viii) 7h 'V *7 � op~TkT

�102! .

Proof of Lemma A.1.

~i! Let G2 � ~G2, i�j !i, j��kT

kT , where G2, h � E~u2 t u2 t�h!+ From Berk ~1974, Lem+ 3!,
it follows that E7~T �1h 'h!�1 � G2

�171
2 � C1T �1kT

2 for some constant C1+
Hence, 7~T �1h 'h!�1 � G2

�171 � Op~T �102kT !+ Because 7G2
�171 � O~1! uni-

formly in kT for sequences such that T �102kT r 0, we have

6 7~T �1h 'h!�1 71 � 7G2
�1716 � 7~T �1h 'h!�1 � G2

�171 � op~1!,

and the result follows+
~ii! The result follows because each element T �1Z 'h is Op~1! and the number of

elements is of order O~kT !+
~iii! Because the elements of h and V are uncorrelated, the elements of T �102h 'V

are each Op~1!, and the result follows because the number of elements is of
order O~kT !+

~iv! We have

E7T �1h 'E7 � T �1 �
t�kT�1

T�kT

E~7et ht7!� $E~7ht72 !E~et
2!%102

� C2 kT
102�E� �

6 j 6�kT

Dzt�j
' Pj�2�102

� C2 kT
102� �

6 i 6�kT

�
6 j 6�kT

7G2, i�j77Pi77Pj7�102

� C3 kT
102 �
6 j 6�kT

7Pj7� o~kT
�102!

using the fact that 7G2, i�j7 is uniformly bounded by Assumption DGP+
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~v! The result follows from Lemma A+2~a! of Lütkepohl and Saikkonen ~1999!+
~vi! We have

E7T �1E 'E7 � T �1 �
t�1

T

E~et
2!� T �1 �

t�1

T

�
6 i 6�kT

�
6a 6�kT

Pi
'E~Dzt�i Dzt�a

' !Pa

� T �1 �
6 i 6�kT

�
6a 6�kT

�
t�1

T

7Pi
' 7 7G2~a � i !77Pa7

� o~kT
�2!� o~1!

because 7G2~ j !7 is bounded uniformly in j+
~vii! We have T �1 �t�1

T vt et � T �1 �6 i 6�kT
Pi
'�t�1

T Dzt�i vt , so that

��T �1 �
t�1

T

vt et�� � T �1 �
6 i 6�kT

7Pi7���
t�1

T

Dzt�i vt��� op~kT
�1 T �102 !� op~1!,

where we used the fact that T �102 �t�1
T Dzt�i vt � Op~1!+

~viii! Because V * � V � E, 7h 'V *7 � 7h 'V 7 � 7h 'E7 � Op~T
102kT

102! �
op~TkT

�102! � op~TkT
�102!+ �

Using Lemma A+1, we have

7T �2 Z 'h~h 'h!�1h 'Z7 � T �2 7Z 'h72 7~h 'h!�1 71 � Op~kT T �1 !� op~1!,

7T �1 Z 'h~h 'h!�1h 'V 7 � T �1 7Z 'h77~h 'h!�1 717h 'V 7� Op~kT T �102 !� op~1!,

7T �1 Z 'h~h 'h!�1h 'E7 � T �1 7Z 'h77~h 'h!�1 717h 'E7� op~1!,

which implies that

A1T � T �2 Z 'Z � op~1!, (A.2)

A2T � T �1 Z 'V � op~1!, (A.3)

A3T � op~1!+ (A.4)

Because T �2Z 'Zn �0
1 B2 B2

' and T �1Z 'Vn �0
1 B2 dB1+2 , part ~i! follows upon substitu-

tion in ~A+1!+ For part ~ii!, we have

T �1 ZV '* ZV * � T �1~MhY � Mh Z Zd!'~MhY � Mh Z Zd!

� T �1~Mh Z~d� Zd!� MhE � MhV !'~Mh Z~d� Zd!� MhE � MhV !

� T �1~T ~d� Zd!!'~T �2 Z 'Mh Z!T ~d� Zd!� 2T �1~T ~d� Zd!!'T �1 Z 'MhE

� 2T �1~T ~d� Zd!!'T �1 Z 'MhV � T �1E 'MhE � 2T �1E 'MhV � T �1V 'MhV

[ T1 � T 2 � T 3 � T4 � T5 � T6+
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We consider the limit of each term+ Because T ~d � Zd! � Op~1!, T �2Z 'MhZ � Op~1!
from ~A+2!, T1 � Op~T �1!+ From ~A+4!, T �1Z 'MhE � op~1! so that T 2 � op~T �1!+
From ~A+3!, T �1Z 'MhV � Op~1!, which gives T 3 � Op~T �1!+ For T4, T �1E 'MhE �
T �1E 'E because Mh is an orthogonal projection matrix, and T4 � op~1! follows from
Lemma A+1~vi!+ For T5,

7T �1E 'MhV 7 � T �1 7E 'V 7� T �1 7E 'h77~h 'h!�1 77h 'V 7

� op~kT
�102!� T �1op~TkT

�102!Op~T
�1 !Op~T

102kT
102!� op~1!

using Lemma A+1~i!, ~iii!, ~iv!, and ~vii!+ For T6,

T �1V 'MhV � T �1V 'V � T �1~V 'h!~h 'h!�1h 'V � T �1V 'V � Op~kT T �1 !

� T �1V 'V � op~1!+

Thus, we have T �1 ZV '* ZV * � T �1V 'V � op~1!
p
&& sv

2 , which proves the proposition+ �

Proof of Proposition 2. As a matter of notation, we let Op
j*~1! denote a variable

indexed by j that is Op~1! with bounded second moments uniformly in 0 � j � T+ We
can write

[vt
* � zt

'~d� Zd!� ht
'~h 'h!�1h 'Z~d� Zd!� vt

*� ht
'~h 'h!�1h 'V *

so that

�
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

[vt
* [vt�j
*

� �
j�1

T�1

w~ j0mT !T
�1 �~d� Zd!' �

t�j�1

T

zt zt�j
' ~d� Zd!� ~d� Zd!'

� �
t�j�1

T

zt ht�j
' ~h 'h!�1h 'Z~d� Zd!

� ~d� Zd!' �
t�j�1

T

zt vt�j
* � ~d� Zd!' �

t�j�1

T

zt ht�j
' ~h 'h!�1h 'V *

� ~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht ht�j
' ~h 'h!�1h 'Z~d� Zd!

� ~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht vt�j
*

� ~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht ht�j
' ~h 'h!�1h 'V *

� �
t�j�1

T

vt
*ht�j
' ~h 'h!�1h 'V *

� V *'h~h 'h!�1 �
t�j�1

T

ht ht�j
' ~h 'h!�1h 'V * � �

t�j�1

T

vt
* vt�j
* �

[�
i�1

10

Si , say+
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We consider each term in turn, and in the derivations we shall repeatedly use the facts
that mT

�1 �j�1
T�1 6w~ j0mT !6 r �0

`6w~s!6 ds and T ~d � Zd! � Op~1!+ For S1,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!' �
t�j�1

T

zt zt�j
' ~d� Zd!��

� T �1 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!72��T �2 �
t�j�1

T

zt zt�j
' ��� Op~mT T �1 !� op~1!

because each element of the matrix T �2 �t�j�1
T zt zt�j

' is Op
j*~1!+ For S2,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!' �
t�j�1

T

zt ht�j
' ~h 'h!�1h 'Z~d� Zd!��

� T �2 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!72��T �1 �
t�j�1

T

zt ht�j
' ��7~h 'h!�1 717h 'Z7

� Op~mT kT T �2 !� op~1!

because each element of the matrix T �1 �t�j�1
T zt ht�j

' is Op
j*~1! and the number of ele-

ments is of order kT + For S3,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!' �
t�j�1

T

zt vt�j
* ��

� T �1 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!7��T �1 �
t�j�1

T

zt vt�j
* ��� Op~mT T �1 !� op~1!

because each element of the vector T �1 �t�j�1
T zt vt�j

* is Op
j*~1!+ For S4,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!' �
t�j�1

T

zt ht�j
' ~h 'h!�1h 'V *��

� T �1 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!7��T �1 �
t�j�1

T

zt ht�j
' ��7~h 'h!�1 717h 'V * 7

� Op~mT T �1 !� op~1!+

For S5,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht ht�j
' ~h 'h!�1h 'Z~d� Zd!��

� T �2 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!72 7Z 'h72 7~h 'h!�1 71
2��T �1 �

t�j�1

T

ht ht�j
' ��

1

� Op~mT kT T �2 !� op~1!+
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This follows since 7T �1 �t�j�1
T ht ht�j

' � G2, j71 � op~1! ~e+g+, Berk, 1974! and 7G2, j71 �
Op

j*~1!+ For S6,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht vt�j
* ��

� T �1 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!77Z 'h77~h 'h!�1 71��T �1 �
t�j�1

T

ht vt�j
* ��

� op~mT T �1 !� op~1!

because 7T �1 �t�j�1
T ht vt�j

* 7 � op~kT
�102! uniformly in j because the result of Lemma

A+1~viii! continues to hold uniformly in j with vt
* replaced by vt�j

* + For S7,

T �1�� �
j�1

T�1

w~ j0mT !~d� Zd!'Z 'h~h 'h!�1 �
t�j�1

T

ht ht�j
' ~h 'h!�1h 'V *��

� T �1 �
j�1

T�1

6w~ j0mT !6 7T ~d� Zd!77Z 'h77~h 'h!�1 71
2��T �1 �

t�j�1

T

ht ht�j
' ��

1
7h 'V * 7

� Op~mT T �1 !� op~1!+

For S8,

�
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

vt
*ht�j
' ~h 'h!�1h 'V *

� �
j�1

T�1

w~ j0mT !�T �1 �
t�j�1

T

vt ht�j
' � T �1 �

t�j�1

T

et ht�j
' �~h 'h!�1h 'V *

� �
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

et ht�j
' ~h 'h!�1h 'V * � Op~mT T �102 !+

Note that

�
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

et ht�j
'

� �
6 i 6�kT

Pi
' �

j�1

T�1

w~ j0mT !��T �1 �
t�j�1

T

Dzt�i ht�j
' � G2

i~ j !�� G2
i~ j !� ,

where G2
i~ j ! � ~G2~kT � j � i !, + + + ,G2~ j � kT � i !! so that

�� �
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

et ht�j
' ��

1

� �� �
6 i 6�kT

Pi
'��� �

j�1

T�1

6w~ j0mT !6���T �1 �
t�j�1

T

Dzt�i ht�j
' � G2

i~ j !���
1

� �� �
j�1

T�1

w~ j0mT !G2
i~ j !���

� op~mT kT
�102 T �102 !� o~kT

�1!�� �
j�1

T�1

w~ j0mT !G2
i~ j !��+ (A.5)
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Finally,

�� �
j�1

T�1

w~ j0mT !G2
i~ j !��

2

� �
l��kT

kT

�� �
j�1

T�1

w~ j0mT !G2~ j � i � l !��
2

� �
l��kT

kT � �
j�1

T�1

7G2~ j � i � l !7�2

� O~kT !+

Hence, from ~A+5!, 7�j�1
T�1 w~ j0mT !T

�1 �t�j�1
T et ht�j

' 71 � op~1!+ For S9, where Gh~ j !�
E~ht ht�j

' !,

�� �
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

ht ht�j
' ��

1

� �
j�1

T�1

6w~ j0mT !6��T �1 �
t�j�1

T

ht ht�j
' � Gh~ j !��

1

� �� �
j�1

T�1

w~ j0mT !Gh~ j !��
� Op~mT kT T �102 !� O~kT !� Op~kT !

using similar arguments as in S8, which implies that

��V *'h~h 'h!�1 �
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

ht ht�j
' ~h 'h!�1h 'V *��

� 7V *'h72 7~h 'h!�1 71
2�� �

j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

ht ht�j
' ��

1

� op~1!+

For S10,

�
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

vt
* vt�j
*

� �
j�1

T�1

w~ j0mT !

� �T �1 �
t�j�1

T

vt vt�j � T �1 �
t�j�1

T

vt et�j � T �1 �
t�j�1

T

vt�j et � T �1 �
t�j�1

T

et et�j� +
First, note that

�
j�1

T�1

w~ j0mT !E~et et�j ! � �
j�1

T�1

w~ j0mT ! �
6 i 6�kT

�
6a 6�kT

Pi
'E~Dzt�i Dzt�a�j

' !Pa

� �
6 i 6�kT

�
6a 6�kT

�
j�1

T�1

6w~ j0mT !6 7Pi
' 7 7G2~ j � a � i !77Pa7

� o~kT
�2! �

j��`

`

7G2~ j !7� o~kT
�2!+
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Finally, we have T �1 �t�j�1
T vt et�j � �6 i 6�kT

Pi
'�t�j�1

T Dzt�i�j vt , so that

��T �1 �
t�j�1

T

vt et�j�� � �
6 i 6�kT

T�1

7Pi7��T �1 �
t�j�1

T

Dzt�i�j vt��� op~kT
�1 T �102 !� op~1!,

where we used the fact that sup0�r�17T �102 �t�j�1
@Tr# Dzt�i�j vt7 � Op~1!+ Similar argu-

ments hold for T �1 �t�j�1
T vt�j et + Hence, combining the results for terms S1–S10, we

have

�
j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

[vt
* [vt�j
* � �

j�1

T�1

w~ j0mT !T
�1 �

t�j�1

T

vt vt�j � op~1!,

which proves the proposition+ �
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