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1 Introduction

The twin problems of detecting and dating the origination and subsequent implosion of

bubbles have garnered considerable attention in the econometrics literature over the past two

decades. These issues are of immense practical importance as policymakers can e¤ectively

use information on the presence of bubbles to devise and implement speci�c policies in order

to mitigate their potentially adverse consequences. Accordingly, a multitude of procedures

has been developed for ex post detection and date-stamping of bubble episodes as well as

real-time monitoring for the origination of bubbles. The procedures have been applied to

a wide variety of applications including stock, real estate, commodity, and art markets, as

well as prices of cryptocurrencies, thereby testifying to their empirical relevance. Given the

volume of literature on this topic, we do not attempt an exhaustive survey and instead refer

to Hu (2023) and Skrobotov (2023) for recent comprehensive reviews of the literature.

This paper studies the problem of retrospectively dating the inception and implosion of

bubbles conditional on their detection. This is an important issue since, as noted by Harvey

et al. (2017), e¤ective date-stamping strategies can provide useful information regarding

the type of economic and �nancial events that are typically associated with bubble-like

phenomena and thereby caution policymakers to take appropriate action in case similar

events are deemed to occur in the near future. A plethora of methods has been proposed to

address the problem of ex-post date-stamping which vary according to the particular bubble

model speci�cation adopted as well as whether the break dates (i.e., the dates of inception

and implosion) are estimated jointly or recursively/sequentially.

Phillips et al. (2011) [PWY henceforth] proposed a recursive procedure based on right-

tailed unit root tests to detect the presence of explosive behavior as well as date-stamp

the origination and termination of such behavior. Their date-stamping algorithm hinges on

comparing the sequence of recursively computed Augmented Dickey-Fuller (ADF) statistics

with their corresponding right-tailed critical values. Phillips and Yu (2009) established the

consistency of PWY�s dating estimators assuming that the data generating process (DGP)

is characterized by a single bubble. Speci�cally, the origination of the bubble was modeled

as a transition from a unit root process to a mildly explosive process while its termination

was modeled as an instantaneous collapse to a new level at which unit root behavior resumes

and continues until the end of the sample. These testing and date-stamping procedures

were subsequently extended to a multiple bubbles framework by Phillips et al. (2015a) [PSY

henceforth] and their asymptotic properties were derived by Phillips et al. (2015b).
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Harvey et al. (2017) [HLS henceforth] suggested an alternative date-stamping approach

that jointly estimates the origination and collapse dates in a single bubble model based

on minimizing the sum of squared residuals in combination with a Bayesian Information

Criterion (BIC) for model selection. Instead of an abrupt crash as in Phillips and Yu (2009),

the collapse mechanism in HLS entails a transition from an explosive to a stationary regime

followed by a reversion to unit root behavior. Phillips and Shi (2018) established the large

sample validity of the PSY approach under alternative forms of bubble implosion including

the transient collapse dynamics espoused by HLS. Monte Carlo simulations reported in HLS

show that their proposed dating procedure outperforms the PSY procedure in �nite samples.

A di¤erent date-stamping approach involves estimating the origination and collapse dates

sequentially. In a single bubble framework, Pang et al. (2021) showed that the collapse date

can be consistently estimated by minimizing the sum of squared residuals in a single break

model; the origination date is then estimated using the subsample preceding the estimated

date of collapse. Although the estimated origination date is inconsistent, the timing as a

fraction of the sample size was shown to be consistent. Kurozumi and Skrobotov (2023)

extended the analysis in Pang et al. (2021) to allow for unit root behavior following the

collapse. They obtained results similar to Pang et al. (2021) regarding the origination and

collapse dates and additionally established conditions under which the date of recovery (i.e.,

the switch to the unit root path) can be consistently estimated. Finally, Harvey et al.

(2020) [HLW henceforth] proposed a two-step approach to date-stamping multiple bubbles

that o¤ers an improvement over PSY�s recursive approach. The �rst step involves using the

PSY procedure to identify date windows in which explosive behavior starts and ends. In

the second step, the date estimates are obtained by applying a model-based BIC approach

within each date window.

This paper proposes a new ordinary least squares (OLS)-based procedure to retrospec-

tively date the emergence and collapse of bubbles by minimizing a modi�ed sum of squared

residuals. Adopting the same DGP as Phillips and Yu (2009), we �rst demonstrate analyti-

cally that the standard OLS dating estimators obtained by minimizing the sum of squared

residuals are inconsistent and date both the origination and implosion points with a delay.

In particular, the estimate of the origination date is shown to converge to the true implosion

date while the implosion date estimate converges to a date in the post-implosion period

determined by the level of trimming employed. A simple modi�cation of the OLS procedure

that involves omitting the residual corresponding to the implosion date is shown to yield

consistent estimates of both the origination and collapse dates.
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A second contribution of our paper is to develop an e¢ cient date-stamping algorithm

that can simultaneously estimate the origination and collapse dates in a framework with

multiple bubbles. While a brute-force grid search procedure is computationally very costly

with multiple bubbles, the proposed algorithm yields equivalent estimates but only requires

computing time comparable to that for a single bubble model. Our algorithm is a modi�ca-

tion of existing dynamic programming algorithms proposed by Bai and Perron (2003) [BP

henceforth] and Perron and Qu (2006) [PQ henceforth] for estimating a linear regression

model with multiple breaks. In particular, our algorithm exploits the explicit form of the

unit root restrictions (pertaining to the non-bubble regimes) to directly embed them into the

recursive optimization problem which obviates the reliance on an iterative scheme that re-

quires initial values. This feature alleviates our algorithm from the problem of local minima

which can a¤ect approaches based on iterative schemes. Extensive simulation experiments

indicate that our proposed procedure typically delivers estimates with lower bias and root

mean squared error relative to extant approaches. An application to oil prices illustrates the

relevance of the proposed method in practice.

Our paper is closely related to earlier work by Kejriwal et al. (2013) who develop Wald

tests of the unit root hypothesis against structural changes in persistence. Their model

under the alternative hypothesis involves switches between unit root [I(1)] and stationary

[I(0)] regimes without any discontinuities between regimes. They employ the iterative dy-

namic programming algorithm proposed by PQ to estimate the break dates subject to the

unit root restrictions in the relevant regimes. The PQ algorithm extends the BP algorithm

designed for unrestricted estimation of the break dates to allow for linear restrictions on the

regression coe¢ cients. In contrast to Kejriwal et al. (2013), our model entails discontinuities

between regimes due to the abrupt implosion of the bubbles which necessitates a modi�ca-

tion of the PQ algorithm (via omission of speci�c residuals) to ensure that the parameters

are consistently estimated. Simulations show that our proposed algorithm often yields im-

proved estimates relative to the modi�ed version of the PQ algorithm. The source of this

improvement emanates from the fact that the PQ algorithm relies on an iterative scheme

that employs unrestricted break date estimates as initial values which can potentially in�ate

the variance of the �nal estimates in small samples.

The rest of the paper is organized as follows. Section 2 presents the basic model with

a single bubble and derives the large sample properties of the standard and modi�ed OLS

estimators. Section 3 considers a general framework with multiple bubbles and develops an

e¢ cient algorithm for dating their emergence and collapse. Section 4 contains a set of Monte
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Carlo experiments to assess the �nite sample properties of our proposed estimators relative

to existing alternatives. Section 5 presents an empirical illustration and section 6 concludes.

The online supplement includes Appendices A and B which contain, respectively, the proofs

of theoretical results and additional Monte Carlo results.

2 The Basic Model

We �rst consider a scalar random variable yt generated by a single bubble speci�ed as

yt =

8><>:
yt�1 + ut; 1 � t � T 01
�yt�1 + ut; T 01 + 1 � t � T 02
yT 01 + z

� +
Pt

j=T 02+1
uj; T 02 + 1 � t � T

(1)

where ut is i.i.d. with E(ut) = 0; E(u2t ) = �2 and y0 = op(T
1=2); z� = Op(1): This is the

same DGP adopted by Phillips and Yu (2009) and PWY: the stochastic process switches

from an I(1) regime to an explosive one at date T 01 + 1, followed by a collapse at date

T 02 + 1 with a subsequent return to (pre-bubble) martingale behavior which continues until

the end of the sample (T ). We refer to (T 01 ; T
0
2 ) as the true break dates and (�

0
1; �

0
2) as the

true break fractions so that T 01 =
�
�01T

�
and T 02 =

�
�02T

�
. For some small positive number

�, we de�ne T�(2) = f(T1; T2); jT2 � T1j � b�T c ; T 1 � b�T c ; T2 � b(1� �)T cg. The set
T�(2) contains candidate break dates (T1; T2) that are separated by a positive fraction � (the
level of trimming) of the sample size. Our objective is to consistently estimate the break

dates (T 01 ; T
0
2 ) and the parameter � that determines the degree of explosive behavior.

2.1 OLS Estimation

We will start with standard OLS estimation. The estimation procedure imposes the unit

root restriction in the �rst and last regimes while estimating � using an OLS regression of

yt on a constant and yt�1 using observations in the second regime as demarcated by the

potential break dates (T1; T2). De�ne the following quantities:

�y2 = (T2 � T1)�1
T2X

t=T1+1

yt; �y2;�1 = (T2 � T1)�1
T2X

t=T1+1

yt�1;

�̂(T1; T2) =

"
T2X

t=T1+1

(yt�1 � �y2;�1)2
#�1 T2X

t=T1+1

(yt�1 � �y2;�1)yt: (2)

The OLS estimates of the parameters are obtained as

(T̂1; T̂2) = arg min
(T1;T2)2T�(2)

SSR(T1; T2);
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where

SSR(T1; T2) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

[yt � �y2 � �̂(T1; T2)(yt�1 � �y2;�1)]2 +
TX

t=T2+1

(�yt)
2 (3)

is the sum of squared residuals based on candidate break dates (T1; T2). The estimate of � is

then obtained as �̂ = �̂(T̂1; T̂2).

Following HLS, our theoretical analysis models the autoregressive parameter � as �xed

and independent of the sample size. An alternative �mildly explosive� framework, devel-

oped by Phillips and Magdalinos (2007), models the parameter as being dependent on the

sample size such that it converges to one at a slower rate than the sample size. The ad-

vantage of the latter framework is that it permits the application of an invariance principle

that facilitates asymptotically pivotal inference. Since our interest lies in investigating the

consistency/inconsistency properties of di¤erent estimators, we adopt the �xed parameter

framework for our asymptotic analysis.

The large sample behavior of the OLS estimates is stated in the following result.

Theorem 1 Suppose that yt is generated by (1) with (T 01 ; T
0
2 ) 2 T�(2). Then we have

(a) T̂1 � T 02
p! 0; T̂2 � (T 02 + b�T c)

p! 0;

(b) �̂
p! 0:

Theorem 1 shows that the OLS estimates of the break dates are inconsistent with each

break date estimate selecting a break date later than the corresponding true break date.

Speci�cally, the second true break date T 02 is in fact consistently estimated by the �rst break

date estimate T̂1 while the estimate T̂2 dates the termination of explosive behavior with a

delay determined by the trimming level �. Moreover, the OLS estimate of the autoregressive

coe¢ cient is also inconsistent and biased towards zero.

The intuition for this result can be understood as follows. First, there are four principal

sources of contamination that may potentially a¤ect SSR(T1; T2). The �rst involves the

squared di¤erence between the �rst post-crash observation yT 02+1 and the �nal observation

in the explosive regime yT 02 . Any combination of (T1; T2) with T1 > T
0
2 or T2 � T 02 is a¤ected

by this form of contamination. The second source which is relevant when T1 < T 02 ; T2 >

T 02 arises from the inclusion of both explosive and post-crash I(1) observations when esti-

mating � which generates a mean-reverting behavior and hence imparts a downward bias to

the autoregressive estimate. The third source emanates from incorrectly treating observa-

tions from the explosive regime as I(1) observations and thus taking their �rst di¤erence.
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Any combination of (T1; T2) with T1 > T 01 is a¤ected by this form of contamination. The

fourth and �nal source of contamination occurs when T1 = T 02 ; T2 � T 02 + b�T c in which
case � is estimated using post-crash I(1) observations in time periods fT 02 +1; :::; T 02 +b�T cg.
Moreover, the extent of this contamination (in terms of its impact on SSR) increases with

the number of post-crash observations included in this estimation sample.

Next, among the aforementioned sources of contamination, the �rst source is dominant,

followed by the second, third and fourth sources, in that particular order. The reason is that

the �rst source involves the �rst di¤erence between an I(1) and an explosive observation

which entails a larger increase in the sum of squared residuals relative to the three other

sources. The second source of contamination dominates the third since the former treats the

explosive regime as stationary in large samples while the latter treats the explosive regime

as I(1). Finally, the fourth source is dominated by the others since it only involves the

post-crash I(1) observations while the others also involve explosive observations.

Combining the above facts, it follows that the sum of squared residuals is minimized at

T̂1 = T
0
2 ; T̂2 = T

0
2 + b�T c : Theorem 1(b) follows from the fact that, in large samples, � is

estimated using observations in time periods fT 02 + 1; :::; T 02 + b�T cg. The sum of squared

residuals from this estimation sample is minimized at �̂ = 0 to ensure that the e¤ect of the

explosive observation yT 02 is asymptotically negligible.

2.2 Modi�ed Estimation

To address the issue of inconsistency, we suggest a simple modi�cation of the OLS pro-

cedure. In particular, we propose omitting the residual that corresponds to the potential

collapse date T2 + 1 when constructing the overall global sum of squared residuals. Thus,

the modi�ed OLS estimates are obtained as (eT1; eT2) = argmin(T1;T2)2T�(2) SSRom(T1; T2) ande� = �̂(eT1; eT2); where
SSRom(T1; T2) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

[yt � �y2 � �̂(T1; T2)(yt�1 � �y2;�1)]2 +
TX

t=T2+2

(�yt)
2 (4)

and �om�denotes omission. Note that unlike SSR(T1; T2); SSRom(T1; T2) omits the term

(�yT2+1)
2. We label by (eT1; eT2;e�) and (T̂1; T̂2; �̂) the estimators with and without omission,

respectively. The consistency of the OLS estimates with omission is established in the

following result.

Theorem 2 Suppose that yt is generated by (1) with (T 01 ; T
0
2 ) 2 T�(2). Then we have
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(a) eT1 � T 01 p! 0; eT2 � T 02 p! 0;

(b) e� p! �:

The intuition for this result can be understood by referencing the four sources of con-

tamination discussed above. First, note that none of these sources of contamination a¤ect

SSRom(T
0
1 ; T

0
2 ). The case eT2 < T 02 is then ruled out because if eT2 < T 02 ; SSRom(eT1; eT2) is

a¤ected by the �rst source of contamination. Similarly, the case eT2 > T 02 is eliminated since
if eT2 > T 02 ; SSRom(

eT1; eT2) would be impacted by the second and fourth sources of conta-
mination. The case eT1 > T 01 is ruled out since SSRom(eT1; eT2) would then be susceptible
to the third source of contamination. Finally, the case eT1 < T 01 is eliminated by the fact

that SSRom(eT1; eT2) would then be a¤ected by the contamination stemming from treating

the pre-bubble I(1) observations as observations from the explosive regime. Consequently,

the sum of squared residuals is minimized in large samples when eT1 = T 01 ; eT2 = T 02 . This
discussion also suggests that the collapse date is likely to be more accurately estimated than

the origination of explosiveness since any deviation of eT2 from T 02 entails a larger increase

in the sum of squared residuals (in terms of order of magnitude) than a similar deviation ofeT1 from T 01 . This feature will be borne out in the simulations presented in Section 4.

HLS propose jointly estimating the origination and termination dates in a single bubble

model by minimizing the sum of squared residuals. Instead of an instantaneous collapse as

in (1); their collapse mechanism is modeled as a transition from an explosive to a stationary

regime before the resumption of unit root behavior. The persistence of the stationary regime

re�ects the rate of adjustment following the termination of the bubble. A simple modi�cation

of the HLS procedure that incorporates an instantaneous collapse can be shown to yield

break date estimates that are numerically identical to the estimates with omission (eT1; eT2).1
Speci�cally, consider estimating the bubble start and end dates by minimizing the sum of

squared residuals from the regression

�yt = ĉ
�(T1; T2)Dt(T1; T2)+ �̂

�
1(T1; T2)Dt(T1; T2)yt�1+ �̂

�
2(T1; T2)Dt(T2; T2+1)yt�1+ êt; (5)

where Dt(a; b) = 1(a < t � b); and fĉ�(T1; T2); �̂
�
1(T1; T2); �̂

�
2(T1; T2)g are the �tted OLS

estimates. Equation (5) modi�es the regression equation for model 4 in HLS by replacing

the dummy variable Dt(T2; T3) (with T3 denoting the date at which the process transitions

to a stationary regime) with the one-time dummy variable Dt(T2; T2+1). We will show that

1We thank the Co-Editors for pointing this out and helping us draw a connection between our proposed
approach and that of HLS.
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the sum of squared residuals from (5) is equivalent to SSRom(T1; T2) from (4) which yields

the equivalence between the two sets of date estimates. To see this, observe that the sum of

squared residuals from (5) is

SSR�(T1; T2) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

[�yt� �̂
�
1(T1; T2)yt�1� ĉ�(T1; T2)]2 + ê2T2+1 +

TX
t=T2+2

(�yt)
2;

(6)

where

ê2T2+1 =
n
�yT2+1 � �̂

�
2(T1; T2)yT2

o2
=
�
�yT2+1 � y�2T2 (yT2�yT2+1)yT2

	2
= 0: (7)

Further, we have

�̂
�
1(T1; T2) =

�
T2P

t=T1+1

(yt�1 � �y2;�1)2
��1 T2P

t=T1+1

(yt�1 � �y2;�1)�yt = �̂(T1; T2)� 1; (8)

and

ĉ�(T1; T2) = �y2 � �y2;�1 � �̂
�
1(T1; T2)�y2;�1 = �y2 � �y2;�1 � f�̂(T1; T2)� 1g�y2;�1

= �y2 � �̂(T1; T2)�y2;�1 = ĉ(T1; T2); (9)

where �̂(T1; T2) is de�ned in (2) and ĉ(T1; T2) is the intercept estimate from (4). Substituting

(7)-(9) in (6); the equivalence between SSR�(T1; T2) and SSRom(T1; T2) follows.

3 The General Model with Multiple Bubbles

This section proposes a new algorithm for estimating multiple break dates that can improve

upon existing approaches. To this end, we consider a generalization of model (1) that can

accommodate multiple bubbles:

yt = (�iyt�1 + ut)1(�i > 1) + (

T 0iX
s=T 0i�1+1

us + y
�
T 0i�1

)1(�i = 1);

y�T 0i�1
= yT 0i�21(i > 1) + z

�
i ; z

�
i = Op(1); (10)

where 1 � i � m + 1 with the convention T 00 = 0 and T 0m+1 = T . The process is therefore
subject to m breaks or m+ 1 regimes with break dates (T 01 ; :::; T

0
m). When m is even, there

are m=2 or (m=2 + 1) explosive regimes when the initial regime has a unit root [I(1)] or is

explosive, respectively. When m is odd, there are (m + 1)=2 regimes of explosive behavior
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regardless of whether the initial regime is I(1) or explosive. In this paper, we will primarily

consider the case where the initial regime is I(1) and brie�y discuss the case with an initial

explosive regime (see Remark 1 below).

Given the inconsistency of the standard OLS estimators as demonstrated in Section 2,

we focus on modi�ed least squares estimation that involves omitting the residuals corre-

sponding to the potential bubble implosion dates. The modi�ed estimates of the break

dates are obtained as (eT1; :::; eTm) = argmin(T1;:::;Tm)2T�(m) SSRom(T1; :::; Tm) where T�(m) =
f(T1; :::; Tm); jTi+1 � Tij � b�T c ; T1 � b�T c ; Tm � b(1� �)T cg and

SSRom(T1; :::; Tm) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

[yt � �̂2(T1; T2)yt�1 � ĉ2(T1; T2)]2 +
T3X

t=T2+2

(�yt)
2

+:::+
TX

t=Tm+1+[1�l(m)]

[yt � fl(m)�̂m+1(Tm; Tm+1) + (1� l(m))gyt�1

�l(m)ĉm+1(Tm; Tm+1)]2; (11)

with l(m) = 1 if m is odd, and zero otherwise. The estimates (ĉi(Ti�1; Ti); �̂i(Ti�1; Ti))

are obtained from an OLS regression of yt on a constant and yt�1 using observations t =

Ti�1+1; Ti�1+2; :::; Ti. A standard grid search procedure to minimize (11) would require least

squares operations of order O(Tm) and thus be computationally very expensive for m > 2.

An e¢ cient approach to this problem is to employ the principle of dynamic programming

that only requires operations of order O(T 2) regardless of the number of breaks. BP and

PQ develop algorithms based on this principle for estimating multiple breaks in a linear

regression model. In order to motivate our proposed algorithm, we �rst discuss in Section

3.1 the PQ algorithm which is an extension of the BP algorithm. The proposed algorithm

is then presented in Section 3.2.

3.1 The Perron and Qu (2006) Algorithm

PQ propose a computationally e¢ cient dynamic programming algorithm to estimate the

break dates in a linear regression framework with multiple breaks subject to a set of linear

restrictions on the regression coe¢ cients. Their algorithm extends the BP algorithm designed

for unrestricted estimation of the break dates in order to obtain more precise (i.e., lower

variance) estimates. Kejriwal et al. (2013) use the PQ algorithm to estimate the break dates

in an autoregressive model characterized by switches between I(1) and I(0) regimes where

the I(1) restrictions are imposed in the relevant regimes. In contrast to Kejriwal et al. (2013),
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our model involves discontinuities between regimes due to abrupt implosion of the bubbles

that necessitates the omission of particular residuals to ensure consistent estimation.

The PQ algorithm does not omit the residuals for any of the time periods but can be

easily modi�ed to allow for such omission. We will henceforth refer to this modi�cation as

the PQ algorithm with omission. From (11); it is evident that our optimization problem is

a special case of that considered in PQ which imposes the restrictions ci = 0; �i = 1 in the

I(1) regimes. Thus, the PQ algorithm with omission can be employed to obtain the break

date estimates by recasting our problem within their framework.

The PQ algorithm entails the use of an iterative scheme that iterates between estimating

the break dates and the regression coe¢ cients until convergence. The initialization step

in this scheme employs the unrestricted BP estimates. As with any iterative procedure,

whether a global or local minimum is achieved depends on the initial values. In particular,

the precision of the algorithm depends crucially on the �rst step estimates of the break dates.

As noted by PQ (p. 383), in cases where the global minimum is not achieved, the estimates

are typically very far from the true values, often at the beginning or the end of the sample.

3.2 The Proposed Algorithm

Motivated by the preceding discussion, we develop an e¢ cient dating algorithm that exploits

the explicit form of the I(1) restrictions (i.e., the parameters in some regimes taking speci�c

values) to directly incorporate them in the optimization problem, thereby obviating the

reliance on initial values. Unlike the PQ estimates, our proposed estimates are equivalent

to those obtained from a grid search procedure since the restricted sum of squared residuals

can be computed directly without resorting to an iterative scheme. Monte Carlo simulations

conducted in Section 4 demonstrate that our proposed algorithm often delivers estimates with

improved statistical properties compared to the PQ algorithm (with or without omission).

In particular, we will show that the PQ estimates often incur higher variance than our

recommended estimates which stems from the relatively high variance of the BP estimates

used as initial values.

To describe the proposed algorithm, we introduce the following notation. Let SSR1(1; j) =Pj
t=2(�yt)

2. For i = 2; :::;m+ 1; let

SSRi(j + 1; n) =

8<:
Pn

t=j+1(yt � �̂iyt�1 � ĉi)2;Pn
t=j+2(�yt)

2;

if i is even

if i is odd

The implementation of the proposed algorithm involves the following steps:

10



1. Compute and store the triangular matrix of the global unrestricted sums of squared

residuals GSSRu, the triangular matrix of the global restricted sums of squared resid-

uals with omission GSSRrom; and a vector V SSR1 containing all permissible sums of

squared residuals SSR1(1; j) (details of this step are provided below).

2. Compute and store the restricted sums of squared residuals SSRom(fT1;ng), for 2h �
n � T � (m � 1)h, where h = b�T c ; by solving the following dynamic programming
problem:

SSRom(fT1;ng) = min
h�j�n�h

[SSR1(1; j) + SSR2(j + 1; n)]:

3. Sequentially compute and store SSR(fTr;ng) for r = 2; :::;m� 1, with n ranging from
(r + 1)h to T � (m� r)h. This is achieved by solving the following problem:

SSRom(fTr;ng) = min
rh�j�n�h

[SSRom(fTr�1;jg) + SSRr+1(j + 1; n)];

where SSRi(j+1; n) is the entry (j+1; n) of GSSRu if i is even, or the entry (j+1; n)

of GSSRrom if i is odd.

4. Finally, compute

SSRom(fTm;Tg) = min
mh�j�T�h

[SSRom(fTm�1;jg) + SSRm+1(j + 1; T )]:

Remark 1 The algorithm is easily modi�ed to accommodate the case in which the start-

ing regime is explosive instead of I(1). In fact, both cases can be nested within a general

framework at the expense of some additional notation. De�ne the following quantities:

SSR1(1; j; �1) =

8<:
Pj

t=2(yt � �̂1yt�1 � ĉ1)2;Pj
t=2(�yt)

2;

if �1 = 1;

if �1 = 0:

And, for i = 2; :::;m+ 1;

SSRi(j + 1; n; �i) =

8<:
Pn

t=j+1(yt � �̂iyt�1 � ĉi)2;Pn
t=j+2(�yt)

2;

if �i = 1;

if �i = 0:

For an I(1) starting regime, we set �i = 0 if i is odd and �i = 1; otherwise. Similarly, for

an explosive starting regime, we set �i = 1 if i is odd, and �i = 0; otherwise. Then, we only

need to replace SSR1(1; j) by SSR1(1; j; �1) and SSR2(j+1; n) by SSR2(j+1; n; �2) in step

2 above, SSRr+1(j + 1; n) by SSRr+1(j + 1; n; �r+1) in step 3, and SSRm+1(j + 1; T ) by

SSRm+1(j + 1; T; �m+1) in step 4.
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We now discuss the computation of the quantities GSSRu; GSSRrom; and V SSR1 in-

volved in step 1 of the algorithm. The dynamic programming algorithm of BP uses the

triangular matrix of unrestricted sums of squared residuals (SSRs) for all permissible seg-

ments to search for the optimal break dates. Speci�cally, the algorithm requires storage of

these SSRs that would be considered when searching over the optimal partition of break

dates. Let this triangular matrix of global unrestricted SSRs be denoted GSSRu. The unre-

stricted SSR for an (i; j) segment (with starting date i and ending date j), denoted SSRui;j; is

stored in entry (i; j) of GSSRu. Similarly, we can store the restricted SSRs for all permis-

sible (i; j) segments, obtained by imposing a unit root and omitting the �rst observation of

the segment, in a di¤erent triangular matrix, say, GSSRrom. The entry (i; j) of GSSR
r
om is

denoted SSRr;omi;j . The quantities SSRui;j and SSR
r;om
i;j are computed recursively via

SSRui;j = SSR
u
i;j�1 + û

2
i;j;

SSRr;omi;j = SSRr;omi;j�1 + (�yj)
2; SSRr;omi;i+1 = 0;

with the recursive residuals ûi;j obtained as [see Brown et al. (1975)]

ûi;j =
yj � yj�1�̂[i:j�1] � ĉ[i:j�1]r

1 + y0j�1

�
y0[i:j�2]y[i:j�2]

��1
yj�1

;

with yj = (1; yj)
0; yi:j = (yi;yi+1; :::;yj)

0; where �̂[a:b] and ĉ[a:b] are the estimates obtained

using observations from a to b. Finally, the elements of the vector V SSR1 are computed as

V SSR1(j) = SSR1(1; j) for h � j � T �mh; where

SSR1(1; j) = SSR1(1; j � 1) + (�yj)2; h+ 1 � j � T �mh

SSR1(1; h) =

hX
t=2

(�yt)
2:

In what follows, we will refer to our proposed algorithm as the joint search (JS) algorithm

with omission. To examine the impact of omission, the Monte Carlo analysis in Section 4 also

includes a version of the JS algorithm without omission. This version can be implemented

following similar steps as those above except that no residuals are omitted at any step.

4 Monte Carlo Evidence

This section presents a set of Monte Carlo simulations to numerically evaluate the �nite

sample performance of the di¤erent dating estimators as well as to assess the adequacy of

12



the large sample results derived in section 2. The simulation design is based on the DGP

speci�ed in (10) with m 2 f2; 4g; i.e., one and two bubbles. The details for each DGP are
as follows.

DGP-1: A single bubble model speci�ed by (1) with (�01; �
0
2) 2 f(0:5; 0:65); (0:4; 0:6)g

and � 2 f1:02; 1:05g.

DGP-2: A two bubbles model speci�ed by

yt =

8>>>>>><>>>>>>:

yt�1 + ut; 1 � t � T 01 ;
�1yt�1 + ut; T 01 + 1 � t � T 02 ;
yT 01 + z

�
1 +

Pt
j=T 02+1

uj; T 02 + 1 � t � T 03 ;
�2yt�1 + ut; T 03 + 1 � t � T 04 ;
yT 03 + z

�
2 +

Pt
j=T 04+1

uj T 04 + 1 � t � T:

For the break locations, we follow the design used in Table 7 of PSY, which corresponds

to �01 = 0:2, �
0
2 2 f0:3; 0:35; 0:4g, �03 = 0:6 and �04 2 f0:7; 0:75; 0:8g, yielding nine possible

combinations for the duration of the �rst (�02 � �01 2 f0:1; 0:15; 0:2g) and second bubble
(�04 � �03 2 f0:1; 0:15; 0:2g). For brevity, we only report the results for the cases with �0i �
�0i�1 = 0:2; i = 2; 4. The results for the other cases are qualitatively similar and available

upon request. The autoregressive parameters are set to �1 = �2 = 1:05:

We experiment with three di¤erent serial correlation structures in the error component

futg. In the �rst case, ut � i:i:d: N (0; 1). In the second, futg follows an AR(1) process:
ut = 0:5ut�1+ et; et � i:i:d: N (0; 1). Finally, the third case considered is a MA(1) structure
for futg: ut = et + 0:5et�1; et � i:i:d: N (0; 1): To save space, we only present in the main
text the results for the i.i.d. case and defer the other cases to Appendix B.

In all experiments, the perturbations z�; z�1 ; z
�
2 are randomly drawn from a N (1; 1) dis-

tribution. The level of trimming is set to � 2 f0:05; 0:10g. We only report results for

� = 0:10 since those for � = 0:05 were very similar. The number of replications is 5,000.

The rest of this section is organized as follows. Section 4.1 discusses the alternative

dating estimators used in the Monte Carlo comparison; Sections 4.2 and 4.3 report results

for the single bubble case (DGP-1) and the two bubbles case (DGP-2), respectively; Section

4.4 illustrates that the JS procedure often yields a smaller sum of squared residuals than

the PQ procedure, suggesting that the latter may only attain a local minimum; Section 4.5

discusses the issue of selecting the number of bubbles and its impact on the performance of

the dating estimators.
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4.1 Alternative Dating Estimators

Our simulation design includes a comparison of six dating estimators: the PQ estimators

with and without omission, the JS estimators with and without omission, the PSY estimator,

and the HLW estimator. Throughout, we use �^�to denote an estimator �without omission�

and �~�to denote an estimator �with omission�. We use the single bubble case (m = 2) to

illustrate the �rst �ve estimators and the two bubbles case (m = 4) to illustrate the HLW

estimator given that it is applicable to multiple bubbles.

1. PQ estimator without omission. This estimator, denoted (T̂ PQ1 ; T̂ PQ2 ); solves the mini-

mization problem

argmin
(T1;T2)

(
T1X
t=2

(�yt)
2 +

T2X
t=T1+1

[yt � �̂(T1; T2)yt�1 � ĉ2(T1; T2)]2 +
TX

t=T2+1

(�yt)
2

)
; (12)

using as initial values the unrestricted BP estimates obtained by solving the minimiza-

tion problem

argmin
(T1;T2)

8>>>><>>>>:
PT1

t=2

h
yt � �̂1(T1; T2)yt�1 � ĉ1(T1; T2)

i2
+
PT2

t=T1+1

h
yt � �̂2(T1; T2)yt�1 � ĉ2(T1; T2)

i2
+
PT

t=T2+1

h
yt � �̂3(T1; T2)yt�1 � ĉ3(T1; T2)

i2
9>>>>=>>>>; ;

where
n
ĉi(T1; T2); �̂i(T1; T2)

o
are the unrestricted parameter estimates for regime i based

on the partition (T1; T2).

2. JS estimator without omission. This estimator, denoted (T̂ JS1 ; T̂ JS2 ); solves the same

minimization problem as (12) but uses the version of the dynamic programming algo-

rithm proposed in section 3 that does not involve omission.

3. PQ estimator with omission. This estimator, denoted (eT PQ1 ; eT PQ2 ); solves the mini-

mization problem

argmin
(T1;T2)

(
T1X
t=3

(�yt)
2 +

T2X
t=T1+2

[yt � e�(T1; T2)yt�1 � ec2(T1; T2)]2 + TX
t=T2+2

(�yt)
2

)
; (13)

using as initial values the unrestricted BP estimates with omission obtained by solving
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the minimization problem

argmin
(T1;T2)

8>>>><>>>>:
PT1

t=3

h
yt � e�1(T1; T2)yt�1 � ec1(T1; T2)i2

+
PT2

t=T1+2

h
yt � e�2(T1; T2)yt�1 � ec2(T1; T2)i2

+
PT

t=T2+2

h
yt � e�3(T1; T2)yt�1 � ec3(T1; T2)i2

9>>>>=>>>>; ;

where
neci(T1; T2);e�i(T1; T2)o are the unrestricted parameter estimates for regime i based

on the partition (T1; T2) that are obtained by omitting the �rst observation of the

regime.

4. JS estimator with omission. This estimator, denoted (eT JS1 ; eT JS2 ); solves the same min-

imization problem as (13) but uses the dynamic programming algorithm proposed in

section 3 with omission.

5. PSY estimator. The PSY estimator is based on a test statistic that entails taking the

supremum of recursively computed backward and forward Augmented Dickey-Fuller

(ADF) statistics. Speci�cally, this estimator, denoted (T̂ PSY1 ; T̂ PSY2 ); is obtained as

T̂ PSY1 = bT r̂ec � 1; r̂e = inf
r22[r0;1]

�
BSADFr2(r0) > cv

�
r2

	
; (14)

T̂ PSY2 = bT r̂fc � 1; r̂f = inf
r22[r̂e+ln(T )=T;1]

�
BSADFr2(r0) < cv

�
r2

	
; (15)

where BSADFr2(r0) = supr12[0;r2�r0]
�
ADF r2r1

	
; ADF r2r1 denotes the ADF statistic

computed using the observations bTr1c+1; :::; bTr2c ; and cv�r2 is the 100(1��)% critical
value of the BSADFr2(r0) statistic based on bTr2c observations. We follow PSY

in setting the minimum window width (as a fraction of the sample size) to r0 =

0:01 + 1:8T�1=2 and restricting the duration of bubble(s) to be at least blnT c for
implementing their test procedure. Following HLS, a lag length of one (i.e., one lag of

�yt) is used to construct the ADF regressions. A nominal size of 5% is used and the

�nite sample critical values are simulated under the null hypothesis of a random walk

with no drift and i.i.d. N (0; 1) errors with 10,000 replications.2

6. HLW estimator. HLW propose a two-step dating procedure that extends the single

bubble procedure developed by HLS to multiple bubbles. In the �rst step, the PSY

2We also simulated the critical values under the null hypothesis of a random walk with a small drift as
in PSY. The results were very similar with no qualitative di¤erences.
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date estimates are used to split the sample into date windows each containing a sin-

gle explosive episode. The second step entails the application of a BIC-based date

estimation algorithm to obtain improved estimates. Since HLW (as HLS) consider a

framework which models the collapse as gradual instead of abrupt, we adopt a modi�ed

version of their procedure that facilitates an abrupt collapse as detailed in Section 2.2.

Moreover, since our proposed approach does not address model selection, we assume

that each explosive episode follows DGP (1) instead of applying the BIC to each date

window. This ensures a fair comparison of the procedures. Speci�cally, the following

steps are involved in implementing the HLW procedure:

(a) Apply the PSY dating procedure to obtain two pairs of break fraction estimates

(r̂1e; r̂1f ) and (r̂2e; r̂2f ); where r̂je (r̂jf ) is the estimated date of emergence (col-

lapse) of the j-th bubble (j = 1; 2).

(b) Partition the sample into two sub-sample date windows, denoted by (s1; e1) and

(s2; e2), with s1 = 1 and e2 = T . Set e1 = br̂1fT c+ (br̂2eT c � br̂1fT c) =2.

(c) Obtain the re�ned date estimates for the �rst bubble as (T̂11; T̂12) as

(T̂11; T̂12) = arg min
1<T11<T12<e1

SSRw(T11; T12); (16)

where SSRw(T11; T12) is the sum of squared residuals from the regression over the

�rst date window [1; e1]:

�yt = ĉ1Dt(T11; T12) + �̂11Dt(T11; T12) + �̂12Dt(T12; T12 + 1)yt�1 + êt; (17)

where Dt(a; b) = 1(a < t � b):

(d) Given (T̂11; T̂12), set s2 = T̂12+1. The re�ned date estimates for the second bubble

are then obtained as

(T̂21; T̂22) = arg min
s2<T21<T22<T

SSRw(T21; T22); (18)

where SSRw(T21; T22) is the sum of squared residuals from the regression over the

second date window [s2; T ]:

�yt = ĉ2Dt(T21; T22) + �̂21Dt(T21; T22) + �̂22Dt(T22; T22 + 1)yt�1 + êt: (19)

Following HLW, we impose the additional restrictions (minimum segment length

requirements) (T̂j2 � T̂j1)=T � 0:1 and T̂j1=T � 0:1, for j 2 f1; 2g.
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All of the methods described above require a choice for the number of bubbles. PSY

propose a procedure to estimate the number of bubbles based on repeated implementation

of the crossing rules (14) and (15). Speci�cally, the estimated number of bubbles is the

number of pairs (r̂e r̂f ) over the full sample that satisfy crossing rules of the form (14) and

(15) with r̂f � r̂e � ln(T )=T (see PSY, p.1056 for further details). Since our paper presumes
the presence of bubbles as opposed to testing for their presence, our simulation results are

conditioned on 5,000 replications in which the PSY procedure identi�es the same number of

bubbles as present in the DGP. For example, if the DGP is characterized by two bubbles, we

eliminate those replications in which the PSY procedure identi�es a smaller/larger number

of bubbles and increase the number of replications until we obtain 5,000 replications in

which the procedure selects exactly two bubbles.3 Section 4.5 discusses the implications of

incorrectly selecting the number of bubbles.

4.2 Results for the Single Bubble Case

Table 1 presents results on the accuracy of the break date estimators in terms of how fre-

quently they select the corresponding true break dates or select later dates. Speci�cally, we

report the following for j 2 fJS, PQg: (i) p̂Ci (j); which denotes the probability of �correctly�
selecting the i-th break date using procedure j without omission; (ii) p̂Li (j); which denotes the

probability of selecting the i-th break date �later�than the true break date using procedure

j without omission; (iii) epCi (j); epLi (j) are de�ned similarly when procedure j is applied with
omission. Finally, p̂Ci (PSY ) and p̂

L
i (PSY ) denote, respectively, the probabilities of correctly

selecting the i-th break date and selecting the i-th break date �later�than the true break

date using the PSY procedure. The HLW results are not separately reported here since the

HLS date estimates (i.e., the single bubble counterparts of the HLW estimates) based on the

modi�ed regression (5) are identical to the JS estimates with omission (see Section 2.2).

Consider �rst the estimates of the �rst break date corresponding to the origination of the

bubble (Panel A). Regardless of the dating method employed, the true break date is selected

only very infrequently, i.e., all methods are inadequate at dating the initiation of the bubble.

In particular, the probability of selecting a date later than the true date is considerable for

each of the methods and typically increases with the sample size.4 Notwithstanding the

3We also considered an alternative design adopted by HLS where we condition our results on 5,000
replications in which the bubble(s) with the longest duration is (are) chosen for dating purposes if the PSY
procedure identi�es a larger number of bubbles than present in the DGP. The results were qualitatively
similar.

4Kurozumi (2021), inter alia, studies the large sample properties of di¤erent bubble monitoring tests and
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overall de�ciency of the methods, the JS procedure with omission has the highest accuracy

in dating the onset of explosive behavior relative to the other methods.

Turning to the estimates of the implosion date (Panel B), we note that the estimates

with omission are quite e¤ective in that they correctly identify the implosion date with high

probability and their accuracy increases with the sample size in all cases. This feature is in

accordance with the consistency result derived in Theorem 2. In contrast, the JS and PQ

estimators without omission tend to select a date later than the crash date, and more so as

the sample size increases, consistent with the prediction of Theorem 1. The JS estimator with

omission again emerges as the preferred estimator as it uniformly dominates its competitors

in dating the termination of explosive behavior.

The fact that the collapse of the bubble can be dated with much higher accuracy relative

to its inception follows from the fact that the implosion embodies a much stronger signal than

the origination of explosive behavior so that any deviation of the second break date from

its true value leads to a larger increase in the sum of squared residuals than a comparable

deviation of the �rst break date from its true counterpart.5 Formally, as shown in the proof

of Theorem 2, fSSRom(T 01 + k1; T 02 )� SSRom(T 01 ; T 02 )g for k1 6= 0 diverges at a slower rate
than fSSRom(T 01 ; T 02 + k2)� SSRom(T 01 ; T 02 )g for k2 6= 0.
Given the relatively low accuracy of the dating methods at estimating the origination

of the bubble, Table 2 reports the bias and root mean squared error (RMSE) of the dating

estimators when viewed as estimating the break fractions �01 and �
0
2 instead of the break dates

T 01 and T
0
2 . The following �ndings are noteworthy. First, the JS/PQ estimators without

omission are upward biased in all cases. Moreover, the magnitudes of the bias and RMSE

of these estimators are consistent with the asymptotic theory presented in Section 2. For

example, consider the JS estimator without omission. When T = 400; � = 1:05; (�01; �
0
2) =

(0:4; 0:6); the bias and RMSE of the �rst break date estimator are both around 0.2, while

the bias and RMSE of the second break date estimator are both around 0.10. Since � =

0:10; these values are in compliance with our large sample result that �̂1
p! �02; �̂2

p!
�02+ �. Second, the absolute bias of the JS/PQ estimators with omission as well as the PSY

estimator decline monotonically as the sample size increases in most cases and in all cases

when considering the RMSE. Furthermore, given the sample size and the break locations,

�nds that they tend to detect bubbles with a delay, and shows that their relative performance depends on
whether the bubble emerges early or late in the monitoring period.

5In a similar vein, Pang et al. (2021) and Kurozumi and Skrobotov (2023) adopt a sample splitting
approach where the breaks are estimated one at a time and �nd that the collapse date is typically estimated
with higher accuracy than the origination date.
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the performance of these estimators in terms of both bias and RMSE improves as the degree

of explosiveness (�) increases. Similarly, a longer duration of the explosive regime holding

the other parameters �xed also induces an improvement in performance. Third, in terms of

bias, while the JS estimator with omission typically dominates the other estimators when

T = 400; the PQ estimator with omission is preferred with smaller sample sizes. Fourth, the

JS procedure with omission delivers the smallest RMSE in the majority of cases.

Finally, Table 3 reports the bias and RMSE of the autoregressive coe¢ cient estimators

when evaluated at the estimated break dates. The main �ndings are as follows. First,

the estimators are downward biased regardless of the procedure employed, the sample size,

and the parameter values. Second, the magnitude of the biases incurred by the JS/PQ

estimators without omission are substantial and increase with the sample size. Third, the

RMSE of the JS/PQ estimators without omission either increase with the sample size (for

the PQ procedure) or share a non-monotonic relationship with the sample size (for the JS

procedure). In addition, the bias/RMSEmagnitudes are again consistent with our theoretical

result that �̂
p! 0 without omission: for example, when T = 400; � = 1:05; (�01; �

0
2) =

(0:4; 0:6);
���bias(�̂)��� ' RMSE(�̂) ' 1:045. Fourth, the bias and RMSE of estimators with

omission both decrease as the sample size increases for all parameter con�gurations. Fifth,

the JS procedure with omission dominates with respect to bias in all cases. It is also the

dominant procedure in terms of RMSE unless the signal from the explosive regime is weak

and the sample size is small in which case the PSY estimator yields a slightly smaller RMSE.

4.3 Results for the Two Bubbles Case

Tables 4-6 present results for the two bubbles case given by DGP-2. In addition to the �ve

dating estimators considered in the single bubble case, we also include results for the HLW

estimator. Table 4 reports the break date selection probabilities for each of the four break

dates. Consistent with the single bubble case, the results show (i) the relatively low accuracy

of all procedures in dating the origination of explosive behavior; (ii) that for each break, the

JS/PQ procedures without omission tend to select a break date later than the corresponding

true date; (iii) that the HLS estimates improve upon the PSY estimates, as expected; (iv)

the JS procedure with omission can detect the implosion dates with highest accuracy for

each of the sample sizes.

Table 5 reports the bias and RMSE of the break fraction estimators for each of the six

procedures. The �ndings again indicate that the JS/PQ estimators without omission are

subject to considerable biases which are not mitigated with a larger sample size. In contrast,
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their counterparts with omission are much more accurate in terms of both bias and RMSE,

with the JS estimator incurring the smallest bias (RMSE) in most (all) cases. While the bias

of the HLW estimator is comparable to that of the JS estimator with omission, the latter is

more accurate in terms of RMSE for dating the onset and collapse of both bubbles.

Table 6 presents the bias and RMSE of the autoregressive coe¢ cient estimators in the two

explosive regimes. The estimates in both regimes are typically downward biased although the

JS estimates with omission are virtually unbiased when T = 400. These results are strongly

indicative of the consistency (inconsistency) of the JS/PQ estimators with (without) omission

and clearly point to the superiority of the JS procedure. While the HLW estimator and the

JS estimator with omission have similar accuracy (in terms of both bias and RMSE) with

respect to the �rst bubble, the latter estimator dominates for the second bubble, particularly

in terms of RMSE.

The results with serially correlated errors in both the single and two bubbles cases are

overall qualitatively similar to those with i.i.d. errors with the dominance of the JS procedure

that incorporates omission over the other procedures being even more evident under serial

correlation, particularly with respect to estimation of the break dates and the autoregressive

coe¢ cients. Tables B.1-B.12 in Appendix B provide more detailed results.

4.4 Local versus Global Minimum

This subsection illustrates that the Perron and Qu (2006) algorithm often yields a larger

value for the minimized sum of squared residuals than the proposed joint search algorithm,

indicating that the estimated break dates obtained from the PQ algorithm may only cor-

respond to a local instead of the global minimum. To this end, we present results on the

di¤erence between the sum of squared residuals based on the break date estimates from the

JS and PQ procedures with omission, with a similar pattern holding for the corresponding

procedures without omission. For example, in the single bubble case, after obtaining the

date estimates (eT JS1 ; eT JS2 ) and (eT PQ1 ; eT PQ2 ), we compute

SSRJSom =

eTJS1X
t=2

(�yt)
2 +

eTJS2X
t= eTJS1 +1

(yt � ecJS � e�JSyt�1)2 + TX
t=eTJS2 +2

(�yt)
2;

SSRPQom =

eTPQ1X
t=2

(�yt)
2 +

eTPQ2X
t=eTPQ1 +1

(yt � ecPQ � e�PQyt�1)2 + TX
t=eTPQ2 +2

(�yt)
2;
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and their scaled di¤erence

� = T�1
�
SSRJSom � SSRPQom

�
:

We analyze this quantity graphically as follows. We sort the di¤erences from smallest to

largest (across the replications) and include a vertical line showing the x-th replication at

which � is exactly 0 (i.e., both estimators �nd the same minimum). To the left of this line,

we have SSRJSom < SSR
PQ
om while to the right, we have SSRJSom = SSR

PQ
om : The reference line

y = 0 in each plot shows that � never exceeds 0, i.e., SSRJSom � SSRPQom always holds.

Figure 1 plots the results for DGP-1 with i.i.d. errors, where the break locations (�01; �
0
2) 2

f(0:5; 0:65); (0:4; 0:6)g. Figure 2 presents similar results for DGP-2. Speci�cally, we consider
two break location con�gurations: �0S1 = (0:2; 0:3; 0:7; 0:8) and �

0
S2 = (0:2; 0:4; 0:6; 0:8). The

patterns for the other seven break location con�gurations are similar and hence omitted.

The �ndings can be summarized as follows. First, the number of replications in which

SSRJSom is strictly smaller than SSRPQom can be considerable, as indicated by the location

of the vertical line in each �gure. Second, the maximal di¤erence between SSRJSom and

SSRPQom can also be substantial, as indicated by the scale of the y-axis. Third, the number

of replications for which PQ is unable to �nd the global minimum decreases as � and/or T

increases, as expected.

Finally, we also compared the average (over 5,000 replications) computing time incurred

by the JS and PQ procedures to obtain the break date estimates and did not �nd any

notable di¤erence between them. Thus, JS not only delivers estimates with better statistical

properties than PQ but is also computationally e¢ cient.

4.5 Number of Bubbles

The application of the proposed date-stamping procedure as well as that of HLW relies

on the PSY estimate of the number of bubbles in the initial step. The simulation results

reported in the previous sections were obtained by conditioning on replications in which the

PSY procedure selects the true number of bubbles. The Monte Carlo simulations reported

in PSY show that their procedure delivers a reliable estimate of the number of bubbles for

the types of bubble DGPs considered in our simulation design. In practice, however, the

PSY approach may underestimate/overestimate the number of bubbles and it is thus of

interest to examine the properties of dating estimators in these cases. Accordingly, using the

same design as before, we now eliminate the replications in which the PSY algorithm selects

the true number of bubbles and increase the number of replications until we obtain 1,000
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replications in which the algorithm either underestimates the number of bubbles (i.e., selects

one bubble under DGP-2) or overestimates it (i.e., selects two bubbles under DGP-1).

Tables B.13 and B.14 in Appendix B present the mean and standard deviation of the break

fraction estimators, respectively, for the case where the number of bubbles is overestimated.

Table B.15 reports the corresponding results in the underestimated case. In either case, the

�ndings suggest that the dating estimators are inconsistent with their bias and standard

deviation displaying no general tendency to decrease as the sample size increases. The

accuracy of the date-stamping procedures thus crucially depends on whether the true number

of bubbles is selected in the �rst step.

5 Empirical Illustration

The unprecedented surge in crude oil prices between 2003 and 2008 and its subsequent col-

lapse during the Global Financial Crisis has been a subject of extensive debate and discussion

among academics and policymakers. The West Texas Intermediate (WTI) price, regarded

as one of the principal benchmarks for crude oil based on quality and location, rose from

below $30 per barrel at the beginning of 2003 to about $147 in mid-July 2008 followed by a

dramatic collapse to below $40 in December 2008. A substantial body of research has been

devoted to studying the major determinants of oil price �uctuations over this period. Kilian

(2009) adopted a structural vector autoregressive modeling approach to show that oil price

shocks are primarily driven by a combination of aggregate demand and pre-cautionary de-

mand shocks with a minor contribution from supply shocks, while Kilian and Murphy (2014)

found a limited role for speculative demand shocks in explaining crude oil price movements.

In contrast, Hamilton (2009) attributed the sharp spike in oil prices between 2007-08 to a

combination of demand shocks and stagnation in world production over 2005-07 but sug-

gested that the ensuing collapse may be consistent with the bursting of a speculative bubble.

Shi and Arora (2012) and Tsvetanov et al. (2016) provided evidence in favor of a rational

bubble in crude oil prices, in accordance with the increased �nancialization of the oil futures

markets and the expansion of index trading since 2004. More recently, Pavlidis et al. (2018)

exploited the fact that in the presence of a speculative bubble, the di¤erence between the

future spot price and the expected price is explosive regardless of whether the fundamental

component is explosive. They apply the PWY and PSY testing procedures to this di¤erence

to conclude against the presence of speculative bubbles over the period 1990-2013. In our

empirical analysis, we do not take a stand on whether the explosive behavior in crude oil

prices is driven by fundamental or speculative factors. Rather, we use the crude oil price
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series to illustrate the e¢ cacy of our proposed approach in date-stamping the origination

and termination of explosive behavior between 2003-2008.

Our analysis is based on the monthly real crude oil price computed as the nominal WTI

price de�ated by the U.S. consumer price index (CPI). The data are obtained from the FRED-

MD database maintained by the Federal Reserve Bank of St. Louis and span the period from

January 1986 to July 2014 so that the sample size is 343. The start date is chosen to avoid

the period of regulation of the WTI market until the early 1980s while the end date is chosen

to avoid the short period of a rapid price decline between late 2014 and early 2015 as well as

the highly volatile regime between early 2020 and late 2022 during the COVID pandemic.

Figure 3 plots the real oil price along with the sequence of BSADFr2(r0) statistics and the

corresponding sequence of 95% critical values, where r2 2 [r0; 1] and r0 = 0:01 + 1:8T�1=2

[see (14)-(15)]. The plot indicates that the oil price was characterized by relatively mild

�uctuations until 2003 followed by a distinct run-up until 2008 with a sharp spike over the

period 2007-2008 culminating in a dramatic collapse in July 2008. The PSY dating algorithm

found a single statistically signi�cant episode of explosive behavior between October 2007

and August 2008. Shorter periods of explosiveness were ruled out by the requirement that

their duration be at least blnT c = 5 observations.
Next, we report the results of two ex post tests for explosiveness conducted for the

full sample period. The �rst corresponds to the testing strategy recommended by PWY

and entails taking the maximum of the ADF statistic sequence computed over a forward

expanding sample of observations. Speci�cally, the test statistic is given by

SADF (r0) = sup
r22[r0;1]

fADF r20 g;

where ADF r20 is the ADF statistic based on observations in the range [0; r2]. The second test

statistic was proposed by PSY and is based on taking the maximum of the BSADFr2(r0)

sequence over r2 2 [r0; 1]. Thus, the statistic is given by

GSADF (r0) = sup
r22[r0;1]

fBSADFr2(r0)g :

As shown in PSY, GSADF (r0) o¤ers a more powerful testing strategy than SADF (r0) with

multiple bubbles due to its double recursive nature that allows �exible window widths while

SADF (r0) �xes the starting point of the recursion on the �rst observation. The results,

presented in Panel A of Table 7, indicate that the null hypothesis of a unit root is rejected

by the SADF test at the 5% level and the GSADF test at the 1% level, thereby con�rming

the presence of explosive behavior over the full sample.
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We now turn to the results obtained from applying the di¤erent date-stamping methods.

Panel B of Table 7 presents the estimated regimes obtained by �tting a single bubble model

using each of the methods described in Section 4.1. The trimming level is set to 10% for the

JS and PQ procedures. The JS procedure with omission dates the origination and termina-

tion of explosive behavior in September 2003 and August 2008, respectively. The estimated

origination date was associated with a period of rapid economic growth in the OECD coun-

tries as well as China leading to an increase in the global demand for oil. Kilian (2009) used

a historical decomposition of the real oil price based on a structural vector autoregression

to show that the cumulative e¤ect of aggregate demand shocks on the real oil price started

to increase in late 2003. The estimated implosion date corresponds to the unfolding of the

Global Financial Crisis that was associated with a sharp decrease in the global demand for

oil. In comparison, the JS procedure without omission estimates the origination and termi-

nation dates as July 2008 and July 2011, respectively. These estimates are consistent with

the theoretical analysis presented in Section 2. Speci�cally, the estimated start date of July

2008 is only a month prior to the collapse date estimated by the JS procedure with omission

which is in close accordance with the prediction in Theorem 1 that the OLS estimate of the

start date converges to the true implosion date in large samples. Similarly, the duration

between the estimated end dates from the JS procedure with and without omission is 35

months, quite close to the large sample prediction of b�T c = b0:1� 343c = 34 months. A

graphical comparison of the JS date estimates with and without omission is presented in

Figure 4. The PQ procedure with omission estimates the explosive regime to run from July

1990 to August 2008. To our knowledge, such an extended duration of explosive behavior

has little theoretical or empirical support in the literature. The PQ estimator without omis-

sion estimates the start and end dates of explosive behavior at September 2008 and June

2011, respectively, again in compliance with the prediction in Theorem 1. Finally, the PSY

procedure identi�es the explosive episode as lasting from October 2007 to August 2008 corre-

sponding to the sharp spike in the oil price between 2007-2008 but fails to detect exuberance

in the period prior to 2007.

Panel B of Table 7 also reports the results of the SADF and GSADF tests conducted

within each of these regimes. The rejection pattern of these tests provide evidence on whether

the estimated regimes are in fact consistent with the single bubble DGP in (1). Thus, if the

�rst and third estimated regimes are in fact I(1); the tests can be expected to fail to reject

the unit root null in these regimes while if the second estimated regime is in fact explosive,

the tests can be expected to reject. The rejection pattern for the JS and PQ procedures
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with omission are consistent with the single bubble speci�cation although, as noted above,

the estimated explosive regime for the latter is implausibly long. For each of the other three

date-stamping procedures, the rejection pattern by at least one of the tests does not conform

to a single bubble model. For instance, the JS procedure without omission �nds evidence of

explosiveness in the �rst estimated regime from January 1986 to June 2008 but not in the

subsequent regimes, a pattern that is consistent with the prediction in Theorem 1.

Finally, we examine the sensitivity of the di¤erent date-stamping methods to variations

in the sample period. Speci�cally, we consider subsamples that remove the �rst and/or the

last six months from the full sample. The results, presented in Table 8, demonstrate the

robustness of the JS procedure with omission. In particular, while the date estimates from

the other approaches tend to vary with the sample period, the proposed approach delivers

the same date estimates regardless of the sample period considered. While this evidence is

consistent with the fact the proposed approach yields estimates that minimize the global sum

of squared residuals, the erratic behavior of the PQ estimates with omission is consistent

with the fact that these estimates may be susceptible to the problem of local minima.

6 Conclusion

This paper studies the properties of least squares estimates of the parameters in autore-

gressive models that involve switches between unit root and explosive regimes, where each

explosive regime is followed by an implosion before the re-emergence of a unit root regime.

It is shown that standard OLS estimators of the break dates/fractions and autoregressive co-

e¢ cients are inconsistent due to their failure in properly accounting for the implosion points.

A simple modi�cation in the form of omitting the residuals corresponding to the potential

implosion points when estimating the parameters restores consistency of the estimators. We

also develop an e¢ cient dynamic programming algorithm that facilitates estimation of the

break dates without being susceptible to the problem of local minima, unlike the Perron

and Qu (2006) iterative scheme based on initial values obtained from unrestricted Bai and

Perron (2003) estimation. Monte Carlo simulations and an empirical application are used to

provide support for our proposed method.

Data Availability Statement The data used in this article are obtained from the

FRED-MD database maintained by the Federal Reserve Bank of St. Louis at

https://www.stlouisfed.org/research/economists/mccracken/fred-databases.
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Table 1: Probabilities of break date selection (single bubble)

Panel A: First date estimates
δ T T 0

1 p̂C1 (JS) p̂L1 (JS) p̂C1 (PQ) p̂L1 (PQ) p̃C1 (JS) p̃L1 (JS) p̃C1 (PQ) p̃L1 (PQ) p̂C1 (PSY ) p̂L1 (PSY )

1.02 100 50 0.00 0.79 0.00 0.70 0.03 0.35 0.02 0.38 0.02 0.56
1.02 200 100 0.00 0.92 0.00 0.90 0.03 0.46 0.01 0.46 0.01 0.73
1.02 400 200 0.00 0.97 0.00 0.97 0.04 0.56 0.02 0.47 0.00 0.86
1.02 100 40 0.00 0.88 0.00 0.84 0.03 0.47 0.02 0.51 0.02 0.73
1.02 200 80 0.00 0.96 0.00 0.95 0.03 0.54 0.01 0.58 0.01 0.83
1.02 400 160 0.00 0.99 0.00 0.99 0.03 0.63 0.01 0.57 0.00 0.93
1.05 100 50 0.00 0.95 0.00 0.91 0.08 0.38 0.04 0.38 0.02 0.77
1.05 200 100 0.00 0.99 0.00 0.99 0.11 0.52 0.05 0.39 0.01 0.91
1.05 400 200 0.00 1.00 0.00 1.00 0.15 0.53 0.07 0.39 0.01 0.95
1.05 100 40 0.00 0.98 0.00 0.97 0.07 0.47 0.03 0.51 0.01 0.90
1.05 200 80 0.00 1.00 0.00 0.99 0.07 0.55 0.03 0.49 0.01 0.95
1.05 400 160 0.00 1.00 0.00 1.00 0.12 0.57 0.06 0.43 0.01 0.96

Panel B: Second date estimates
δ T T 0

2 p̂C1 (JS) p̂L2 (JS) p̂C2 (PQ) p̂L2 (PQ) p̃C2 (JS) p̃L2 (JS) p̃C2 (PQ) p̃L2 (PQ) p̂C2 (PSY ) p̂L2 (PSY )

1.02 100 65 0.00 0.89 0.10 0.79 0.64 0.26 0.51 0.40 0.28 0.19
1.02 200 130 0.00 0.96 0.04 0.92 0.85 0.11 0.64 0.33 0.49 0.12
1.02 400 260 0.00 0.98 0.01 0.97 0.96 0.03 0.78 0.21 0.74 0.06
1.02 100 60 0.00 0.94 0.07 0.88 0.70 0.24 0.52 0.43 0.29 0.21
1.02 200 120 0.00 0.97 0.02 0.96 0.89 0.08 0.60 0.38 0.55 0.11
1.02 400 240 0.00 0.99 0.01 0.99 0.97 0.02 0.71 0.28 0.82 0.06
1.05 100 65 0.00 0.97 0.05 0.92 0.88 0.10 0.70 0.28 0.71 0.07
1.05 200 130 0.00 0.99 0.00 0.99 0.98 0.02 0.87 0.13 0.91 0.03
1.05 400 260 0.00 1.00 0.00 1.00 1.00 0.00 0.98 0.02 0.87 0.12
1.05 100 60 0.00 0.99 0.02 0.97 0.93 0.06 0.66 0.33 0.79 0.06
1.05 200 120 0.00 1.00 0.00 1.00 0.99 0.01 0.80 0.20 0.93 0.03
1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.97 0.03 0.80 0.20

Note: 1) The superscript ’C’ denotes the probability of correctly selecting the true break date.
2) The superscript ’L’ denotes the probability of selecting a date later than the true break date.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
4) The method with the highest probability of correctly selecting the true break date is highlighted in bold.
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Table 2: Bias and RMSE of break fraction estimates (single bubble)

δ λ01 λ02 T λ̂JS1 λ̂PQ
1 λ̃JS1 λ̃PQ

1 λ̂PSY
1 λ̂JS2 λ̂PQ

2 λ̃JS2 λ̃PQ
2 λ̂PSY

2

Panel A: Bias
1.02 0.5 0.65 100 0.077 0.036 −0.092 −0.087 0.021 0.080 0.078 0.021 0.048 −0.047
1.02 0.5 0.65 200 0.122 0.113 −0.054 −0.053 0.036 0.062 0.077 0.007 0.040 −0.045
1.02 0.5 0.65 400 0.140 0.139 −0.006 −0.030 0.051 0.052 0.063 −0.000 0.019 −0.027
1.02 0.4 0.6 100 0.160 0.137 −0.019 0.004 0.106 0.096 0.106 0.031 0.069 −0.009
1.02 0.4 0.6 200 0.185 0.182 −0.007 0.025 0.097 0.064 0.083 0.007 0.051 −0.023
1.02 0.4 0.6 400 0.196 0.195 0.020 0.023 0.092 0.055 0.065 0.002 0.025 −0.007
1.05 0.5 0.65 100 0.134 0.117 −0.052 −0.060 0.038 0.088 0.106 0.010 0.041 −0.022
1.05 0.5 0.65 200 0.147 0.146 0.001 −0.034 0.051 0.063 0.083 0.001 0.015 −0.008
1.05 0.5 0.65 400 0.149 0.149 0.009 −0.015 0.038 0.054 0.064 0.000 0.002 −0.002
1.05 0.4 0.6 100 0.193 0.188 −0.019 0.009 0.092 0.089 0.119 0.008 0.055 −0.001
1.05 0.4 0.6 200 0.199 0.198 0.014 0.007 0.079 0.064 0.087 0.001 0.024 0.000
1.05 0.4 0.6 400 0.200 0.200 0.017 −0.003 0.049 0.054 0.063 0.000 0.003 0.001

Panel B: RMSE
1.02 0.5 0.65 100 0.183 0.191 0.207 0.214 0.200 0.158 0.157 0.125 0.133 0.205
1.02 0.5 0.65 200 0.164 0.167 0.166 0.192 0.182 0.107 0.119 0.075 0.102 0.185
1.02 0.5 0.65 400 0.155 0.156 0.097 0.151 0.145 0.076 0.084 0.044 0.065 0.141
1.02 0.4 0.6 100 0.207 0.200 0.169 0.182 0.221 0.149 0.154 0.112 0.140 0.193
1.02 0.4 0.6 200 0.202 0.201 0.138 0.172 0.187 0.096 0.111 0.063 0.108 0.160
1.02 0.4 0.6 400 0.201 0.201 0.091 0.150 0.148 0.069 0.079 0.036 0.063 0.107
1.05 0.5 0.65 100 0.160 0.161 0.149 0.185 0.137 0.121 0.141 0.068 0.102 0.131
1.05 0.5 0.65 200 0.152 0.152 0.068 0.128 0.100 0.073 0.099 0.029 0.055 0.081
1.05 0.5 0.65 400 0.151 0.151 0.039 0.066 0.067 0.057 0.070 0.014 0.019 0.048
1.05 0.4 0.6 100 0.202 0.200 0.125 0.165 0.142 0.113 0.146 0.054 0.112 0.099
1.05 0.4 0.6 200 0.200 0.200 0.069 0.130 0.108 0.072 0.101 0.021 0.063 0.057
1.05 0.4 0.6 400 0.200 0.200 0.044 0.066 0.072 0.057 0.068 0.011 0.020 0.032

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.
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Table 3: Bias and RMSE of AR(1) estimates (single bubble)

δ λ01 λ02 T δ̂JS δ̂PQ δ̃JS δ̃PQ δ̂PSY

Panel A: Bias
1.02 0.5 0.65 100 −0.858 −0.725 −0.315 −0.328 −0.298
1.02 0.5 0.65 200 −0.895 −0.842 −0.169 −0.274 −0.232
1.02 0.5 0.65 400 −0.918 −0.901 −0.057 −0.176 −0.122
1.02 0.4 0.6 100 −0.894 −0.801 −0.304 −0.369 −0.287
1.02 0.4 0.6 200 −0.935 −0.900 −0.147 −0.338 −0.205
1.02 0.4 0.6 400 −0.954 −0.943 −0.041 −0.254 −0.087
1.05 0.5 0.65 100 −1.006 −0.932 −0.178 −0.288 −0.178
1.05 0.5 0.65 200 −1.027 −1.016 −0.051 −0.131 −0.063
1.05 0.5 0.65 400 −1.036 −1.034 −0.008 −0.016 −0.034
1.05 0.4 0.6 100 −1.035 −0.993 −0.144 −0.348 −0.150
1.05 0.4 0.6 200 −1.037 −1.030 −0.036 −0.206 −0.043
1.05 0.4 0.6 400 −1.044 −1.044 −0.004 −0.031 −0.035

Panel B: RMSE
1.02 0.5 0.65 100 0.955 0.826 0.464 0.491 0.381
1.02 0.5 0.65 200 0.933 0.893 0.292 0.460 0.324
1.02 0.5 0.65 400 0.937 0.926 0.132 0.382 0.232
1.02 0.4 0.6 100 0.974 0.879 0.450 0.533 0.372
1.02 0.4 0.6 200 0.959 0.933 0.268 0.532 0.295
1.02 0.4 0.6 400 0.967 0.960 0.108 0.483 0.196
1.05 0.5 0.65 100 1.038 0.976 0.319 0.491 0.286
1.05 0.5 0.65 200 1.033 1.024 0.135 0.339 0.157
1.05 0.5 0.65 400 1.039 1.038 0.041 0.109 0.102
1.05 0.4 0.6 100 1.063 1.015 0.282 0.561 0.256
1.05 0.4 0.6 200 1.041 1.035 0.108 0.447 0.118
1.05 0.4 0.6 400 1.045 1.045 0.033 0.173 0.086

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.
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Table 4: Probabilities of break date selection (two bubbles)

δ1 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel A: First break date [i=1]
1.05 100 20 0.00 0.98 0.01 0.92 0.05 0.45 0.03 0.60 0.02 0.93 0.05 0.44
1.05 200 40 0.00 1.00 0.00 0.99 0.05 0.58 0.02 0.64 0.01 0.96 0.05 0.57
1.05 400 80 0.00 0.99 0.00 1.00 0.08 0.63 0.03 0.58 0.01 0.97 0.08 0.63

Panel B: Second break date [i=2]
1.05 100 40 0.00 0.98 0.10 0.88 0.92 0.06 0.53 0.41 0.66 0.08 0.87 0.06
1.05 200 80 0.00 0.99 0.01 0.98 0.98 0.02 0.57 0.39 0.91 0.04 0.97 0.01
1.05 400 160 0.00 0.99 0.00 1.00 1.00 0.00 0.73 0.25 0.80 0.19 0.99 0.00

δ2 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel C: Third break date [i=3]
1.05 100 60 0.00 0.98 0.01 0.87 0.09 0.51 0.04 0.61 0.01 0.91 0.08 0.48
1.05 200 120 0.00 0.99 0.00 0.98 0.10 0.56 0.04 0.59 0.01 0.95 0.10 0.54
1.05 400 240 0.00 0.99 0.00 1.00 0.12 0.57 0.05 0.51 0.00 0.98 0.12 0.56

Panel D: Fourth break date [i=4]
1.05 100 80 0.00 0.98 0.19 0.80 0.95 0.04 0.65 0.34 0.82 0.01 0.92 0.04
1.05 200 160 0.00 0.99 0.02 0.97 0.99 0.01 0.70 0.29 0.94 0.02 0.98 0.01
1.05 400 320 0.00 0.99 0.00 1.00 1.00 0.00 0.83 0.16 0.81 0.19 1.00 0.00

Note: See notes to Table 1.
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Table 5: Bias and RMSE of break fraction estimates (two bubbles)

δ1 λ01 λ02 T λ̂JS1 λ̂JS2 λ̃PQ
1 λ̃PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.200 0.090 0.170 0.100 0.000s 0.010 0.060 0.060 0.110 0.000c 0.008 0.000c

1.05 0.2 0.4 200 0.200 0.070 0.200 0.090 0.020s 0.000c 0.070 0.040 0.090 0.000c 0.021 0.000c

1.05 0.2 0.4 400 0.200 0.060 0.200 0.060 0.020s 0.000c 0.050 0.020 0.060 0.000c 0.020s 0.000c

Panel B: RMSE of first bubble estimators
1.05 0.2 0.4 100 0.200 0.120 0.190 0.130 0.090s 0.050c 0.140 0.120 0.140 0.090 0.093 0.053
1.05 0.2 0.4 200 0.200 0.080 0.200 0.100 0.070s 0.020c 0.140 0.100 0.120 0.050 0.081 0.034
1.05 0.2 0.4 400 0.210 0.080 0.200 0.070 0.050s 0.010c 0.110 0.080 0.070 0.020 0.050s 0.010c

δ2 λ03 λ04 T λ̂JS3 λ̂JS4 λ̃PQ
3 λ̃PQ

4 λ̃JS3 λ̃JS4 λ̃PQ
3 λ̃PQ

4 λ̂PSY
3 λ̂PSY

4 λ̂HLW
3 λ̂HLW

4

Panel C: Bias of second bubble estimators
1.05 0.6 0.8 100 0.190 0.070 0.150 0.070 0.010s 0.000c 0.050 0.030 0.070 −0.030 0.010s −0.008
1.05 0.6 0.8 200 0.200 0.060 0.190 0.070 0.020s 0.000c 0.050 0.030 0.070 −0.010 0.020s −0.003
1.05 0.6 0.8 400 0.200 0.050 0.200 0.060 0.020s 0.000c 0.030 0.010 0.050 0.000c 0.020s 0.000c

Panel D: RMSE of second bubble estimators
1.05 0.6 0.8 100 0.200 0.090 0.180 0.090 0.080s 0.030c 0.140 0.060 0.120 0.110 0.093 0.052
1.05 0.6 0.8 200 0.200 0.070 0.200 0.080 0.070s 0.020c 0.130 0.050 0.100 0.070 0.072 0.034
1.05 0.6 0.8 400 0.200 0.070 0.200 0.070 0.040s 0.000c 0.100 0.040 0.070 0.020 0.044 0.018

Note: 1) The superscript ’s’ denotes bubble origination estimates with lowest bias/RMSE.
2) The superscript ’c’ denotes bubble crash estimates with lowest bias/RMSE.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.

Table 6: Bias and RMSE of AR(1) estimates (two bubbles)

δ T δ̂JS1 δ̂PQ
1 δ̃JS1 δ̃PQ

1 δ̂PSY
1 δ̂HLW

1 δ̂JS2 δ̂PQ
2 δ̃JS2 δ̃PQ

2 δ̂PSY
2 δ̂HLW

2

Panel A: Bias
1.05 100 −1.010 −0.920 −0.150 −0.450 −0.450 −0.150 −1.050 −0.850 −0.110 −0.390 −0.110 −0.130
1.05 200 −1.020 −1.010 −0.050 −0.390 −0.390 −0.050 −1.040 −1.010 −0.040 −0.300 −0.030 −0.030
1.05 400 −1.010 −1.040 −0.010 −0.240 −0.240 −0.010 −1.050 −1.040 0.000 −0.150 −0.030 −0.010

Panel B: RMSE
1.05 100 1.050 0.980 0.290 0.650 0.650 0.290 1.060 0.950 0.240 0.610 0.200 0.290
1.05 200 1.030 1.030 0.130 0.620 0.620 0.140 1.040 1.030 0.110 0.540 0.100 0.130
1.05 400 1.030 1.040 0.030 0.500 0.500 0.030 1.050 1.050 0.020 0.390 0.080 0.060

Note: See notes to Table 3.
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Table 7: Tests for the Presence of Explosiveness

Panel A: Full Sample Tests
Sample SADF PSADF GSADF PGSADF

1986:01−2014:07 2.024 0.012 3.221 0.006

Panel B: Estimated Regimes and Subsample Tests
Procedure Regime Estimated regime SADF PSADF GSADF PGSADF

JS with I(1) 1986:01−2003:08 −1.733 0.993 0.801 0.751
omission I(e) 2003:09−2008:08 2.104 0.011 2.609 0.039

I(1) 2008:09−2014:07 −1.063 0.884 1.098 0.433
JS without I(1) 1986:01−2008:06 2.024 0.013 3.221 0.005
omission I(e) 2008:07−2011:07 −2.180 0.982 1.173 0.316

I(1) 2011:08−2014:07 −1.869 0.966 −0.795 0.987
PQ with I(1) 1986:01−1990:06 −1.059 0.863 0.397 0.753
omission I(e) 1990:07−2008:08 2.332 0.005 3.221 0.005

I(1) 2008:09−2014:07 −1.063 0.884 1.098 0.433
PQ without I(1) 1986:01−2008:08 2.024 0.012 3.220 0.004

omission I(e) 2008:09−2011:06 2.332 0.005 3.221 0.005
I(1) 2011:07−2014:07 −2.199 0.983 −0.795 0.987

PSY I(1) 1986:01−2007:07 −0.662 0.864 1.017 0.649
I(e) 2007:10−2008:08 3.729 0.026 3.729 0.136
I(1) 2008:09−2014:07 −1.063 0.884 1.098 0.433

Note: 1) SADF , GSADF denote the values of test statistics and PSADF , PGSADF denote the corresponding p-values.
2) I(1) denotes a unit root regime and I(e) denotes an explosive regime.

Table 8: Estimated Explosive Regime of Real Oil Price (different subsamples)

Start End T̃ JS
1 T̃ JS

2 T̂ JS
1 T̂ JS

2 T̃PQ
1 T̃PQ

2 T̂PQ
1 T̂PQ

2 T̂PSY
1 T̂PSY

2

1986:01 2014:07 2003:09 2008:08 2008:07 2011:07 1990:07 2008:08 2008:09 2011:06 2007:10 2008:08
1986:01 2014:01 2003:09 2008:08 2008:05 2011:02 1990:07 2008:08 1990:07 2008:08 2007:10 2008:08
1986:07 2014:07 2003:09 2008:08 2008:07 2011:07 1990:07 2008:08 2008:09 2011:06 2007:10 2008:08
1986:07 2014:01 2003:09 2008:08 2008:07 2011:03 2008:05 2011:01 2008:05 2011:01 2007:10 2008:08
1987:01 2014:07 2003:09 2008:08 2008:07 2011:07 2008:09 2011:09 2008:09 2011:09 2007:10 2008:08
1987:01 2014:01 2003:09 2008:08 2008:07 2011:03 2008:05 2011:01 2008:05 2011:01 2007:10 2008:08

Note: The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
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Figure 1: Difference between sums of squared residuals, ∆ = T−1(SSRJS
om − SSRPQ

om ) [Single Bubble Case]

Note: The differences are sorted from smallest to largest (across the replications). The vertical
line indicates the replication at which ∆ = 0.

Figure 2: Difference between sums of squared residuals, ∆ = T−1(SSRJS
om − SSRPQ

om ) [Two Bubbles Case]

Note: The differences are sorted from smallest to largest (across the replications). The vertical
line indicates the replication at which ∆ = 0.
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Figure 3: Explosiveness in the Real Oil Price

Figure 4: Estimated Dates with and without Omission
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Appendix A: Proofs of Theoretical Results

As a matter of notation, �
p!�and �)�denote, respectively, convergence in probability and weak con-

vergence of the associated probability measures. W (:) denotes a standard Brownian motion on [0; 1] and
O+p (:) denotes a random quantity of the speci�ed order that is asymptotically positive. For a random
quantity z, we write z = z0 + op(z0) as z = z0 + s:o:, where s:o: represents a term of smaller order in
probability. The true break dates are denoted by T 01 =

�
�01T

�
; T 02 =

�
�02T

�
; where �01; �

0
2 are the true

break fractions. Following Harvey et al. (2017), we simplify the proofs by assuming that a constant is
not included in the regression.

The data generating process (DGP) considered in the theoretical analysis is restated here for conve-
nience:

yt =

8>>><>>>:
yt�1 + ut; 1 � t � T 01 ;

�yt�1 + ut; T 01 + 1 � t � T 02 ;

yT 01 + z
� +

Pt
j=T 02+1

uj ; T 02 + 1 � t � T;

(A.1)

where ut is i.i.d. with E(ut) = 0; E(u2t ) = �
2 and y0 = op(T 1=2); z� = Op(1):

We �rst state two lemmas that will be used subsequently. The �rst follows from Lemma 1 in Harvey
et al. (2017). The proof of the second follows from standard results for I(1) processes [see, e.g., Perron
(1989), Perron (1990)] and is thus omitted.

Lemma A.1 (Harvey et al. (2017)) Assume that yt is generated by (A.1). Let ST = T 01
h
�2(T

0
2�T 01 )

i
.

Then

(a) ST =T !1;

(b) y2
T 02
= O+p (ST );

(c) S�1T
PT 02
t=T 01+1

y2t�1 = (�
2 � 1)�1! + op(1); where ! = limT!1 S�1=2T yT 02 ;

�Daniels School of Business, Purdue University, 403 West State Street, West Lafayette IN 47906 (mkejriwa@purdue.edu).
yDaniels School of Business, Purdue University, 403 West State Street, West Lafayette IN 47906 (nguye535@purdue.edu).
zDepartment of Economics, Boston University, 270 Bay State Road, Boston MA 02215 (perron@bu.edu).
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(d)
PT 02
t=T 01+1

yt�1ut = Op(S
1=2
T ):

Lemma A.2 Assume that yt is generated by (A.1). Then the following results hold jointly:

(a) T�1
PT 01
t=1 yt�1ut )

�2(W 2(�01)��01)
2 ;

(b) T�2
PT 01
t=1 y

2
t�1 ) �2

R �01
0 W 2(r)dr;

(c) T�1=2yT 01 ) �W (�01);

(d) T�1=2yT 02+1 ) �W (�01);

(e) T�2
PT 02+b"T c
t=T 02+2

y2t�1 ) �2
R "
0 [W (�

0
1 + r)]

2dr;

(f) T�1
PT 02+b"T c
t=T 02+2

yt�1ut ) �2
�
W (�01)fW (�02 + �)g+

fW (�02+�)�W (�02)g2��
2

�
:

Proof of Theorem 1: (a) Given (T1; T2); the sum of squared residuals is given by

SSR(T1; T2) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

fyt � �̂(T1; T2)yt�1g2 +
TX

t=T2+1

(�yt)
2; (A.2)

where

�̂(T1; T2) =

0@ T2X
t=T1+1

y2t�1

1A�1
T2X

t=T1+1

ytyt�1: (A.3)

De�ning T 02;� = T
0
2 + b�T c ; we have

�̂(T 02 ; T
0
2;�) =

0@ T 02;�X
t=T 02+1

y2t�1

1A�1
T 02;�X

t=T 02+1

ytyt�1

=

0@S�1T y2T 02
+ S�1T

T 02;�X
t=T 02+2

y2t�1

1A�1

�

0@S�1T yT 02+1yT 02 + S
�1
T

T 02;�X
t=T 02+2

y2t�1 + S
�1
T

T 02;�X
t=T 02+2

yt�1ut

1A
and

S
1=2
T T�1=2�̂(T 02 ; T

0
2;�) =

�
S�1T y2T 02

+ op(1)
��1 �

T�1=2yT 02+1S
�1=2
T yT 02 + op(1)

�
) !�1W (�01) = Op(1);

(A.4)
where the last line follows using Lemmas A.1-A.2. Next, suppose that

T̂1 = T
0
2 + k1;

T̂2 = T
0
2;� + k2;
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where k1; k2 are O(1) integers. Let

F (k1; k2) = SSR(T̂1; T̂2)� SSR(T 02 ; T 02;�)

=

24 T̂1X
t=2

(�yt)
2 +

T̂2X
t=T̂1+1

fyt � �̂(T̂1; T̂2)yt�1g2 +
TX

t=T̂2+1

(�yt)
2

35
�

264 T 02X
t=2

(�yt)
2 +

T 02;�X
t=T 02+1

fyt � �̂(T 02 ; T 02;�)yt�1g2 +
TX

t=T 02;�+1

(�yt)
2

375 : (A.5)

Now, the quantity SSR(T 02 ; T
0
2;�) can be written as

SSR(T 02 ; T
0
2;�) =

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 02X

t=T 01+1

y2t�1 + 2(� � 1)
T 02X

t=T 01+1

yt�1ut

+ fyT 02+1 � �̂(T
0
2 ; T

0
2;�)yT 02 g

2 + (1� �̂(T 02 ; T 02;�))2
T 02;�X

t=T 02+2

y2t�1 + 2(1� �̂(T 02 ; T 02;�))
T 02;�X

t=T 02+2

yt�1ut

=
TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 02X

t=T 01+1

y2t�1 + 2(� � 1)
T 02X

t=T 01+1

yt�1ut

+

T 02;�X
t=T 02+2

y2t�1 + 2

T 02;�X
t=T 02+2

yt�1ut + s:o:; (A.6)

where the second equality follows from (A.4).
We will show that if either k1 6= 0 or k2 6= 0; then F (k1; k2) > 0 asymptotically. Note that when

k2 = 0; we must have k1 < 0 due to the restriction T̂2 � T̂1 � b�T c. Similarly, if k1 = 0; we must have
k2 > 0. We consider each of these cases in turn.

Case 1: k1 < 0; k2 = 0: First, observe that

�̂(T 02 + k1; T
0
2;�) =

0@ T 02;�X
t=T 02+k1+1

y2t�1

1A�1
T 02;�X

t=T 02+k1+1

ytyt�1

= � +

0@ T 02;�X
t=T 02+k1+1

y2t�1

1A�1 24��y2T 02 + yT 02+1yT 02 + (1� �)
T 02;�X

t=T 02+2

y2t�1 +

T 02;�X
t=T 02+2

yt�1ut

35
= � +

0@S�1T T 02X
t=T 02+k1+1

y2t�1 + S
�1
T y2T 02

+ op(1)

1A�1 h
��S�1T y2T 02

+ op(1)
i

[by Lemmas A.1-A.2]

= � +
�
S�1T y2T 02

n
(�2 � 1)�1(1� ��2jk1j) + 1

o
+ op(1)

��1 h
��S�1T y2T 02

+ op(1)
i

= � � [�(1� ��2(jk1j+1))]�1(�2 � 1) + op(1) = �� + op(1)
p! �� < 1=�; (A.7)
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since �� < � � ��1(�2 � 1) = 1=�. Next, we can write

SSR(T 02 + k1; T
0
2;�) =

T 02+k1X
t=2

(�yt)
2 +

T 02;�X
t=T 02+k1+1

fyt � �̂(T 02 + k1; T 02;�)yt�1g2 +
TX

t=T 02;�+1

(�yt)
2

=

T 01X
t=2

u2t +

T 02+k1X
t=T 01+1

f(� � 1)yt�1 + utg2 +
T 02X

t=T 02+k1+1

f(� � �̂(T 02 + k1; T 02;�))yt�1 + utg2

+ fyT 02+1 � �̂(T
0
2 + k1; T

0
2;�)yT 02 g

2 +

T 02;�X
t=T 02+2

f(1� �̂(T 02 + k1; T 02;�))yt�1 + utg2

+

TX
t=T 02;�+1

u2t

=

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 02+k1X
t=T 01+1

y2t�1 + 2(� � 1)
T 02+k1X
t=T 01+1

yt�1ut

+ (� � ��)2
T 02X

t=T 02+k1+1

y2t�1 + 2(� � ��)
T 02X

t=T 02+k1+1

yt�1ut + fyT 02+1 �
��yT 02 g

2

+ (1� ��)2
T 02;�X

t=T 02+2

y2t�1 + 2(1� ��)
T 02;�X

t=T 02+2

yt�1ut: [using (A.7)] (A.8)

Then, subtracting (A.6) from (A.8), we have

F (k1; 0) =
�
(� � ��)2 � (� � 1)2

� T 02X
t=T 02+k1+1

y2t�1 + ��
2y2T 02

+ s:o:;

and

S�1T F (k1; 0) =
h
(2� � �� � 1)(1� ��)(�2 � 1)�1(1� ��2jk1j) + ��2

i
S�1T y2T 02

+ op(1)

>
h
(�2 � 1)�1(1� ��2jk1j) + ��2

i
S�1T y2T 02

+ op(1) = O
+
p (1):

Case 2: k1 = 0; k2 > 0: Following the same steps used to show (A.4), we can show that

S
1=2
T T�1=2�̂(T 02 ; T

0
2;� + k2) = Op(1): (A.9)
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Next, we have

SSR(T 02 ; T
0
2;� + k2) =

T 02X
t=2

(�yt)
2 +

T 02;�+k2X
t=T 02+1

fyt � �̂(T 02 ; T 02;� + k2)yt�1g2 +
TX

t=T 02;�+k2+1

(�yt)
2

=
TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 02X

t=T 01+1

y2t�1 + 2(� � 1)
T 02X

t=T 01+1

yt�1ut

+ fyT 02+1 � �̂(T
0
2 ; T

0
2;� + k2)yT 02 g

2 + (1� �̂(T 02 ; T 02;� + k2))2
T 02;�+k2X
t=T 02+2

y2t�1

+ 2(1� �̂(T 02 ; T 02;� + k2))
T 02;�+k2X
t=T 02+2

yt�1ut

=

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 02X

t=T 01+1

y2t�1 + 2(� � 1)
T 02X

t=T 01+1

yt�1ut

+

T 02;�+k2X
t=T 02+2

y2t�1 + 2

T 02;�+k2X
t=T 02+2

yt�1ut + op(1): [using (A.9)] (A.10)

Then, subtracting (A.6) from (A.10), we have

F (0; k2) =

T 02;�+k2X
t=T 02;�+1

y2t�1 + 2

T 02;�+k2X
t=T 02;�+1

yt�1ut + s:o:;

and
T�1F (0; k2) = T

�1y2T 02 ;�
k2 + op(1) = O

+
p (1):

Combining Cases 1 and 2, it follows that if either k1 or k2 is non zero, then F (k1; k2) > 0 in the limit.
Thus, it must be the case that k1 = k2 = 0 which proves the result. N

(b) Using (a), we can write

�̂ = �̂(T̂1; T̂2) = �̂(T
0
2 ; T

0
2;�) + op(1)

=

0@ T 02;�X
t=T 02+1

y2t�1

1A�1
T 02;�X

t=T 02+1

ytyt�1 + op(1)

=

0@y2T 02 +
T 02;�X

t=T 02+2

y2t�1

1A�10@yT 02+1yT 02 +
T 02;�X

t=T 02+2

y2t�1 +

T 02;�X
t=T 02+2

yt�1ut

1A+ op(1)
=
�
S�1T y2T 02

+ op(1)
��1 �

T 1=2S
�1=2
T T�1=2yT 02+1S

�1=2
T yT 02

�
+ op(1) [using Lemmas A.1-A.2]

= Op(1):Op(T
1=2S

�1=2
T ) = op(1);

which proves the result. N
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Proof of Theorem 2: (a) Given (T1; T2); the sum of squared residuals omitting the residual at time
period T2 + 1 is given by

SSRom(T1; T2) =

T1X
t=2

(�yt)
2 +

T2X
t=T1+1

fyt � �̂(T1; T2)yt�1g2 +
TX

t=T2+2

(�yt)
2;

where �̂(T1; T2) is as de�ned in (A.3). Note that

�̂(T 01 ; T
0
2 ) = � +

0@ T 02X
t=T 01+1

y2t�1

1A�1
T 02X

t=T 01+1

yt�1ut = � +Op(S
�1=2
T ): [using Lemma A.1] (A.11)

Next, suppose that

T̂1 = T
0
1 + k1;

T̂2 = T
0
2 + k2;

where k1; k2 are O(1) integers. De�ne

G(k1; k2) = SSRom(T̂1; T̂2)� SSRom(T 01 ; T 02 )

=

24 T̂1X
t=2

(�yt)
2 +

T̂2X
t=T̂1+1

fyt � �̂(T̂1; T̂2)yt�1g2 +
TX

t=T̂2+2

(�yt)
2

35
�

24 T 01X
t=2

(�yt)
2 +

T 02X
t=T 01+1

fyt � �̂(T 01 ; T 02 )yt�1g2 +
TX

t=T 02+2

(�yt)
2

35 : (A.12)

We can write

SSRom(T
0
1 ; T

0
2 ) =

T 01X
t=2

(�yt)
2 +

T 02X
t=T 01+1

fyt � �̂(T 01 ; T 02 )yt�1g2 +
TX

t=T 02+2

(�yt)
2

=
TX
t=2

u2t 1(t 6= T 02 + 1) +
h
� � �̂(T 01 ; T 02 )

i2 T 02X
t=T 01+1

y2t�1 + 2
h
� � �̂(T 01 ; T 02 )

i T 02X
t=T 01+1

yt�1ut

=

TX
t=2

u2t 1(t 6= T 02 + 1) +Op(S�1T )Op(ST ) +Op(S
�1=2
T )Op(S

1=2
T )

=
TX
t=2

u2t 1(t 6= T 02 + 1) +Op(1): (A.13)

We will show that if either k1 6= 0 or k2 6= 0; then G(k1; k2) > 0 asymptotically. We have four possible
cases depending on the signs of k1 and k2. We consider each of these in turn.

Case 1: k1 > 0; k2 = 0: First, observe that

�̂(T 01 + k1; T
0
2 ) = � +Op(S

�1=2
T ): (A.14)
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Next, we can write

SSRom(T
0
1 + k1; T

0
2 ) =

T 01+k1X
t=2

(�yt)
2 +

T 02X
t=T 01+k1+1

fyt � �̂(T 01 + k1; T 02 )yt�1g2 +
TX

t=T 02+2

(�yt)
2

=

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 01+k1X
t=T 01+1

y2t�1 + 2(� � 1)
T 01+k1X
t=T 01+1

yt�1ut

+
h
� � �̂(T 01 + k1; T 02 )

i2 T 02X
t=T 01+k1+1

y2t�1 + 2
h
� � �̂(T 01 + k1; T 02 )

i T 02X
t=T 01+k1+1

yt�1ut

=

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 01+k1X
t=T 01+1

y2t�1 + 2(� � 1)
T 01+k1X
t=T 01+1

yt�1ut +Op(1)

=
TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2(�2 � 1)�1
�
�2k1 � 1

�
y2T 01

+ 2(� � 1)(
T 01+k1X
t=T 01+1

�t�T
0
1�1ut)yT 01 +Op(1): (A.15)

Now, using (A.14), (A.15) simpli�es to

=

TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2
T 01+k1X
t=T 01+1

y2t�1 + 2(� � 1)
T 01+k1X
t=T 01+1

yt�1ut +Op(1)

=
TX
t=2

u2t 1(t 6= T 02 + 1) + (� � 1)2(�2 � 1)�1
�
�2k1 � 1

�
y2T 01

+ 2(� � 1)(
T 01+k1X
t=T 01+1

�t�T
0
1�1ut)yT 01 +Op(1); (A.16)

where the second equality uses (A.14). Then, subtracting (A.13) from (A.16), we have

G(k1; 0) = (� � 1)2(�2 � 1)�1
�
�2k1 � 1

�
y2T 01

+ 2(� � 1)(
T 01+k1X
t=T 01+1

�t�T
0
1�1ut)yT 01 +Op(1): (A.17)

Since E
�PT 01+k1

t=T 01+1
�t�T

0
1�1ut

�2
= �2

Pk1�1
s=0 �

2s = O(1); the second term in (A.17) is Op(T 1=2): Then,

using the fact that T�1=2yT 01 = Op(1); we get

T�1G(k1; 0) = (� � 1)2(�2 � 1)�1
�
�2k1 � 1

�
T�1y2T 01

+ op(1) = O
+
p (1):
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Case 2: k1 < 0; k2 = 0: Again, note that �̂(T 01 + k1; T
0
2 ) = � +Op(S

�1=2
T ). Next, we can write

SSRom(T
0
1 + k1; T

0
2 ) =

TX
t=2

u2t 1(t 6= T 02 + 1) +
h
1� �̂(T 01 + k1; T 02 )

i2 T 01X
t=T 01+k1+1

y2t�1

+ 2
h
1� �̂(T 01 + k1; T 02 )

i T 01X
t=T 01+k1+1

yt�1ut +
h
� � �̂(T 01 + k1; T 02 )

i2 T 02X
t=T 01+1

y2t�1

+ 2
h
� � �̂(T 01 + k1; T 02 )

i T 02X
t=T 01+1

yt�1ut: (A.18)

Then, subtracting (A.13) from (A.18) and scaling the di¤erence by T�1, we have

T�1G(k1; 0) = (� � 1)2T�1
T 01X

t=T 01+k1+1

y2t�1 + 2(1� �)
T 01X

t=T 01+k1+1

yt�1ut + op(1)

= (� � 1)2 jk1jT�1y2T 01 + 2(1� �)T
�1=2yT 01 T

�1=2
T 01X

t=T 01+k1+1

ut + op(1)

= (� � 1)2 jk1jT�1y2T 01 + op(1) = O
+
p (1):

Case 3: k1 = 0; k2 > 0: First, observe that

�̂(T 01 ; T
0
2 + k2) =

0@ T 02+k2X
t=T 01+1

y2t�1

1A�1
T 02+k2X
t=T 01+1

ytyt�1

= � +

0@S�1T T 02X
t=T 01+1

y2t�1 + S
�1
T y2T 02

+ op(1)

1A�1 �
��S�1T y2T 02

+ S�1T yT 02+1yT 02

�
+ op(1)

= � � �[(�2 � 1)�1 + 1]�1 +Op(T 1=2S�1=2T )

= ��1 + op(1): (A.19)

Next, we have

SSRom(T
0
1 ; T

0
2 + k2) =

TX
t=2

u2t 1(t 6= T 02 + 1) +
h
� � �̂(T 01 ; T 02 + k2)

i2 T 02X
t=T 01+1

y2t�1

+ 2
h
� � �̂(T 01 ; T 02 + k2)

i T 02X
t=T 01+1

yt�1ut + fyT 02+1 � �̂(T
0
1 ; T

0
2 + k2)yT 02 g

2

+ [1� �̂(T 01 ; T 02 + k2)]2
T 02+k2X
t=T 02+2

y2t�1 + 2[1� �̂(T 01 ; T 02 + k2)]
T 02+k2X
t=T 02+2

yt�1ut: (A.20)
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Then, subtracting (A.13) from (A.20) and scaling the di¤erence by S�1T , we have

S�1T G(0; k2) = (� � ��1)2S�1T
T 02X

t=T 01+1

y2t�1 + 2(� � ��1)S�1T
T 02X

t=T 01+1

yt�1ut + �
�2S�1T y2T 02

+ (1� ��1)2S�1
T�

T 02+k2X
t=T 02+2

y2t�1 + 2(1� ��1)S�1T
T 02+k2X
t=T 02+2

yt�1ut + op(1)

= (� � ��1)2S�1T
T 02X

t=T 01+1

y2t�1 + �
�2S�1T y2T 02

+ op(1)

= [(� � ��1)2(�2 � 1)�1 + ��2]S�1T y2T 02
+ op(1) = S

�1
T y2T 02

+ op(1) = O
+
p (1);

where the �rst equality uses (A.19) and the second and third use Lemma A.1.

Case 4: k1 = 0; k2 < 0: Observe that in this case,

�̂(T 01 ; T
0
2 + k2) = � +Op(S

�1=2
T ): (A.21)

Next, we can write

SSRom(T
0
1 ; T

0
2 + k2) =

TX
t=2

u2t 1(t 6= T 02 + 1) +
h
� � �̂(T 01 ; T 02 + k2)

i2 T 02+k2X
t=T 01+1

y2t�1

+ 2
h
� � �̂(T 01 + k1; T 02 )

i T 02+k2X
t=T 01+1

yt�1ut + (� � 1)2
T 02X

t=T 02+k2+2

y2t�1

+ 2(� � 1)
T 02X

t=T 02+k2+2

yt�1ut + (yT 02+1 � yT 02 )
2: (A.22)

Then, subtracting (A.13) from (A.22), scaling the di¤erence by S�1T , and using (A.21), we have

S�1T G(0; k2) = (� � 1)2S�1T
T 02X

t=T 02+k2+2

y2t�1 + S
�1
T y2T 02

+ op(1)

=
h
(� � 1)2(�2 � 1)�1(1� ��2(jk2j�1)) + 1

i
S�1T y2T 02

+ op(1) = O
+
p (1):

Combining cases 1-4, it follows that if either k1 or k2 is non zero, then G(k1; k2) > 0 in the limit. Thus,
it must be the case that k1 = k2 = 0 which proves the result. N
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(b) Using (a), we can write

�̂ = �̂(T̂1; T̂2) = �̂(T
0
1 ; T

0
2 ) + op(1)

=

0@ T 02X
t=T 01+1

y2t�1

1A�1
T 02X

t=T 01+1

ytyt�1 + op(1)

= � +

0@ T 02X
t=T 01+1

y2t�1

1A�1
T 02X

t=T 01+1

yt�1ut + op(1)

= � + [Op(ST )]
�1Op(S

�1=2
T ) + op(1) [using Lemma A.1]

= � +Op(S
�1=2
T )

p! �;

thereby proving the result. N
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Appendix B: Additional Monte Carlo Results

Table B.1: Probabilities of break date selection (single bubble; ut = 0.5ut−1 + et).

Panel A: First date estimates
δ T T 0

1 p̂C1 (JS) p̂L1 (JS) p̂C1 (PQ) p̂L1 (PQ) p̃C1 (JS) p̃L1 (JS) p̃C1 (PQ) p̃L1 (PQ) p̂C1 (PSY ) p̂L1 (PSY )

1.02 100 50 0.00 0.80 0.00 0.72 0.03 0.25 0.02 0.35 0.02 0.57
1.02 200 100 0.00 0.89 0.00 0.85 0.03 0.32 0.02 0.41 0.01 0.69
1.02 400 200 0.00 0.94 0.00 0.92 0.03 0.45 0.02 0.45 0.00 0.82
1.02 100 40 0.00 0.90 0.00 0.85 0.03 0.36 0.02 0.51 0.02 0.73
1.02 200 80 0.00 0.94 0.00 0.92 0.03 0.44 0.01 0.55 0.01 0.81
1.02 400 160 0.00 0.97 0.00 0.96 0.03 0.54 0.01 0.56 0.00 0.89
1.05 100 50 0.00 0.94 0.00 0.90 0.09 0.25 0.05 0.33 0.03 0.74
1.05 200 100 0.00 0.98 0.00 0.97 0.13 0.36 0.07 0.34 0.01 0.88
1.05 400 200 0.00 0.99 0.00 0.99 0.16 0.43 0.10 0.34 0.01 0.94
1.05 100 40 0.00 0.98 0.00 0.96 0.07 0.35 0.03 0.48 0.02 0.86
1.05 200 80 0.00 0.99 0.00 0.99 0.10 0.44 0.05 0.48 0.01 0.93
1.05 400 160 0.00 1.00 0.00 1.00 0.15 0.47 0.09 0.39 0.01 0.95

Panel B: Second date estimates
δ T T 0

2 p̂C2 (JS) p̂L2 (JS) p̂C2 (PQ) p̂L2 (PQ) p̃C2 (JS) p̃L2 (JS) p̃C2 (PQ) p̃L2 (PQ) p̂C2 (PSY ) p̂L2 (PSY )

1.02 100 65 0.00 0.86 0.14 0.78 0.77 0.15 0.58 0.35 0.20 0.29
1.02 200 130 0.00 0.92 0.08 0.87 0.90 0.06 0.67 0.29 0.33 0.27
1.02 400 260 0.00 0.96 0.06 0.92 0.95 0.03 0.78 0.20 0.59 0.18
1.02 100 60 0.00 0.93 0.08 0.87 0.83 0.13 0.56 0.40 0.23 0.34
1.02 200 120 0.00 0.96 0.05 0.92 0.92 0.05 0.63 0.35 0.39 0.28
1.02 400 240 0.00 0.97 0.04 0.95 0.97 0.02 0.76 0.23 0.69 0.16
1.05 100 65 0.00 0.96 0.05 0.92 0.92 0.06 0.72 0.26 0.58 0.18
1.05 200 130 0.00 0.99 0.02 0.98 0.98 0.01 0.87 0.12 0.81 0.10
1.05 400 260 0.00 0.99 0.01 0.99 0.99 0.00 0.98 0.02 0.80 0.18
1.05 100 60 0.00 0.98 0.03 0.96 0.95 0.04 0.67 0.32 0.66 0.16
1.05 200 120 0.00 1.00 0.01 0.99 0.99 0.01 0.83 0.17 0.85 0.11
1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.97 0.03 0.73 0.27

Note: 1) The superscript ’C’ denotes the probability of correctly selecting the true break date.
2) The superscript ’L’ denotes the probability of selecting a date later than the true break date.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
4) The method with the highest probability of correctly selecting the true break date is highlighted in bold.
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Table B.2: Bias and RMSE of break fraction estimates (single bubble; ut = 0.5ut−1 + et).

δ λ01 λ02 T λ̂JS1 λ̂PQ
1 λ̃JS1 λ̃PQ

1 λ̂PSY
1 λ̂JS2 λ̂PQ

2 λ̃JS2 λ̃PQ
2 λ̂PSY

2

Panel A: Bias
1.02 0.5 0.65 100 0.075 0.045 −0.121 −0.083 0.052 0.075 0.089 0.011 0.042 −0.015
1.02 0.5 0.65 200 0.111 0.095 −0.091 −0.057 0.067 0.084 0.094 0.001 0.033 −0.019
1.02 0.5 0.65 400 0.129 0.120 −0.038 −0.031 0.068 0.090 0.095 0.000 0.021 −0.019
1.02 0.4 0.6 100 0.164 0.141 −0.053 0.006 0.149 0.103 0.115 0.018 0.065 0.037
1.02 0.4 0.6 200 0.182 0.170 −0.034 0.021 0.144 0.098 0.105 0.004 0.047 0.019
1.02 0.4 0.6 400 0.189 0.184 −0.002 0.020 0.117 0.096 0.102 0.002 0.029 0.007
1.05 0.5 0.65 100 0.130 0.114 −0.090 −0.066 0.063 0.101 0.112 0.005 0.034 0.005
1.05 0.5 0.65 200 0.144 0.141 −0.027 −0.033 0.062 0.100 0.109 0.001 0.014 0.001
1.05 0.5 0.65 400 0.147 0.146 −0.003 −0.015 0.042 0.099 0.103 −0.001 0.002 −0.002
1.05 0.4 0.6 100 0.193 0.184 −0.050 0.003 0.118 0.109 0.126 0.006 0.049 0.027
1.05 0.4 0.6 200 0.198 0.197 −0.007 0.006 0.089 0.103 0.112 0.001 0.021 0.010
1.05 0.4 0.6 400 0.199 0.199 0.006 −0.004 0.048 0.101 0.104 0.000 0.003 0.001

Panel B: RMSE
1.02 0.5 0.65 100 0.182 0.184 0.209 0.202 0.232 0.157 0.144 0.099 0.113 0.225
1.02 0.5 0.65 200 0.167 0.168 0.174 0.181 0.227 0.135 0.129 0.069 0.095 0.219
1.02 0.5 0.65 400 0.158 0.159 0.113 0.140 0.189 0.120 0.115 0.046 0.069 0.178
1.02 0.4 0.6 100 0.206 0.197 0.164 0.173 0.268 0.148 0.147 0.091 0.125 0.225
1.02 0.4 0.6 200 0.204 0.199 0.134 0.160 0.250 0.128 0.126 0.062 0.099 0.202
1.02 0.4 0.6 400 0.202 0.200 0.091 0.131 0.198 0.115 0.114 0.039 0.071 0.150
1.05 0.5 0.65 100 0.159 0.161 0.165 0.178 0.182 0.127 0.135 0.061 0.087 0.168
1.05 0.5 0.65 200 0.153 0.153 0.082 0.117 0.133 0.110 0.117 0.030 0.052 0.112
1.05 0.5 0.65 400 0.151 0.151 0.041 0.060 0.080 0.104 0.107 0.018 0.024 0.060
1.05 0.4 0.6 100 0.202 0.199 0.133 0.162 0.198 0.123 0.141 0.051 0.098 0.150
1.05 0.4 0.6 200 0.200 0.200 0.072 0.119 0.140 0.106 0.116 0.021 0.055 0.090
1.05 0.4 0.6 400 0.200 0.200 0.039 0.061 0.076 0.102 0.105 0.007 0.021 0.038

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.
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Table B.3: Bias and RMSE of AR(1) estimates (single bubble; ut = 0.5ut−1 + et).

δ λ01 λ02 T δ̂JS δ̂PQ δ̃JS δ̃PQ δ̂PSY

Panel A: Bias
1.02 0.5 0.65 100 −0.628 −0.593 −0.099 −0.199 −0.184
1.02 0.5 0.65 200 −0.639 −0.622 −0.060 −0.159 −0.168
1.02 0.5 0.65 400 −0.664 −0.655 −0.027 −0.097 −0.119
1.02 0.4 0.6 100 −0.716 −0.693 −0.101 −0.255 −0.183
1.02 0.4 0.6 200 −0.716 −0.703 −0.059 −0.221 −0.159
1.02 0.4 0.6 400 −0.756 −0.750 −0.023 −0.138 −0.095
1.05 0.5 0.65 100 −0.884 −0.857 −0.071 −0.210 −0.137
1.05 0.5 0.65 200 −0.932 −0.926 −0.025 −0.101 −0.068
1.05 0.5 0.65 400 −0.991 −0.990 −0.006 −0.014 −0.045
1.05 0.4 0.6 100 −0.939 −0.926 −0.061 −0.285 −0.117
1.05 0.4 0.6 200 −0.978 −0.974 −0.019 −0.160 −0.053
1.05 0.4 0.6 400 −1.026 −1.025 −0.002 −0.025 −0.047

Panel B: RMSE
1.02 0.5 0.65 100 0.762 0.719 0.162 0.365 0.234
1.02 0.5 0.65 200 0.722 0.711 0.093 0.316 0.220
1.02 0.5 0.65 400 0.735 0.731 0.046 0.243 0.196
1.02 0.4 0.6 100 0.823 0.791 0.163 0.435 0.235
1.02 0.4 0.6 200 0.785 0.775 0.091 0.402 0.215
1.02 0.4 0.6 400 0.813 0.811 0.041 0.320 0.178
1.05 0.5 0.65 100 0.938 0.916 0.130 0.414 0.206
1.05 0.5 0.65 200 0.956 0.953 0.056 0.284 0.139
1.05 0.5 0.65 400 1.004 1.004 0.022 0.094 0.104
1.05 0.4 0.6 100 0.973 0.962 0.114 0.504 0.187
1.05 0.4 0.6 200 0.992 0.989 0.044 0.385 0.122
1.05 0.4 0.6 400 1.031 1.031 0.014 0.156 0.092

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.
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Table B.4: Probabilities of break date selection (two bubbles; ut = 0.5ut−1 + et).

δ1 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel A: First break date [i=1]
1.05 100 20 0.00 0.97 0.01 0.92 0.07 0.37 0.05 0.49 0.02 0.91 0.07 0.38
1.05 200 40 0.00 0.98 0.00 0.98 0.08 0.47 0.04 0.54 0.01 0.94 0.07 0.47
1.05 400 80 0.00 0.99 0.00 1.00 0.09 0.51 0.05 0.48 0.01 0.96 0.09 0.51

Panel B: Second break date [i=2]
1.05 100 40 0.00 0.97 0.11 0.89 0.97 0.01 0.68 0.27 0.65 0.09 0.92 0.04
1.05 200 80 0.00 0.98 0.03 0.97 0.99 0.01 0.73 0.23 0.85 0.09 0.96 0.03
1.05 400 160 0.00 0.99 0.01 0.99 1.00 0.00 0.86 0.13 0.74 0.26 0.99 0.01

δ2 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel C: Third break date [i=3]
1.05 100 60 0.00 0.97 0.02 0.90 0.12 0.39 0.09 0.52 0.02 0.87 0.12 0.40
1.05 200 120 0.00 0.98 0.00 0.98 0.13 0.45 0.11 0.50 0.01 0.89 0.12 0.46
1.05 400 240 0.00 0.99 0.00 1.00 0.16 0.45 0.12 0.43 0.01 0.92 0.16 0.44

Panel D: Fourth break date [i=4]
1.05 100 80 0.00 0.97 0.15 0.84 0.97 0.02 0.77 0.23 0.82 0.02 0.93 0.04
1.05 200 160 0.00 0.98 0.04 0.96 0.99 0.01 0.86 0.14 0.88 0.07 0.96 0.03
1.05 400 320 0.00 0.99 0.01 0.99 1.00 0.00 0.93 0.07 0.73 0.26 0.99 0.01

Note: See notes to Table B.1.
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Table B.5: Bias and RMSE of break fraction estimates (two bubbles; ut = 0.5ut−1 + et).

δ1 λ01 λ02 T λ̂JS1 λ̂JS2 λ̃PQ
1 λ̃PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.194 0.110 0.175 0.118 −0.014 0.000c 0.039 0.032 0.102 0.002 −0.008s 0.001
1.05 0.2 0.4 200 0.199 0.104 0.194 0.111 0.001s 0.001c 0.039 0.022 0.096 0.013 0.007 0.007
1.05 0.2 0.4 400 0.200 0.102 0.199 0.104 0.009s 0.000c 0.021 0.012 0.055 0.003 0.011 0.003

Panel B: RMSE of first bubble estimators
1.05 0.2 0.4 100 0.200 0.125 0.189 0.134 0.064s 0.021c 0.116 0.082 0.141 0.085 0.075 0.047
1.05 0.2 0.4 200 0.203 0.113 0.198 0.117 0.057s 0.010c 0.108 0.064 0.136 0.081 0.078 0.060
1.05 0.2 0.4 400 0.202 0.105 0.200 0.106 0.040s 0.003c 0.082 0.041 0.078 0.036 0.052 0.034

δ2 T λ03 λ04 λ̂JS3 λ̂JS4 λ̃PQ
3 λ̃PQ

4 λ̃JS3 λ̃JS4 λ̃PQ
3 λ̃PQ

4 λ̂PSY
3 λ̂PSY

4 λ̂HLW
3 λ̂HLW

4

Panel C: Bias of second bubble estimators
1.05 0.6 0.8 100 0.187 0.087 0.163 0.082 −0.010 0.001c 0.029 0.021 0.063 −0.022 −0.009s −0.005
1.05 0.6 0.8 200 0.193 0.093 0.190 0.095 0.003s 0.000c 0.021 0.014 0.062 −0.006 0.006 0.001
1.05 0.6 0.8 400 0.197 0.097 0.199 0.099 0.006s 0.000c 0.010 0.006 0.039 0.000c 0.007 0.001

Panel D: RMSE of second bubble estimators
1.05 0.6 0.8 100 0.199 0.111 0.184 0.092 0.064s 0.017c 0.112 0.049 0.109 0.091 0.075 0.047
1.05 0.6 0.8 200 0.200 0.106 0.196 0.099 0.053s 0.009c 0.094 0.039 0.108 0.073 0.078 0.060
1.05 0.6 0.8 400 0.200 0.103 0.199 0.100 0.036s 0.003c 0.065 0.026 0.065 0.029 0.052 0.034

Note: 1) The superscript ’s’ denotes bubble origination estimates with lowest bias/RMSE.
2) The superscript ’c’ denotes bubble crash estimates with lowest bias/RMSE.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.

Table B.6: Bias and RMSE of AR(1) estimates (two bubbles; ut = 0.5ut−1 + et).

δ T δ̂JS1 δ̂PQ
1 δ̃JS1 δ̃PQ

1 δ̂PSY
1 δ̂HLW

1 δ̂JS2 δ̂PQ
2 δ̃JS2 δ̃PQ

2 δ̂PSY
2 δ̂HLW

2

Panel A: Bias
1.05 100 −0.940 −0.870 −0.060 −0.300 −0.300 −0.060 −1.000 −0.850 −0.060 −0.250 −0.090 −0.100
1.05 200 −0.950 −0.940 −0.020 −0.230 −0.230 −0.020 −1.000 −0.960 −0.020 −0.140 −0.040 −0.030
1.05 400 −1.010 −1.020 0.000 −0.130 −0.130 0.000 −1.030 −1.030 0.000 −0.070 −0.050 0.000

Panel B: RMSE
1.05 100 0.980 0.940 0.120 0.520 0.520 0.120 1.010 0.930 0.100 0.470 0.170 0.240
1.05 200 0.980 0.970 0.050 0.470 0.470 0.050 1.000 0.980 0.050 0.360 0.110 0.120
1.05 400 1.020 1.030 0.010 0.360 0.360 0.010 1.040 1.030 0.010 0.260 0.090 0.040

Note: See notes to Table B.3.
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Table B.7: Probabilities of break date selection (single bubble; ut = et + 0.5et−1).

Panel A: First date estimates
δ T T 0

1 p̂C1 (JS) p̂L1 (JS) p̂C1 (PQ) p̂L1 (PQ) p̃C1 (JS) p̃L1 (JS) p̃C1 (PQ) p̃L1 (PQ) p̂C1 (PSY ) p̂L1 (PSY )

1.02 100 50 0.00 0.81 0.00 0.73 0.03 0.24 0.02 0.34 0.02 0.59
1.02 200 100 0.00 0.93 0.00 0.90 0.03 0.32 0.02 0.40 0.01 0.77
1.02 400 200 0.00 0.97 0.00 0.96 0.04 0.46 0.02 0.41 0.00 0.90
1.02 100 40 0.00 0.91 0.00 0.86 0.03 0.37 0.01 0.50 0.02 0.76
1.02 200 80 0.00 0.97 0.00 0.95 0.03 0.44 0.01 0.54 0.01 0.87
1.02 400 160 0.00 0.99 0.00 0.98 0.03 0.56 0.01 0.53 0.00 0.95
1.05 100 50 0.00 0.96 0.00 0.93 0.09 0.26 0.05 0.33 0.02 0.83
1.05 200 100 0.00 0.99 0.00 0.99 0.12 0.40 0.06 0.34 0.01 0.96
1.05 400 200 0.00 1.00 0.00 1.00 0.15 0.47 0.09 0.35 0.00 0.97
1.05 100 40 0.00 0.99 0.00 0.98 0.08 0.37 0.04 0.47 0.01 0.92
1.05 200 80 0.00 1.00 0.00 1.00 0.09 0.48 0.04 0.45 0.01 0.97
1.05 400 160 0.00 1.00 0.00 1.00 0.13 0.52 0.07 0.40 0.00 0.98

Panel B: Second date estimates
δ T T 0

2 p̂C2 (JS) p̂L2 (JS) p̂C2 (PQ) p̂L2 (PQ) p̃C2 (JS) p̃L2 (JS) p̃C2 (PQ) p̃L2 (PQ) p̂C2 (PSY ) p̂L2 (PSY )

1.02 100 65 0.00 0.89 0.13 0.79 0.78 0.15 0.58 0.35 0.23 0.24
1.02 200 130 0.00 0.96 0.06 0.91 0.93 0.04 0.71 0.26 0.45 0.17
1.02 400 260 0.00 0.98 0.03 0.96 0.98 0.01 0.84 0.15 0.75 0.10
1.02 100 60 0.00 0.94 0.07 0.89 0.83 0.13 0.56 0.41 0.24 0.27
1.02 200 120 0.00 0.98 0.03 0.95 0.95 0.04 0.67 0.32 0.52 0.18
1.02 400 240 0.00 0.99 0.01 0.98 0.99 0.01 0.80 0.20 0.83 0.08
1.05 100 65 0.00 0.98 0.04 0.94 0.94 0.04 0.75 0.23 0.70 0.11
1.05 200 130 0.00 1.00 0.01 0.99 0.99 0.00 0.91 0.09 0.91 0.04
1.05 400 260 0.00 1.00 0.00 1.00 1.00 0.00 0.99 0.01 0.87 0.12
1.05 100 60 0.00 0.99 0.02 0.98 0.97 0.02 0.71 0.28 0.76 0.09
1.05 200 120 0.00 1.00 0.00 1.00 1.00 0.00 0.85 0.15 0.92 0.05
1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.98 0.02 0.78 0.22

Note: See notes to Table B.1.
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Table B.8: Bias and RMSE of break fraction estimates (single bubble; ut = et + 0.5et−1).

δ λ01 λ02 T λ̂JS1 λ̂PQ
1 λ̃JS1 λ̃PQ

1 λ̂PSY
1 λ̂JS2 λ̂PQ

2 λ̃JS2 λ̃PQ
2 λ̂PSY

2

Panel A: Bias
1.02 0.5 0.65 100 0.081 0.047 −0.120 −0.088 0.045 0.091 0.094 0.011 0.043 −0.028
1.02 0.5 0.65 200 0.125 0.114 −0.086 −0.058 0.063 0.097 0.104 0.002 0.032 −0.025
1.02 0.5 0.65 400 0.139 0.135 −0.027 −0.038 0.074 0.097 0.102 −0.001 0.016 −0.011
1.02 0.4 0.6 100 0.168 0.148 −0.050 0.007 0.136 0.112 0.124 0.018 0.066 0.016
1.02 0.4 0.6 200 0.189 0.182 −0.034 0.014 0.134 0.103 0.114 0.004 0.044 0.005
1.02 0.4 0.6 400 0.196 0.193 0.000 0.010 0.107 0.101 0.106 0.001 0.023 0.001
1.05 0.5 0.65 100 0.138 0.126 −0.080 −0.069 0.062 0.110 0.124 0.004 0.033 −0.002
1.05 0.5 0.65 200 0.148 0.146 −0.017 −0.038 0.068 0.104 0.116 0.000 0.011 0.003
1.05 0.5 0.65 400 0.149 0.149 0.001 −0.016 0.045 0.101 0.106 −0.000 0.001 −0.001
1.05 0.4 0.6 100 0.196 0.191 −0.043 0.001 0.109 0.113 0.135 0.004 0.046 0.011
1.05 0.4 0.6 200 0.199 0.199 −0.002 −0.003 0.089 0.105 0.117 0.001 0.019 0.005
1.05 0.4 0.6 400 0.200 0.200 0.010 −0.008 0.052 0.102 0.107 0.000 0.002 0.001

Panel B: RMSE
1.02 0.5 0.65 100 0.174 0.182 0.201 0.203 0.214 0.149 0.147 0.090 0.112 0.211
1.02 0.5 0.65 200 0.159 0.161 0.162 0.175 0.198 0.124 0.127 0.052 0.086 0.189
1.02 0.5 0.65 400 0.154 0.155 0.091 0.132 0.154 0.111 0.113 0.033 0.055 0.134
1.02 0.4 0.6 100 0.203 0.197 0.157 0.172 0.247 0.146 0.154 0.086 0.126 0.205
1.02 0.4 0.6 200 0.201 0.199 0.123 0.156 0.216 0.119 0.127 0.047 0.091 0.166
1.02 0.4 0.6 400 0.200 0.200 0.077 0.126 0.158 0.107 0.111 0.023 0.058 0.103
1.05 0.5 0.65 100 0.155 0.156 0.150 0.175 0.148 0.125 0.142 0.049 0.084 0.132
1.05 0.5 0.65 200 0.151 0.151 0.063 0.113 0.104 0.107 0.121 0.017 0.042 0.070
1.05 0.5 0.65 400 0.150 0.150 0.031 0.056 0.067 0.102 0.108 0.008 0.017 0.040
1.05 0.4 0.6 100 0.201 0.199 0.119 0.153 0.163 0.120 0.146 0.036 0.094 0.111
1.05 0.4 0.6 200 0.200 0.200 0.062 0.117 0.119 0.107 0.120 0.014 0.052 0.058
1.05 0.4 0.6 400 0.200 0.200 0.036 0.059 0.069 0.102 0.108 0.005 0.016 0.023

Note: See notes to Table B.2.

B-7



Table B.9: Bias and RMSE of AR(1) estimates (single bubble; ut = et + 0.5et−1).

δ λ01 λ02 T δ̂JS δ̂PQ δ̃JS δ̃PQ δ̂PSY

Panel A: Bias
1.02 0.5 0.65 100 −0.677 −0.627 −0.132 −0.236 −0.211
1.02 0.5 0.65 200 −0.735 −0.717 −0.058 −0.183 −0.172
1.02 0.5 0.65 400 −0.778 −0.771 −0.022 −0.097 −0.102
1.02 0.4 0.6 100 −0.762 −0.729 −0.127 −0.294 −0.205
1.02 0.4 0.6 200 −0.809 −0.793 −0.055 −0.239 −0.161
1.02 0.4 0.6 400 −0.856 −0.852 −0.017 −0.159 −0.072
1.05 0.5 0.65 100 −0.934 −0.906 −0.071 −0.215 −0.135
1.05 0.5 0.65 200 −0.974 −0.969 −0.021 −0.085 −0.050
1.05 0.5 0.65 400 −1.012 −1.011 −0.004 −0.009 −0.032
1.05 0.4 0.6 100 −0.983 −0.969 −0.065 −0.280 −0.112
1.05 0.4 0.6 200 −1.005 −1.003 −0.017 −0.150 −0.040
1.05 0.4 0.6 400 −1.036 −1.036 −0.002 −0.018 −0.038

Panel B: RMSE
1.02 0.5 0.65 100 0.782 0.736 0.206 0.397 0.267
1.02 0.5 0.65 200 0.792 0.779 0.093 0.360 0.232
1.02 0.5 0.65 400 0.818 0.814 0.041 0.262 0.190
1.02 0.4 0.6 100 0.849 0.812 0.198 0.468 0.263
1.02 0.4 0.6 200 0.852 0.840 0.089 0.433 0.227
1.02 0.4 0.6 400 0.884 0.882 0.034 0.367 0.157
1.05 0.5 0.65 100 0.966 0.946 0.135 0.426 0.207
1.05 0.5 0.65 200 0.985 0.981 0.046 0.267 0.119
1.05 0.5 0.65 400 1.018 1.017 0.014 0.079 0.086
1.05 0.4 0.6 100 1.001 0.989 0.125 0.503 0.184
1.05 0.4 0.6 200 1.012 1.010 0.037 0.378 0.105
1.05 0.4 0.6 400 1.038 1.038 0.008 0.132 0.080

Note: See notes to Table B.3.
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Table B.10: Probabilities of break date selection (two bubbles; ut = et + 0.5et−1).

δ1 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel A: First break date [i=1]
1.05 100 20 0.00 0.97 0.01 0.92 0.06 0.38 0.04 0.50 0.02 0.94 0.06 0.38
1.05 200 40 0.00 0.99 0.00 0.99 0.06 0.51 0.03 0.52 0.01 0.97 0.06 0.50
1.05 400 80 0.00 1.00 0.00 1.00 0.08 0.57 0.05 0.48 0.01 0.98 0.08 0.57

Panel B: Second break date [i=2]
1.05 100 40 0.00 0.98 0.12 0.88 0.97 0.02 0.68 0.27 0.64 0.11 0.90 0.04
1.05 200 80 0.00 0.99 0.02 0.98 0.99 0.00 0.78 0.19 0.90 0.05 0.97 0.02
1.05 400 160 0.00 1.00 0.00 1.00 1.00 0.00 0.90 0.10 0.78 0.22 0.99 0.00

δ2 T T 0
i p̂Ci (JS) p̂Li (JS) p̂Ci (PQ) p̂Li (PQ) p̃Ci (JS) p̃Li (JS) p̃Ci (PQ) p̃Li (PQ) p̂Ci (PSY ) p̂Li (PSY ) p̂Ci (HLW ) p̂Li (HLW )

Panel C: Third break date [i=3]
1.05 100 60 0.00 0.98 0.02 0.89 0.11 0.41 0.09 0.51 0.01 0.91 0.11 0.41
1.05 200 120 0.00 0.99 0.00 0.98 0.11 0.48 0.08 0.50 0.01 0.94 0.11 0.49
1.05 400 240 0.00 1.00 0.00 1.00 0.14 0.51 0.09 0.45 0.00 0.97 0.14 0.50

Panel D: Fourth break date [i=4]
1.05 100 80 0.00 0.98 0.18 0.81 0.98 0.01 0.80 0.20 0.84 0.01 0.92 0.03
1.05 200 160 0.00 0.99 0.03 0.96 1.00 0.00 0.89 0.11 0.92 0.04 0.97 0.01
1.05 400 320 0.00 1.00 0.00 1.00 1.00 0.00 0.96 0.04 0.77 0.22 0.99 0.00

Note: See notes to Table B.1.
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Table B.11: Bias and RMSE of break fraction estimates (two bubbles; ut = et + 0.5et−1).

δ1 λ01 λ02 T λ̂JS1 λ̂JS2 λ̃PQ
1 λ̃PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.197 0.114 0.174 0.120 −0.010 0.001c 0.039 0.032 0.119 0.012 −0.006s −0.001c

1.05 0.2 0.4 200 0.200 0.105 0.195 0.115 0.005s 0.000c 0.031 0.019 0.099 0.008 0.008 0.003
1.05 0.2 0.4 400 0.201 0.102 0.200 0.107 0.014s 0.000c 0.016 0.009 0.060 0.002 0.015 0.001

Panel B: RMSE of first bubble estimators
1.05 0.2 0.4 100 0.202 0.126 0.188 0.137 0.063s 0.019c 0.115 0.081 0.162 0.099 0.075 0.051
1.05 0.2 0.4 200 0.201 0.109 0.198 0.121 0.055s 0.008c 0.100 0.057 0.129 0.063 0.069 0.046
1.05 0.2 0.4 400 0.202 0.105 0.200 0.108 0.040s 0.004c 0.074 0.036 0.078 0.025 0.046 0.023

δ2 T λ03 λ04 λ̂JS3 λ̂JS4 λ̃PQ
3 λ̃PQ

4 λ̃JS3 λ̃JS4 λ̃PQ
3 λ̃PQ

4 λ̂PSY
3 λ̂PSY

4 λ̂HLW
3 λ̂HLW

4

Panel C: Bias of second bubble estimators
1.05 0.6 0.8 100 0.190 0.091 0.159 0.080 −0.007s 0.000c 0.026 0.019 0.070 −0.026 −0.010 −0.009
1.05 0.6 0.8 200 0.197 0.097 0.192 0.096 0.005s 0.000c 0.016 0.011 0.068 −0.007 0.007 −0.001
1.05 0.6 0.8 400 0.199 0.099 0.199 0.100 0.010 0.000c 0.006s 0.004 0.046 0.000c 0.010 0.000c

Panel D: RMSE of second bubble estimators
1.05 0.6 0.8 100 0.200 0.108 0.182 0.091 0.059s 0.013c 0.107 0.045 0.118 0.097 0.075 0.051
1.05 0.6 0.8 200 0.200 0.102 0.197 0.099 0.049s 0.006c 0.085 0.033 0.102 0.063 0.069 0.046
1.05 0.6 0.8 400 0.200 0.101 0.200 0.100 0.036s 0.002c 0.056 0.020 0.064 0.021 0.046 0.023

Note: See notes to Table B.5.

Table B.12: Bias and RMSE of AR(1) estimates (two bubbles; ut = et + 0.5et−1).

δ T δ̂JS1 δ̂PQ
1 δ̃JS1 δ̃PQ

1 δ̂PSY
1 δ̂HLW

1 δ̂JS2 δ̂PQ
2 δ̃JS2 δ̃PQ

2 δ̂PSY
2 δ̂HLW

2

Panel A: Bias
1.05 100 −0.960 −0.870 −0.070 −0.300 −0.300 −0.070 −1.010 −0.840 −0.060 −0.230 −0.090 −0.110
1.05 200 −0.990 −0.980 −0.020 −0.200 −0.200 −0.020 −1.010 −0.980 −0.020 −0.120 −0.030 −0.030
1.05 400 −1.020 −1.030 0.000 −0.100 −0.100 0.000 −1.040 −1.030 0.000 −0.040 −0.040 0.000

Panel B: RMSE
1.05 100 1.000 0.940 0.140 0.520 0.520 0.140 1.020 0.920 0.110 0.450 0.180 0.270
1.05 200 1.000 0.990 0.050 0.440 0.440 0.050 1.010 1.000 0.040 0.330 0.100 0.120
1.05 400 1.030 1.030 0.010 0.310 0.310 0.010 1.040 1.040 0.010 0.210 0.080 0.050

Note: See notes to Table B.3.
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Table B.13: Mean of break fraction estimates for (m̂ = 4|m0 = 2) replications.

Panel A: Mean of break fraction estimates for first estimated bubble

δ λ01 λ02 T λ̂JS1 λ̂JS2 λ̂PQ
1 λ̂PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

1.02 0.5 0.65 100 0.263 0.470 0.232 0.460 0.235 0.448 0.213 0.438 0.406 0.482 0.256 0.439
1.02 0.5 0.65 200 0.260 0.448 0.259 0.472 0.227 0.410 0.217 0.427 0.397 0.450 0.256 0.428
1.02 0.5 0.65 400 0.266 0.438 0.292 0.486 0.231 0.391 0.230 0.427 0.404 0.442 0.267 0.428
1.02 0.4 0.6 100 0.253 0.453 0.228 0.462 0.239 0.471 0.212 0.442 0.394 0.470 0.249 0.430
1.02 0.4 0.6 200 0.255 0.431 0.249 0.463 0.240 0.442 0.217 0.427 0.389 0.445 0.248 0.416
1.02 0.4 0.6 400 0.280 0.431 0.274 0.463 0.258 0.426 0.240 0.430 0.375 0.422 0.246 0.404
1.05 0.5 0.65 100 0.262 0.481 0.249 0.496 0.234 0.426 0.222 0.457 0.381 0.457 0.255 0.432
1.05 0.5 0.65 200 0.286 0.465 0.292 0.508 0.236 0.397 0.232 0.443 0.374 0.432 0.269 0.430
1.05 0.5 0.65 400 0.355 0.492 0.334 0.525 0.235 0.386 0.254 0.448 0.365 0.416 0.282 0.429
1.05 0.4 0.6 100 0.262 0.460 0.237 0.482 0.239 0.456 0.215 0.456 0.368 0.446 0.244 0.418
1.05 0.4 0.6 200 0.310 0.456 0.270 0.479 0.254 0.421 0.235 0.437 0.354 0.421 0.253 0.411
1.05 0.4 0.6 400 0.364 0.482 0.301 0.487 0.266 0.424 0.270 0.447 0.325 0.398 0.258 0.410

Panel B: Mean of break fraction estimates for second estimated bubble

δ λ01 λ02 T λ̂JS3 λ̂JS4 λ̂PQ
3 λ̂PQ

4 λ̃JS3 λ̃JS4 λ̃PQ
3 λ̃PQ

4 λ̂PSY
3 λ̂PSY

4 λ̂HLW
3 λ̂HLW

4

1.02 0.5 0.65 100 0.645 0.790 0.650 0.808 0.603 0.761 0.622 0.793 0.629 0.710 0.622 0.782
1.02 0.5 0.65 200 0.647 0.768 0.664 0.797 0.564 0.712 0.614 0.765 0.623 0.691 0.598 0.741
1.02 0.5 0.65 400 0.649 0.756 0.671 0.787 0.549 0.690 0.610 0.744 0.630 0.696 0.597 0.735
1.02 0.4 0.6 100 0.610 0.752 0.637 0.797 0.619 0.771 0.616 0.790 0.612 0.694 0.599 0.756
1.02 0.4 0.6 200 0.604 0.720 0.641 0.776 0.583 0.730 0.606 0.757 0.589 0.663 0.573 0.717
1.02 0.4 0.6 400 0.602 0.708 0.642 0.762 0.566 0.713 0.608 0.740 0.583 0.668 0.557 0.704
1.05 0.5 0.65 100 0.650 0.778 0.668 0.811 0.572 0.718 0.626 0.783 0.616 0.705 0.591 0.734
1.05 0.5 0.65 200 0.650 0.761 0.676 0.800 0.549 0.692 0.613 0.756 0.626 0.712 0.591 0.730
1.05 0.5 0.65 400 0.650 0.754 0.684 0.797 0.547 0.685 0.612 0.742 0.632 0.722 0.601 0.739
1.05 0.4 0.6 100 0.605 0.733 0.648 0.796 0.592 0.741 0.621 0.785 0.582 0.679 0.567 0.714
1.05 0.4 0.6 200 0.603 0.713 0.649 0.778 0.558 0.712 0.607 0.751 0.589 0.693 0.560 0.713
1.05 0.4 0.6 400 0.601 0.704 0.658 0.776 0.561 0.717 0.614 0.748 0.593 0.703 0.561 0.723

Note: See notes to Table B.2.
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Table B.14: Standard deviation of break fraction estimates for (m̂ = 4|m0 = 2) replications.

Panel A: Standard deviation of break fraction estimates for first estimated bubble

δ λ01 λ02 T λ̂JS1 λ̂JS2 λ̂PQ
1 λ̂PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

1.02 0.5 0.65 100 0.059 0.090 0.056 0.112 0.060 0.133 0.046 0.106 0.146 0.167 0.074 0.120
1.02 0.5 0.65 200 0.058 0.086 0.070 0.111 0.067 0.127 0.050 0.101 0.147 0.165 0.079 0.120
1.02 0.5 0.65 400 0.059 0.083 0.078 0.107 0.075 0.117 0.058 0.100 0.148 0.167 0.089 0.128
1.02 0.4 0.6 100 0.063 0.081 0.055 0.105 0.059 0.124 0.048 0.104 0.148 0.170 0.071 0.115
1.02 0.4 0.6 200 0.059 0.075 0.063 0.107 0.067 0.133 0.055 0.106 0.128 0.145 0.067 0.106
1.02 0.4 0.6 400 0.058 0.072 0.069 0.108 0.074 0.134 0.075 0.116 0.117 0.141 0.069 0.113
1.05 0.5 0.65 100 0.057 0.079 0.063 0.105 0.069 0.131 0.052 0.109 0.112 0.132 0.071 0.108
1.05 0.5 0.65 200 0.065 0.082 0.078 0.101 0.079 0.119 0.062 0.105 0.121 0.146 0.088 0.125
1.05 0.5 0.65 400 0.070 0.077 0.085 0.101 0.080 0.115 0.075 0.108 0.117 0.158 0.100 0.141
1.05 0.4 0.6 100 0.065 0.070 0.058 0.103 0.063 0.132 0.049 0.106 0.096 0.120 0.060 0.101
1.05 0.4 0.6 200 0.060 0.067 0.064 0.105 0.072 0.136 0.068 0.114 0.099 0.133 0.070 0.119
1.05 0.4 0.6 400 0.042 0.046 0.071 0.111 0.074 0.139 0.091 0.129 0.087 0.144 0.072 0.131

Panel B: Standard deviation of break fraction estimates for second estimated bubble

δ λ01 λ02 T λ̂JS3 λ̂JS4 λ̂PQ
3 λ̂PQ

4 λ̃JS3 λ̃JS4 λ̃PQ
3 λ̃PQ

4 λ̂PSY
3 λ̂PSY

4 λ̂HLW
3 λ̂HLW

4

1.02 0.5 0.65 100 0.072 0.097 0.097 0.107 0.157 0.162 0.111 0.132 0.228 0.247 0.162 0.207
1.02 0.5 0.65 200 0.051 0.068 0.080 0.094 0.148 0.152 0.108 0.128 0.209 0.213 0.163 0.195
1.02 0.5 0.65 400 0.028 0.039 0.072 0.087 0.129 0.134 0.108 0.114 0.204 0.190 0.169 0.198
1.02 0.4 0.6 100 0.070 0.111 0.094 0.116 0.160 0.180 0.108 0.136 0.248 0.268 0.171 0.225
1.02 0.4 0.6 200 0.046 0.071 0.086 0.115 0.176 0.194 0.111 0.138 0.221 0.219 0.173 0.219
1.02 0.4 0.6 400 0.034 0.046 0.084 0.114 0.177 0.194 0.123 0.142 0.229 0.203 0.183 0.220
1.05 0.5 0.65 100 0.031 0.071 0.075 0.092 0.151 0.157 0.111 0.133 0.191 0.196 0.150 0.187
1.05 0.5 0.65 200 0.017 0.038 0.071 0.089 0.132 0.136 0.111 0.126 0.206 0.192 0.167 0.196
1.05 0.5 0.65 400 0.008 0.017 0.075 0.092 0.122 0.128 0.116 0.121 0.228 0.191 0.183 0.215
1.05 0.4 0.6 100 0.047 0.083 0.088 0.111 0.178 0.196 0.111 0.137 0.222 0.226 0.169 0.216
1.05 0.4 0.6 200 0.033 0.049 0.086 0.114 0.182 0.194 0.125 0.143 0.250 0.227 0.197 0.236
1.05 0.4 0.6 400 0.017 0.023 0.090 0.120 0.186 0.195 0.141 0.152 0.272 0.221 0.213 0.246

Note: See notes to Table B.2.

Table B.15: Mean and standard deviation of break fraction estimates for (m̂ = 2|m0 = 4) replications.

Panel A: Mean of break fraction estimates

δ λ01 λ02 λ03 λ04 T λ̂JS1 λ̂JS2 λ̂PQ
1 λ̂PQ

2 λ̃JS1 λ̃JS2 λ̃PQ
1 λ̃PQ

2 λ̂PSY
1 λ̂PSY

2 λ̂HLW
1 λ̂HLW

2

1.05 0.2 0.4 0.6 0.8 100 0.639 0.755 0.534 0.752 0.419 0.653 0.406 0.769 0.526 0.626 0.419 0.653
1.05 0.2 0.4 0.6 0.8 200 0.632 0.737 0.597 0.743 0.437 0.635 0.406 0.742 0.520 0.632 0.437 0.635
1.05 0.2 0.4 0.6 0.8 400 0.630 0.732 0.627 0.736 0.452 0.631 0.407 0.679 0.489 0.631 0.452 0.631

Panel B: Standard deviation of break fraction estimates
1.05 0.2 0.4 0.6 0.8 100 0.235 0.259 0.220 0.207 0.157 0.231 0.078 0.126 0.203 0.242 0.157 0.231
1.05 0.2 0.4 0.6 0.8 200 0.237 0.271 0.239 0.248 0.164 0.236 0.067 0.155 0.196 0.238 0.164 0.236
1.05 0.2 0.4 0.6 0.8 400 0.237 0.275 0.238 0.269 0.168 0.237 0.070 0.194 0.184 0.238 0.168 0.237

Note: See note to Table B.2.
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