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1 Introduction

The pioneering work of Granger (1966) demonstrated that a large number of macroeco-

nomic time series have a typical spectral shape dominated by a peak at low frequencies.

This �nding suggests the presence of relatively long run information in the current level of

the variables which should be taken into account when modeling their time series evolu-

tion and can potentially be exploited to yield improved forecasts. One way to incorporate

this long-run information in econometric modeling is through stochastic trends (unit roots)

and/or deterministic trends. However, given that trends are slowly evolving, there is only

limited information in any data set about how best to specify the trend or distinguish be-

tween alternative models of the trend. For instance, unit root tests often fail to reject a unit

root despite the fact that theory does not postulate the presence of a unit root for many

macroeconomic variables (see Elliott (2006b), for further discussion of this issue). Clements

and Hendry (2001) documented, both analytically and numerically, the detrimental conse-

quences of trend misspeci�cation on the resulting forecasts in the presence of parameter

estimation uncertainty. Speci�cally, they �nd that when the sample size increases at a faster

rate than the forecast horizon, misspecifying a di¤erence stationary process as trend station-

ary or vice-versa yields forecast error variances of a higher order of magnitude relative to the

correctly speci�ed model.

Notwithstanding the importance of the low frequency components and the uncertainty

surrounding their precise nature, a common practice in the economic forecasting literature is

to �rst apply a stationarity-inducing transformation (e.g., di¤erencing or detrending) to the

time series of interest and then attempt to forecast the transformed series. Consequently,

most of the forecasting procedures in current use have been developed under the assumption

of data stationarity. The traditional approach of Box and Jenkins (1970) transforms the data

through di¤erencing which amounts to modeling the low frequency peak in the spectrum as

a zero frequency phenomenon and proceeds to forecast the transformed series using stan-

dard stationary autoregressive moving average (ARMA) models. More recently, Stock and

Watson (2005, 2006) constructed a extensive database of 132 monthly macroeconomic time

series over the period 1959-2003 and applied a variety of transformations to render them sta-

tionary before using a handful of common factors extracted from the data set using principal

components as predictors (the so-called di¤usion-index methodology). Similarly, McCracken

and Ng (2016) assembled a publicly available database of 134 monthly time series referred to

as FRED-MD and updated on a timely basis by the Federal Reserve Bank of St Louis. They
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also suggest a set of data transformations which is used to construct factor-based di¤usion

indexes for forecasting as well as analyze business cycle turning points.

This paper proposes a new forecast combination approach designed for forecasting a

highly persistent time series that simultaneously addresses uncertainty about the presence

of a stochastic trend as well as uncertainty about the nature of short-run dynamics within

a uni�ed autoregressive modeling framework. Given that uncertainty about the nature of

the trend is likely to be particularly important for longer horizons, we focus on construct-

ing multistep forecasts instead of only one-step forecasts.1 Existing forecast combination

approaches employed in the stationary setup such as Mallows model averaging (MMA) and

cross-validation (CV) weighting typically target the in-sample asymptotic mean squared er-

ror (AMSE) relying on its approximate equivalence with the asymptotic forecast risk (AFR)

[e.g., Hansen, 2008; Hansen, 2010b; Liao and Tsay, 2020]. Such equivalence, however, breaks

down in a nonstationary setup. Hansen (2010a) shows, within a local-to-unity framework,

that the AMSE of unrestricted as well as restricted (imposing a unit root) one-step ahead

forecasts are di¤erent from the corresponding expressions for their AFR in autoregressive

models with a general lag order and a deterministically trending component (see section 3

for further discussion on the issue of equivalence or lack thereof).

To address the lack of equivalence between AMSE and AFR, we develop combination

forecasts based on minimizing the so-called Accumulated Prediction Errors (APE) criterion

that directly targets the AFR instead of the AMSE. Previous work in the context of model

selection has shown the APE criterion to remain valid whether the process is stationary or

has a unit root. Speci�cally, Ing (2004) shows that a normalized version of the APE con-

verges almost surely to the AFR in the stationary case while a similar result is obtained by

Ing et al. (2009) in the unit root case. Focusing on the �rst order autogressive case and one-

step ahead forecasts, Yu et al. (2012) extend the validity of the APE to a unit root model

with a deterministic time trend. Our analysis generalizes existing results by establishing the

asymptotic validity of the APE for multistep forecasts in the unit root and (�xed) stationary

cases, both for models with and without deterministic trends. We further show that, regard-

less of the presence of a unit root, the performance of APE-weighted forecasts remains close

to that of the infeasible combination forecasts which assume that the optimal (i.e., AFR min-

imizing) weights are known. Monte Carlo experiments are used to (i) demonstrate the �nite

1Analytically, the importance of the trend component over long horizons can be seen by noting that
the trend/drift coe¢ cient is multiplied by the forecast horizon when constructing forecasts so that any
speci�cation/estimation error is magni�ed linearly as the forecast horizon increases (Sampson, 1991).
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sample e¢ cacy of the proposed procedure relative to Mallows/Cross-Validation weighting

that target the AMSE; (ii) underscore the importance of accounting for uncertainty about

the stochastic trend and/or the lag order. In a pseudo out-of-sample forecasting exercise

applied to US monthly macroeconomic time series, we evaluate the performance of a variety

of selection/combination-based approaches at horizons of one, three, six and twelve months.

Consistent with the simulation results, the empirical analysis provides strong evidence in

favor of a version of the advocated approach that simultaneously addresses stochastic trend

and lag order uncertainty regardless of the forecast horizon considered.

Our paper is closely related to the existing literature on methods for forecasting nonsta-

tionary time series. Diebold and Kilian (2000) show that a unit root pretesting strategy can

improve forecast accuracy relative to restricted or unrestricted estimation. Ng and Vogelsang

(2002) found that the use of feasible generalized least squares (FGLS) estimates of the trend

component can yield superior forecasts relative to their ordinary least squares (OLS) counter-

parts. Turner (2004) recommended the use of forecasting thresholds whereby the restricted

(unit root) forecast is preferred on one side of these thresholds while the unrestricted (OLS)

forecast is preferred on the other. His proposal is based on median unbiased estimation of

the local-to-unity parameter to determine the thresholds and is shown to dominate a unit

root pretesting strategy. Ing et al. (2009) derive the AFR of plug-in and direct multistep

forecasts in unit root autoregressions with a possibly unknown (�nite) lag order but without

a deterministic component and provide asymptotic justi�cation for the APE criterion for

selecting the best combination of model order and prediction method. Ing et al. (2012)

study the impact of nonstationarity, model complexity and model misspeci�cation on the

AFR in in�nite order autoregressions.

Hansen (2010a) adopts a local-to-unity framework to develop a one-step ahead combina-

tion forecast that combines forecasts from the restricted and unrestricted models with the

weights obtained by minimizing a one-step Mallows criterion, designed to provide an approx-

imately unbiased estimator of the in-sample asymptotic mean squared error. His analysis

shows that the unit root pretesting strategy can be subject to high forecast risk for a range of

persistence levels while his combination forecast performs favorably compared to a number

of methods popular in applied work and dominates the unrestricted forecast uniformly in

terms of �nite sample forecast risk. Kejriwal and Yu (2021) develop improved combination

forecasts that employ FGLS estimates of the trend parameters in conjunction with Mallows

model averaging. Tu and Yi (2017) analyze one-step forecasting based on the Mallows av-

eraging estimator in a cointegrated vector autoregressive model and �nds that it dominates
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the commonly used approach that entails pretesting for cointegration. For further discussion

and references in this literature, see Elliott (2006a) and Elliott and Timmermann (2016).

The present paper can be viewed as extending Hansen�s (2010a) approach in two prac-

tically relevant directions. First, in addition to one-step ahead forecasts, we also analyze

the statistical properties of multistep forecasts focusing on their dependence on the forecast

horizon and the uncertainty pertaining to the presence of a stochastic trend in the time

series. Second, in addition to Mallows weighting, we also evaluate the performance of com-

bination forecasts based on APE/CV weights, both empirically and via simulations. Such a

comparison serves to clarify the importance of directly targeting the AFR when estimating

the combination weights in a nonstationary framework.

The rest of the paper is organized as follows. Section 2 presents the model and the related

estimators that form the basis for the proposed combination forecasts. Section 3 analyzes

the AMSE and AFR as alternative measures of forecast accuracy. Section 4 discusses the

choice of combination weights based on the APE criterion. Section 5 extends the analysis

to allow for lag order uncertainty in the construction of the forecasts. Monte Carlo evidence

including comparisons with various existing methods are provided in Section 6. Section 7

details an empirical application to forecasting US macroeconomic time series. Section 8 o¤ers

concluding remarks and some directions for future research. Supplementary Appendices A

and B (not for publication) contain the proofs and additional simulation results, respectively.

2 Model and Estimation

We consider a univariate time series yt generated as follows:

yt = mt + ut

mt = �0 + �1t+ :::+ �pt
p

ut = �ut�1 + �1�ut�1 + � � �+ �k�ut�k + et
� = 1 +

ac

T
; a = 1� �1 � � � � � �k; c � 0 (1)

where p 2 f0; 1g is the order of the trend component and the stochastic component ut follows
a �nite order autoregressive process of order (k + 1) process driven by the innovations et.

The uncertainty about the stochastic trend is captured by the persistence parameter � that

is modeled as local-to-unity with c = 0 corresponding to the unit root case and c < 0 to the

stationary case. The initial observations are set at u0; u�1; � � � ; u�k = Op(1).2 This section
2The conclusion for the subsequent analysis will not be a¤ected as long as the initial observations are

op(T
1=2).
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treats the true lag order k as known. Lag order uncertainty is addressed in section 4. Our

analysis is based on the following assumptions:

Assumption 1 The sequence fetg is a martingale di¤erence sequence with E(etjFt�1) =
0 and E(e2t jFt�1) = �2; where 0 < �2 < 1; and Ft is the �-�eld generated by fes; s � tg.
Moreover, there exists small positive numbers �1 and �2 and a large positive number M1 such

that for 0 � s� s0 � �2;

sup
1�m�t<1; kvmk=1

jFt;m;vm(s)� Ft;m;vm(s0)j �M1(s� s0)�1 ;

where vm = (v1; :::; vm)
0 2 Rm; kvmk =

Pm
j=1 v

2
j and Ft;m;vm(:) denotes the distribution ofPm

l=1 vlet+1�l.

Assumption 2 All roots of A(L) = 1�
Pk

i=1 �iL
i lie outside the unit circle.

The data generating process in (1) and Assumptions 1-2 are adopted from Hansen (2010a)

with an additional restriction on the distribution offetg which ensures that the sample second
moments of the regressors are bounded in expectation (see Ing et al., 2009). For h � 1; let the
optimal (infeasible) mean squared error minimizing h-step ahead forecast of yt be denoted

�t+h. It is the conditional mean of yt+h given Ft; which is obtained from the following

recursion (Hamilton, 1994, p. 80-82):

�t+h = z
0
t+h� + �(�t+h�1 � z0t+h�1�) + �1(��t+h�1 ��z0t+h�1�)
+ � � �+ �k(��t+h�k ��z0t+h�k�) (2)

with �t+j = yt+j if j � 0; � = �0 and zt = 1 if p = 0 ; � = (�0; �1)0 and zt = (1; t)0 if p = 1.
We can further rewrite (2) as

�t+h = z
0
t+h�

� + ��t+h�1 +

kX
j=1

�j��t+h�j (3)

where �� = (1��)�0 if zt = 1 and �� = (��0 ; ��1)0 with ��0 = (1��)�0+(��
Pk

j=1 �j)�1; �
�
1 =

(1� �)�1 if zt = (1; t).
We consider three alternative estimators of �t+h. The �rst is the unrestricted estimator

�̂t+h obtained as

�̂t+h = z
0
t+h�̂

� + �̂�̂t+h�1 +
kX
j=1

�̂j��̂t+h�j (4)
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with �̂t+j = yt+j if j � 0 where (�̂�; �̂; �̂j) are the OLS estimates from the regression

ys = z
0
s�
� + �ys�1 +

kX
j=1

�j�ys�j + es; s = k + 2; :::; T

Instead of using (4); one may consider a two-step strategy for estimating �t+h that entails

regressing yt on zt and obtaining the estimate �̂ of � and the residuals ût = yt�z0t�̂ in a �rst
step and then estimating an autoregression of order k + 1 in ût to obtain the estimates of

(�; �1; :::; �k). The forecasts are obtained from (4). However, as shown in Ng and Vogelsang

(2002), the one-step estimate �̂t+h is preferable to the two-step estimate with persistent data.

The second estimator is the restricted estimator e�t+h that imposes the unit root restriction
� = 1 and is obtained as

e�t+h = �z0t+he�� + e�t+h�1 + kX
j=1

e�j�e�t+h�j
with e�t+j = yt+j if j � 0 where (e��; e�; e�j) are the OLS estimates from the regression

�ys = �z
0
s�
� +

kX
j=1

�j�ys�j + es; s = k + 2; :::; T

Finally, the third estimator is based on taking a weighted average of the unrestricted and

restricted forecasts. Letting w 2 [0; 1] be the weight assigned to the unrestricted estimator,
the averaging estimator is given by

�̂t+h(w) = w�̂t+h + (1� w)e�t+h
The relative accuracy of the three foregoing estimators can be evaluated using the asymptotic

forecast risk (AFR) which is the limit of the h-step ahead expected squared forecast error:

f0(c; p; k; h) = lim
T!1

T

�2
E(e�T+h � �T+h)2

f1(c; p; k; h) = lim
T!1

T

�2
E(�̂T+h � �T+h)2

fw(c; p; k; h) = lim
T!1

T

�2
E(�̂T+h(w)� �T+h)2

In order to derive analytical expressions for the AFR, we introduce the following notation.

Let W (:) denote a standard Brownian motion on [0; 1] and de�ne the di¤usion process

dWc(r) = cWc(r) + dW (r)
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For p 2 f0; 1g; let Xc(r) = (r
p;Wc(r))

0 and de�ne the stochastic processes

W �
c (r; p) =

8<: Wc(r)

Wc(r)�
R 1
0
Wc(s)ds

if

if

p = 0

p = 1

X�
c (r; p) =

8<: Xc(r)

Xc(r)�
R 1
0
Xc(s)ds

if

if

p = 0

p = 1

and the functionals

T0c = �cW �
c (1; p) + I(p = 1)W (1)

T1c = X
�
c (1; p)

0
�Z 1

0

X�
c (r; p)X

�
c (r; p)

0
��1 Z 1

0

X�
c (r; p)dW (r) + I(p = 1)W (1)

Next, note that from (1); we can write

yt+h = Et(yt+h) +
h�1X
j=0

bjet+h�j

where Et(:) denotes conditional expectation with respect to information at time t and the

coe¢ cients bj (j = 0; :::; h � 1) are obtained by equating coe¢ cients of Lj on both side of
the equation

b(L)d(L) = 1

where b(L) =
Ph�1

j=0 bjL
j and d(L) = 1 � �L � (1 � L)

Pk
j=1 �jL

j. When � = 1; bj =Pj
i=0 �j; �0 = 1 and �j; j � 1; satis�es 1 +

P1
j=1 �jL

j = 1=A(L) [see Ing et al., 2009].

Denoting �(k) = (�1; :::; �k)0; we de�ne the following quantities:

SM(k) =

0@ �(k � 1) Ik�1

�k 00k�1

1A ; S0M(k) = Ik
Mh(k) =

h�1X
j=0

bjS
h�1�j
M (k); �(k) = lim

j!1
E(sj(k)sj(k)

0); sj(k) = (�yj; :::;�yj�k+1)
0

gh(k) =

8<: 0

tr (�(k)Mh(k)�
�1(k)M 0

h(k))

if k = 0

if k � 1

With the above notation in place, we have the following result which provides an analyt-

ical representation for the AFR of the unrestricted and restricted forecasts:
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Theorem 1 Under Assumptions 1-2 and supt E(jetj�h) < 1; where �h = maxf8; 2(h +
2)g for some � > 0,
(a) f1(c; p; k; h) = f1(c; p; h) + gh(k); f1(c; p; h) =

�Ph�1
j=0 bj

�2
E(T 21c):

(b) f0(c; p; k; h) = f0(c; p; h) + gh(k); f0(c; p; h) =
�Ph�1

j=0 bj

�2
E(T 20c):

Theorem 1 shows that the AFR of both the restricted and unrestricted forecasts can be

decomposed into two components: the �rst component fj(c; p; h); j = 0; 1; depends on both

the underlying stochastic/deterministic trends as well as the short-run dynamics through the

coe¢ cients fbjg; the second component gh(k) is common to the restricted and unrestricted
estimators and depends on the parameters governing the short-run dynamics of the time

series. The result generalizes Theorem 2 of Hansen (2010a) for one-step forecasts to multi-

step forecasts. Interestingly, when h = 1, the AFR can be expressed as the sum of a purely

nonstationary component representing the stochastic/deterministic trends (since b0 = 1) and

a stationary short-run component which is simply the number of �rst-di¤erenced lags, i.e.,

g1(k) = k. However, as Theorem 1 shows, when h > 1; such a stationary-nonstationary

decomposition no longer holds since both components now depend on the short-run coe¢ -

cients f�jg. Theorem 1 also generalizes Theorem 2.2 of Ing et al. (2009) which derives an

expression for AFR assuming an exact unit root (c = 0) and no deterministic component.

The next result, which follows as a direct consequence of Theorem 1, shows that the

optimal combination weight is independent of the forecast horizon and the moving average

coe¢ cients fbjg but depends on the nuisance parameter c:

Corollary 1 The AFR of the combination forecast is given by

fw(c; p; k; h) =

 
h�1X
j=0

bj

!2 �
w2E(T 21c) + (1� w)2E(T 20c) + 2w(1� w)E(T1cT0c)

	
+ gh(k)

with optimal (i.e., AFR minimizing) weight

w� =
E(T 20c)� E(T0cT1c)

E(T 20c) + E(T
2
1c)� 2E(T0cT1c)

3 Asymptotic Mean Squared Error and Asymptotic Forecast Risk

An alternative measure of forecast accuracy is the in-sample asymptotic mean squared error

(AMSE) de�ned as

mu(c; p; k; h) = lim
T!1

1

�2

T�hX
t=1

E(�̂t+h � �t+h)2
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for the unrestricted estimator with similar expressions in place for the restricted and averag-

ing estimators. Hansen (2008) establishes the approximate equivalence between this measure

and the AFR under the assumption of strict stationarity. Accordingly, existing forecast com-

bination approaches developed in the stationary framework are based on targeting the AMSE

by appealing to its equivalence with the AFR. Hansen (2008) proposes estimating the weights

by minimizing a Mallows (2000) criterion which yields an asymptotically unbiased estimate

of the AMSE. Similarly, Hansen (2010b) demonstrates that a leave-h-out cross validation

criterion delivers an asymptotically unbiased estimate of the AMSE.

This equivalence result, however, breaks down in a nonstationary setup. For instance,

when the process has a unit root with no drift and the regression does not include a deter-

ministic component, it follows from the results in Hansen (2010a) that the AMSE of the one-

step ahead forecast coincides with the expected value of the squared limiting Dickey-Fuller

t-statistic. This expectation has been shown to be about 1.141 by Gonzalo and Pitarakis

(1998) and Meng (2005) using analytical and numerical integration techniques, respectively.

In contrast, Ing (2001) theoretically establishes that the AFR of the one-step ahead forecast

for the same data generating process and regression is 2. More recently, Hansen (2010a)

demonstrates the lack of equivalence within a local-to-unity framework showing that the

AMSE of unrestricted as well as restricted (imposing a unit root) one-step ahead forecasts

are di¤erent from the corresponding expressions for their AFR in autoregressive models with

a general lag order and a deterministically trending component. Notwithstanding this result,

he suggests using a Mallows criterion to estimate the combination weights and evaluates the

adequacy of the resulting combination forecast in �nite samples via simulations. A simi-

lar approach is taken by Kejriwal and Yu (2021) who also employ Mallows weighting but

estimate the deterministic component by FGLS in order to improve upon the accuracy of

OLS-based forecasts.

To illustrate the failure of equivalence, Figure 1 plots the AMSE and the AFR of the

unrestricted estimator for the case p = 0 and k = 0.3 The �gure clearly illustrates that while

the two measures of forecast accuracy follow a similar path for c su¢ ciently far from zero,

they tend to diverge as the process becomes more persistent. This pattern remains robust

across di¤erent forecast horizons and suggests that a forecast combination approach that

directly targets AFR instead of AMSE can potentially generate more accurate forecasts of

highly persistent time series when forecast risk is used as a metric for forecast evaluation.

3The �gure was obtained by simulating the AMSE and AFR assuming i.i.d. normal errors with T = 1000:
5000 replications were used.
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4 Choice of Combination Weights

The optimal combination forecast �̂t+h(w�) is infeasible in practice since the weight w� de-

pends on the unknown local-to-unity parameter c that is not consistently estimable. Given

the lack of equivalence between AMSE and AFR for nonstationary time series as discussed

in the previous section, we pursue an alternative approach to estimating the combination

weights that directly targets the AFR, which is a more direct and practical measure of fore-

cast accuracy than AMSE. In particular, the estimated weight ŵ is obtained by minimizing

the so-called Accumulated Prediction Errors (APE) criterion de�ned as

APE(w) =

T�hX
i=mh

fyi+h � �̂i+h(w)g2 =
T�hX
i=mh

fw(yi+h � �̂i+h) + (1� w)(yi+h � e�i+h)g2 (5)

with respect to w; where w 2 [0; 1]; �̂i+h(w) is the h-step ahead combination forecast based
only on data up to period i, and mh denotes the smallest positive number such that the

forecasts �̂i+h and e�i+h are well-de�ned for all i � mh. The solution is given by

ŵ =

PT�h
i=mh

(yi+h � e�i+h)2 �PT�h
i=mh

(yi+h � �̂i+h)(yi+h � e�i+h)PT�h
i=mh

(yi+h � e�i+h)2 +PT�h
i=mh

(yi+h � �̂i+h)2 � 2
PT�h

i=mh
(yi+h � �̂i+h)(yi+h � e�i+h)

The APE criterion with h = 1 was �rst introduced by Rissanen (1986) in the context of

model selection. Wei (1987) derives the asymptotic properties of APE in general regression

models and specializes his results to stationary and nonstationary autoregressive processes

with h = 1. Ing (2004) demonstrates the strong consistency of the APE-based lag order

estimator in stationary autoregressive models for h � 1. In particular, he shows that a

normalized version of the APE converges almost surely to the AFR in large samples. Ing et

al. (2009) extends the analysis to autoregressive processes with a unit root. The results in

Wei (1987), Ing (2004) and Ing et al. (2009) all rely on the law of iterated logarithm which

ensure that, in large samples, APE is equivalent to log T times the AFR, almost surely. It

is, however, important to note that while this convergence result holds pointwise for j�j � 1,
they do not hold uniformly over �. In particular, it does not hold in the local-to-unity setup

considered in this paper for c < 0.4 Nevertheless, the following result shows that the APE

criterion remains asymptotically valid in the current framework at the two limits of c which

represent the unit root and �xed stationary cases:
4To illustrate the lack of uniformity, consider the case p = 1 with k = 0. Using the same arguments as

in the proof of Theorem 2 of Yu et al. (2012), it follows that, for any �nite c � 0;
PT�h

i=mh
fyi+h � �̂i+hg2 =

E(T 210) log T + op(log T ); where E(T
2
10) = 6. The lack of uniformity follows since E(T

2
1c) 6= E(T 210) for any

c < 0.
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Theorem 2 For a given k; let APE0 =
PT�h

i=mh
fyi+h � e�i+hg2 ; APE1 =PT�h

i=mh
fyi+h � �̂i+hg2.

Under Assumptions 1-2 and supt E(jetjr) <1; for some r > 2,
(a) For c = O(T ); limT!1 (�2 log T )�1

�
APE1 �

PT�h
i=mh

�2i;h

�
= limc!�1 f1(c; p; k; h):

(b) limc!0 limT!1 (�2 log T )�1
�
APE0 �

PT�h
i=mh

�2i;h

�
= limc!0 f0(c; p; k; h):

Remark 1 In a similar vein, Hansen (2010a) develops feasible combination weights by eval-
uating the Mallows criterion at the two limits of c; given that the criterion depends on c and

is therefore infeasible in general. Thus, while his analysis demonstrates that the infeasible

Mallows criterion is an asymptotically unbiased estimate of the AMSE for any c; the fea-

sible version of the criterion remains valid only in the two limit cases. When estimation

is performed using FGLS instead of OLS, Kejriwal and Yu (2021) show that the infeasible

Mallows criterion also depends on the parameter a in (1) which governs the short-run dy-

namics. Evaluating the criterion at the two limits, however, eliminates the dependence on

both nuisance parameters.

Figure 2 plots the AFR of the optimal (infeasible) and APE-based combination forecasts

for p = 1 and k = 0.5 For comparison, the unrestricted and restricted forecasts are also

presented. As expected, the forecast risk of the restricted estimator increases with jcj while
the risk function of the unrestricted estimator is relatively �at as a function of c. Regardless

of the forecast horizon, the feasible combination forecast maintains a risk pro�le close to that

of the optimal forecast. In particular, the risk of the APE-weighted forecast is uniformly

lower than that of the unrestricted estimator across values of c as well as lower than that

of the restricted estimator unless c is very close to zero. These results suggest that the

loss in forecast accuracy due to the unknown degree of persistence is relatively small when

constructing the combination weights based on the APE criterion. In sections 5 and 6, we

will conduct an extensive comparison of the APE-based combination forecasts with both the

Mallows and cross-validation based combination forecasts.

5 Lag Order Uncertainty

This section extends the preceding analysis to the case where the lag order k is unknown.

In order to accommodate lag order uncertainty, the set of models on which the combination

forecast is based needs to be expanded to include models with di¤erent lag orders. Such

a forecast can potentially trade o¤ the misspeci�cation bias inherent from the omission of

5This �gure was obtained using the same method as Figure 1.
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relevant lags against the problem of over�tting induced by the inclusion of unnecessary lags.

We include sub-models with l 2 f0; 1; :::; Kg; K � k; with the corresponding restricted

and unrestricted forecasts given by e�t(l) and �̂t(l), respectively. We consider two types of
combination forecasts. The �rst is a �partial averaging� forecast that only addresses lag

order uncertainty by averaging over the K + 1 unrestricted forecasts:

�̂t+h(Ŵ ) =

KX
l=0

ŵl�̂t(l) (6)

The weights Ŵ = (ŵ0; ŵ1; :::; ŵK)
0 are obtained by minimizing the APE criterion

APEP (W ) =

T�hX
i=mh

(
KX
l=0

[wl(yi+h � �̂i+h(l))]
)2

(7)

where wl � 0 (l = 0; :::; K);
PK

l=0wl = 1. We refer to (6) as the APE-based Partial

Averaging (APA) forecast.

The second forecast is a �general averaging�forecast that accounts for both persistence

and lag order uncertainty and thus combines the forecasts from all 2(K + 1) sub-models:

��t+h( �W ) =
KX
l=0

( �w1l�̂t(l) + �w0le�t(l)) (8)

The weights �W = ( �w01; �w02; :::; �w0K ; �w11; �w12; :::; �w1K)
0 are obtained by minimizing a gener-

alized APE criterion of the form

APEG(W ) =
T�hX
i=mh

(
KX
l=0

[w1l(yi+h � �̂i+h(l)) + w0l(yi+h � e�i+h(l))])2 (9)

where w1l � 0; w0l � 0 (l = 0; :::; K);
PK

l=0(w0l+w1l) = 1. We refer to (8) as the APE-based

General Averaging (AGA) forecast. Comparing the APA and AGA forecasts will serve to

isolate the e¤ects of the two sources of uncertainty on forecast accuracy.

6 Monte Carlo Simulations

This section reports the results of a set of Monte Carlo experiments designed to (1) evaluate

the �nite sample performance of the proposed approach relative to extant approaches; (2)

quantify the importance of accounting for each source of uncertainty in terms of its e¤ect on

�nite sample forecast risk. Section 6.1 lays out the experimental design. Section 6.2 details
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the di¤erent forecasting procedures included in the analysis. Sections 6.3 and 6.4 present

the results. Results are obtained for p 2 f0; 1g: For brevity, we report the results only for
p = 1. The results for p = 0 are qualitatively similar, although the improvements o¤ered by

the proposed approach are more pronounced for p = 1 than p = 0: The full set of results is

available upon request.

6.1 Experimental Design

We adopt a design similar to that in Hansen (2010a) and Kejriwal and Yu (2021) to facilitate

direct comparisons. The data generating process (DGP) is based on (1) and speci�ed as

follows: (a) the innovations et
i:i:d:� N(0; 1); (b) the trend parameters are set at �0 = �1 =

0; (c) the true lag order k 2 f0; 6; 12g with �j = �(��)j for j = 1; :::; k and � = 0:6. The
maximum number of �rst-di¤erenced lags included is set at K = 12: The sample size is set

at T 2 f100; 200g. The local-to-unity parameter c varies from �20 to 0, implying � ranging
from 0.8 to 1 for T = 100 and � ranging from 0.9 to 1 for T = 200. At each c value, the

�nite-sample forecast risk TE [(�̂T+h � �T+h)2] is computed for all estimators considered,
where h 2 f1; 3; 6; 12g. All experiments are based on 10,000 Monte Carlo replications.
We report two sets of results. The �rst assumes k is known thereby allowing us to

demonstrate the e¤ect of persistence uncertainty on forecast accuracy while abstracting from

lag order uncertainty. The second allows k to be unknown and facilitates the comparison

between forecasts that address both forms of uncertainty with those that only account for

lag order uncertainty.

6.2 Forecasting Methods

Unrestricted Autoregressive Model (Benchmark). The benchmark forecast is calcu-
lated from a standard autoregressive model of order K + 1 estimated by OLS:

yt = �
�
0 + �

�
1t+ �yt�1 +

KX
j=1

�j�yt�j + �t;

Mallows Selection. Hansen (2010a) demonstrates the validity of the Mallows criterion
for selecting between the restricted and unrestricted models when h = 1. When the number

of lags k is known, the criteria for the restricted and unrestricted models are, respectively,

given by

M0 = Te�2 + 2�̂2(p+ k)
M1 = T �̂

2 + 2�̂2(2 + p+ k)
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where e�2 = T�1PT
t=1(yt � e�t)2 and �2 = T�1PT

t=1(yt � �̂t)2. The Mallows selection esti-
mator picks the restricted model if M0 � M1 and the unrestricted model otherwise. This

is equivalent to picking the unrestricted model when FT = T (e�2��̂2
�̂2

) > 4. The Mallows

selection forecast can then be expressed as �̂t+h;M = �̂t+h1(FT > 4)+ e�t+h1(FT � 4). When
the number of lags is unknown, the relevant Mallows criteria are obtained as (see Kejriwal

and Yu, 2021):

M0(l) = Te�2l + 2�̂2K(p+ l)
M1(l) = T �̂

2
l + 2�̂

2
K(2 + p+ l)

for l = 0; 1; :::; K; where �̂2j = T
�1

TP
t=1

(yt � �̂t(j))2; j = l;K and e�2l = T�1 TP
t=1

(yt � e�t(l))2.
Then, de�ning el = argminl2SfM0(l)g; l̂ = argminl2SfM1(l)g; where S = f0; 1; :::; Kg; the
Mallows selection forecast is obtained as

��t+h;M =

8<: �̂t+h(l̂);e�t+h(el);
if

if

minl2SfM1(l)g < minl2SfM0(l)g

minl2SfM1(l)g � minl2SfM0(l)g

Mallows Averaging. As an alternative to Mallows selection, Hansen (2010a) develops
the Mallows combination forecast that entails taking a weighted average of the unrestricted

and restricted forecasts where the weights are chosen by minimizing a Mallows criterion.

When the number of lags is known, the criterion is

Mw =
TX
t=1

(yt � �̂t(w))2 + 2�̂2(2w + p+ k) (10)

with �̂t(w) = w�̂t + (1�w)e�t and �̂2 = T�1 TP
t=1

(yt � �̂t)2. The Mallows selected weight ŵ is

derived from minimizing (10) over w 2 [0; 1]. The solution is

ŵ =

8<: 1� 2=FT
0

if FT > 2

otherwise

The Mallows averaging estimator is then de�ned as

�̂t+h;M(ŵ) = ŵ�̂t+h + (1� ŵ)e�t+h =
8<: (1� 2

FT
)�̂t+h +

2
FT
e�t+he�t+h

if FT > 2

otherwise
(11)
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When the number of lags is unknown, Hansen (2010a) considers two alternative Mallows

combination forecasts. The �rst is the so-called partial averaging forecast that averages

only over unrestricted forecasts that vary according to the number of �rst-di¤erenced lags

included. With a maximum of K lags, this forecast is given by

�̂t+h;M(Ŵ ) =

KX
l=0

ŵl�̂t+h(l) (12)

where Ŵ = (ŵ0; ŵ1:::; ŵK)
0 minimizes the criterion (with �̂t(W ) =

PK
l=0wl�̂t(l)),

MP (W ) =

TX
t=1

(yt � �̂t(W ))2 + 2�̂2K

 
KX
l=0

[wl(2 + l + p)]

!
subject to the restrictions wj � 0 (j = 0; 1; :::K);

PK
j=0wj = 1. The second combination

forecast is the so-called general averaging forecast that averages over the forecasts from all

2(K + 1) models that include the (K + 1) restricted models. This forecast is given by

��t+h;M( �W ) =
KX
l=0

( �w1l�̂t+h(l) + �w0le�t+h(l)) (13)

with �W = ( �w00; �w01; :::; �w0K ; �w10; �w11; �w12; :::; �w1K)
0 minimizing the criterion (with ��t(W ) =PK

l=0 (w0le�t(l) + w1l�̂t(l))),
MG(W ) =

TX
t=1

(yt � ��t(W ))2 + 2�̂2K

 
KX
l=0

[w0ll + w1l(2 + l)] + p

!
where the weights are non-negative and sum to one: w1l � 0; w0l � 0;

PK
l=0(w0l + w1l) = 1.

In what follows, we will refer to (12) and (13) as the MPA (Mallows Partial Averaging) and

MGA (Mallows General Averaging) forecasts, respectively.

Leave-h-out Cross Validation Selection. Hansen (2010b) provides theoretical justi-
�cation for constructing h-step ahead forecasts using leave-h-out cross validation under the

assumption that the data are strictly stationary. For model selection with a known number of

lags, let CV0 and CV1 denote the cross-validation criteria for the restricted and unrestricted

models, respectively. These criteria are computed as

CV0 =

T�hX
t=k+1

(yt+h � e�(t)t+h)2 (14)

CV1 =
T�hX
t=k+1

(yt+h � �̂(t)t+h)2 (15)
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where e�(t)t+h and �̂(t)t+h are the restricted and unrestricted leave-h-out forecasts, respectively.
Speci�cally, e�(t)t+h is obtained using parameter estimates from the restricted model after leav-
ing out the observations ft+ 1; :::; t+ hg6:

�yj = �
�
0 +

kX
s=1

�k�yj�s + �j; j 6= t+ 1; :::; t+ h

Similarly, �̂(t)t+h is obtained from estimating the unrestricted model after leaving out the

observations ft+ 1; :::; t+ hg:

yj = �
�
0 + �

�
1j + �yj�1 +

kX
s=1

�k�yj�s + �j; j 6= t+ 1; :::; t+ h

Then the cross-validation based forecast is

�̂t+h;CV = �̂t+h1(CV0 > CV1) + e�t+h1(CV0 � CV1)
When the number of lags is unknown, the cross-validation criterion is computed for each of

the 2(K + 1) possible models and the selected forecast is the one that corresponds to the

model with the minimum value of this criterion.

Leave-h-out Cross Validation Averaging. When the number of lags is known, the
cross validation weights (ŵ; 1� ŵ) are obtained by minimizing the criterion

CVw =
T�hX
t=k+1

n
w(yt+h � �̂(t)t+h) + (1� w)(yt+h � e�(t)t+h)o2

and the resulting forecast is �̂t+h;CV (ŵ) = ŵ�̂t+h + (1 � ŵ)e�t+h. When the number of lags
is unknown, the partial combination forecast that only combines the unrestricted forecasts

with di¤erent lags is obtained as

�̂t+h;CV (Ŵ ) =
KX
l=0

ŵl�̂t+h(l) (16)

where Ŵ = (ŵ0; ŵ1:::; ŵK)
0 minimizes the criterion

CVP (W ) =
T�hX
t=k+1

(
KX
l=0

wl(yt+h � �̂(t)t+h(l))
)2

(17)

6Hansen (2010b) instead leaves out the 2h�1 observations ft�h+1; :::; t; t+1; :::; t+h�1g. The di¤erence
emanates from the fact that he constructs direct forecasts while our forecasts are constructed iteratively which
exploit the autoregressive structure and hence necessitate leaving out only the h observations ft+1; :::; t+hg.
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subject to the restrictions wj � 0 (j = 0; 1; :::K);
PK

j=0wj = 1, and �̂(t)t+h(l) is the unre-

stricted leave-h-out forecast assuming l �rst-di¤erenced lags. As with weight selection using

the Mallows criterion, we also construct a general combination forecast that combines fore-

casts from theK+1 unrestricted models as well as theK+1 restricted models. This forecast

is given by

��t+h;CV ( �W ) =

KX
l=0

( �w1l�̂t+h(l) + �w0le�t+h(l)) (18)

with �W = ( �w01; �w02; :::; �w0K ; �w11; �w12; :::; �w1K)
0 minimizing the criterion

CVG(W ) =
T�hX
t=k+1

(
KX
l=0

h
w1l(yt+h � �̂(t)t+h(l)) + w0l(yt+h � e�(t)t+h(l))i

)2

where w1l � 0; w0l � 0;
PK

l=0(w0l + w1l) = 1; �̂
(t)
t+h(l) is as de�ned in (17) and e�(t)t+h(l) is

the restricted leave-h-out forecast assuming l �rst-di¤erenced lags. In what follows, we will

refer to (16) and (18) as the CPA (Cross-Validation Partial Averaging) and CGA (Cross-

Validation General Averaging) forecasts, respectively.

APE Selection. With a known number of lags, this forecast is computed from the

model that corresponds to the lower APE between the restricted and unrestricted models:

�̂t+h;S = �̂t+hI(APE0 > APE1) + e�t+hI(APE0 � APE1)
APE0 =

T�hX
i=mh

fyi+h � e�i+hg2 ; APE1 = T�hX
i=mh

fyi+h � �̂i+hg2

In the unknown lags case, the forecast is computed from the model that minimizes the

APE criterion among all 2(K + 1) possible models, comprising the K + 1 restricted and

K + 1 unrestricted models.

APE Averaging. The APE combination forecasts are constructed as described in

Section 3 and 4 by minimizing the weighted accumulated sum of prediction errors. When

the number of lags is known, the relevant APE criterion for weight selection is given by

(5). With an unknown number of lags, we again have two di¤erent combination forecasts

depending on whether averaging accounts for both persistence and lag order uncertainty

(general averaging) or only the latter (partial averaging). The general averaging forecast,

denoted by AGA, is constructed by estimating the weights from the criterion (9). For the

partial averaging forecast, denoted by APA, the weights are computed from a version of (7)

that only considers the set of unrestricted models for di¤erent lags.
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Both the APE selection and combination forecasts require a choice of mh. To our knowl-

edge, no data-dependent methods for choosing mh are available in the existing literature.

We therefore examined the viability of alternative choices via simulations. Speci�cally, for

each persistence level (value of c), we computed the minimum forecast risk over all values

of mh in the range [15; 70] with a step-size of 5 (assuming a known number of lags k).

While no single value was found to uniformly dominant across persistence levels/horizons,

mh = 20 turned out to be a reasonable choice overall.7 To justify this choice, Figure B.1 in

Appendix B plots the di¤erence between the optimal forecast risk and the risk of the APE

selection forecasts for mh = 20 expressed as a percentage of the forecast risk for mh = 20.

The corresponding results for the APE combination forecasts are presented in Figure B.2. It

is evident that using mh = 20 entails only a marginal increase in forecast risk (at most 5%)

for the combination forecasts over the optimal forecast risk across di¤erent persistence levels

and horizons. In contrast, the optimal choice of mh for the selection forecasts is somewhat

more unstable and appears to depend more heavily on the forecast horizon and the level

of persistence. This robustness in behavior provides additional motivation for employing a

combination approach to forecasting in practice.

6.3 Forecast Risk with Known Lag Order

Figures 3-5 plot the risk of the three selection and three combination forecasts for known

k described in Section 6.2 relative to the benchmark. Consider �rst the case k = 0. Sev-

eral features of the results are noteworthy. First, the selection forecasts typically exhibit

higher risk than the corresponding combination forecasts across sample sizes and horizons.

Second, when T = 100; the APE combination forecast is clearly the dominant method,

performing discernibly better than forecasts based on either of the two competing weight-

ing schemes. When T = 200; its dominance continues except when jcj is su¢ ciently large
(the exact magnitude being horizon-dependent) in which case the benchmark delivers the

most accurate forecasts and averaging over the restricted model becomes less attractive.

Third, the relative performance of the Mallows and cross-validation weighting schemes de-

pends on the horizon: at h = 1; the two schemes yield virtually indistinguishable forecasts;

when h 2 f3; 6g; Mallows weighting yields uniformly lower risk over the parameter space;
at h = 12; Mallows weighting is preferred when persistence is high (c close to zero) while

cross-validation weighting dominates for lower levels of persistence.

7This choice was also adopted by Ing and Yang (2014) in their Monte Carlo analysis of forecasting using
autoregressive models with positive-valued errors.
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In the presence of higher order serial correlation (k > 0), the superior performance of

the APE combination forecast becomes even more evident: it now dominates all competing

forecasts regardless of horizon and sample size. In particular, APE weighting outperforms

the benchmark at all persistence levels even at T = 200; unlike the k = 0 case. The

intuition for this di¤erence in relative performance between the cases with and without

higher order serial correlation is that in the former case, averaging is comparatively more

bene�cial since imposing the unit root restriction can potentially reduce the estimation

uncertainty associated with the coe¢ cients of the lagged di¤erences. This reduction in

sampling uncertainty in turn engenders a reduction in the overall risk of the combination

forecast relative to the unrestricted benchmark forecast. Another notable di¤erence from

the k = 0 case is that while Mallows and cross-validation weighting are comparable for

h 2 f1; 3g; the former now dominates for h 2 f6; 12g uniformly over the parameter space.

6.4 Forecast Risk with Unknown Lag Order

When the lag order is unknown, we evaluate the performance of six combination forecasts,

relative to the benchmark, of which three account for both persistence and lag order un-

certainty (MGA, CGA, AGA) and three that only account for lag order uncertainty (MPA,

CPA, APA).8 Figures 6-8 plot the relative risk of the di¤erent methods. A clear implica-

tion of these results is that general averaging methods typically exhibit considerably lower

forecast risk than partial averaging methods unless the process has relatively low persistence

in which case averaging over the unit root model increases the forecast risk incurred by the

general averaging methods. The improvements o¤ered by general averaging hold both across

horizons and the number of lags (k) in the true DGP and become more prominent as the

sample size increases.

Among the three weighting schemes, APE-based weights are the preferred choice except

when h 2 f6; 12g and T = 100 where Mallows weighting turns out to be the dominant

approach if persistence is relatively low. A potential explanation for this result is that with

long horizons and a small sample size, the APE criterion is based on a relatively smaller

number of prediction errors which increases the sampling variability associated with the

resulting weights thereby increasing the risk of the combination forecast. As in the known lag

order case, the choice between Mallows and cross-validation weighting is horizon-dependent:

8We do not report the results for the selection forecasts since their performance relative to the combination
forecasts is qualitatively similar to the known lag order case. The results are nevertheless available upon
request.
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when h = 1; cross-validation weighting is preferred while when h > 1; Mallows weighting is

preferred with the magnitude of reduction in forecast risk increasing as h increases.

In summary, the results from the simulation experiments make a strong case for employing

APE weights when constructing the combination forecasts and clearly highlight the bene�ts

of targeting forecast risk rather than in-sample mean squared error. The comparison of

general and partial combination forecasts also underscore the importance of concomitantly

controlling for both stochastic trend uncertainty and lag order uncertainty in generating

accurate forecasts.

7 Empirical Application

This section conducts a pseudo out-of-sample forecast comparison of the di¤erent multistep

forecast combination methods using a set of US macroeconomic time series. Our objectives

are to empirically assess (1) the e¢ cacy of di¤erent averaging/selection methods relative

to a standard autoregressive benchmark; (2) the importance of averaging over both the

persistence level and the lag order; and (3) the relative performance of alternative weight

choices for constructing the combination forecasts at di¤erent forecast horizons.

Our analysis employs the FRED-MD data set compiled by McCracken and Ng (2016)

containing 123 monthly macroeconomic variables over the period January 1960 - Decem-

ber 2018.9 McCracken and Ng (2016) suggest a set of seven transformation codes designed

to render each series stationary: (1) no transformation; (2) �yt; (3) �2yt; (4) log(yt); (5)

�log(yt); (6) �2 log(yt); (7) �(yt=yt�1 � 1). To ensure that the series �t our framework
that allows for highly persistent time series with/without deterministic trends, we adopt the

following transformation codes as modi�ed by Kejriwal and Yu (2021): (1�) no transforma-

tion; (2�) yt; (3�) �yt, (4�) log(yt); (5�) log(yt); (6�) � log(yt); (7�) yt=yt�1 � 1. For series
that correspond to codes (1�) and (4�), we construct the forecasts from a model with no

deterministic trend (p = 0), while for the remaining codes, we use forecasts from a model

that include a linear deterministic trend (p = 1). Besides analyzing the full data set, we also

report results for eight core series as in Stock & Watson (2002b), comprising four real and

four nominal variables.

As in the simulation experiments, four alternative forecast horizons are considered: h 2
f1; 3; 6; 12g. We use a rolling window scheme with an initial estimation period between

1960:01-1969:12 so that the forecast evaluation period is 1970:01-2018:12 (588 observations).

9The data set is publicly available for download at https://research.stlouisfed.org/econ/mccracken/fred-
databases/
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The size of the estimation window changes depending on the forecast horizon h. For example,

when h = 1, the initial training sample contains 120 observations from 1960:01-1969:12 while

for h = 3, it contains only 118 observations from 1960:01-1969:10. This ensures that the

forecast origin is 1970:01 for all forecast horizons considered. We compare ten di¤erent

methods in terms of the mean squared forecast error (MSFE) computed as the average of

the squared forecast errors: (1) MPA: Partial Mallows averaging over the number of lags

only in the unrestricted model; (2) MGA: General Mallows averaging over both the unit root

restriction and the number of lags; (3) CPA: Leave-h-out cross-validation (CV-h) averaging

over the number of lags only in the unrestricted model; (4) CGA: Leave-h-out cross-validation

averaging over both the unit root restriction and the number of lags; (5) APA: Accumulated

Prediction Error averaging over the number of lags only in the unrestricted model; (6) AGA:

Accumulated Prediction Error averaging over both the unit root restriction and the number

of lags; (7) MS: Mallows selection from all models (unrestricted and restricted) that vary

with the number of lags; (8) CVhS: Leave-h-out cross-validation selection from all models

(unrestricted and restricted) that vary with the number of lags; (9) APES: Accumulated

Prediction Error Selection from all models (unrestricted and restricted) that vary with the

number of lags; (10) AR: Unrestricted autoregressive model (benchmark). The maximum

number of allowable �rst di¤erenced lags in each method is set at K = 12. The benchmark

forecast is computed from unrestricted OLS estimation of an autoregressive model that

uses 12 �rst-di¤erenced lags of the dependent variable and includes/excludes a deterministic

trend depending on the transformation code the series corresponds to as discussed above.

Speci�cally, the benchmark model takes the form:

yt =

(
��0 + �yt�1 +

P12
j=1 �j�yt�j + �t; p = 0

��0 + �
�
1t+ �yt�1 +

P12
j=1 �j�yt�j + �t; p = 1

(19)

Table 1a (h = 1; 3) and Table 1b (h = 6; 12) report the percentage wins and losses based on

the MSFE for the 123 series. Speci�cally, it shows the percentage of 123 series for which a

method listed in a row outperforms a method listed in a column, and all other methods (last

column). A summary of the results in Tables 1a and 1b is given below:

1. The averaging methods uniformly dominate their selection counterparts at all forecast

horizons. For instance, Mallows/cross-validation averaging outperform the correspond-

ing selection procedures in more than 90% of the series at each horizon. The perfor-

mance of AGA relative to APES is relatively more dependent on the horizon, with

improvements observed in 77% (65%) of the series for h = 1 (h = 12), respectively.
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2. Given a particular weighting scheme, averaging over both the unit root restriction and

number of lags (general averaging) outperforms averaging over only the number of lags

(partial averaging) at all horizons. For instance, when h = 1; MGA (CGA, AGA)

dominate MPA (CPA, APA) in 95% (81%, 79%) of the series, respectively, based on

pairwise comparisons. A similar pattern is observed for multi-step forecasts.

3. Across all horizons, AGA emerges as the leading procedure due to its ability to deliver

forecasts with the lowest MSFE among all methods for the maximum number of series

(last column of Tables 1a and 1b). This approach also dominates each of the competing

approaches in terms of pairwise comparisons. The APES approach ranks second among

all methods so that forecasting based on the accumulated prediction errors criterion

(either AGA or APES) outperforms the other approaches for more than 50% of the

series over each horizon (the speci�c percentages are 68.3% for h = 1; 3; 57.7% for

h = 6; 55.3% for h = 12).

Next, we examine the performance of the forecasting methods for di¤erent types of series

based on their groupwise classi�cation by McCracken and Ng (2016) in an attempt to uncover

the extent to which the best methods vary by the type of series analyzed. In particular,

McCracken and Ng (2016) classify the series into eight distinct groups: (1) output and

income; (2) labour market; (3) housing; (4) consumption, orders and inventories; (5) money

and credits; (6) interest and exchange rates; (7) prices; (8) stock market. For each of

these groups, Table 2 reports the method(s) with the lowest MSFE for the most number

of series compared to all other competing methods. We also report the number of horizons

in which (a) averaging outperforms selection and vice-versa; (b) averaging over both the

unit root restriction and number of lags (general averaging - GA) methods is superior to

averaging over only the number of lags (partial averaging - PA) and vice-versa; (c) each

of the three weighting schemes dominates the other two. The results are consistent with

those in Tables 1a-b and clearly demonstrate (1) the dominance of averaging over selection

(with the exception of Group 3) ; (2) the bene�ts of accounting for both stochastic trend

uncertainty and lag order uncertainty (GA) relative to only the latter (PA) for �ve out of the

eight groups; (3) the superiority of APE weighting over the two competing weighting schemes

(the exception is Group 5 where cross-validation weighting is the dominant approach).

Finally, we present a comparison of the di¤erent methods with respect to their ability in

forecasting the eight core series analyzed in Stock and Watson (2002b). Table 3 reports the

MSFE of the eight methods relative to the benchmark model (19) for four real variables (in-
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dustrial production, real personal income less transfers, real manufacturing and trade sales,

number of employees on nonagricultural payrolls) while Table 4 reports the corresponding

results for four nominal variables (the consumer price index, the personal consumption ex-

penditure implicit price de�ator, the consumer price index less food and energy, the producer

price index for �nished goods). To assess whether the di¤erence between the proposed meth-

ods and the benchmark model is statistically signi�cant, we use a two-tailed Diebold-Mariano

test statistic (Diebold and Mariano, 2002). A number less than one indicates better forecast

performance than the benchmark and vice versa. The method with smallest relative MSFE

for a given series is highlighted in bold.

Consider �rst the results for real variables (Table 3). The performance of the best

method is statistically signi�cant (at the 10% level) relative to the benchmark in twelve

out of the sixteen cases. Consistent with the results in Tables 1a-b and 2, general averag-

ing typically dominates partial averaging, the exceptions being nonagricultural employment

for h � 6; industrial production at h = 12; and real manufacturing and trade sales for

h = 6; 12; where APES is the dominant procedure. The AGA approach turns out to have

the highest relative forecast accuracy in 50% of all cases with the improvements o¤ered over

rival approaches particularly notable at h = 12. While cross-validation weighting does not

yield the best forecasting procedure in any of the cases, Mallows weighting is the preferred

approach in only two cases although the improvements are statistically insigni�cant. Turning

to the results for nominal variables (Table 4), the best method signi�cantly outperforms the

benchmark in ten cases. Again, general averaging is usually preferred to partial averaging,

the exception being the case h = 12 where APA outperforms all other methods for three

of the four variables. As with the real variables, the AGA forecast is the most accurate

in 50% of all cases though the improvements are now comparable across horizons. Finally,

cross-validation weighting redeems itself to some extent by providing the best forecast in

four cases while Mallows weighting is the preferred method is only one case.

In summary, the empirical results are consistent with the simulation results in �nding

that (1) addressing both persistence uncertainty and lag-order uncertainty are crucial for

generating accurate forecasts; (2) a weighting scheme that directly targets forecast risk in-

stead of in-sample mean squared error yields an e¢ cacious forecast combination approach

at all horizons.
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8 Conclusion

This paper develops new multistep forecast combination methods that can deal with the

sources of uncertainty pertaining to the nature of the underlying trends and the lag struc-

ture driving a time series. In contrast to existing methods based on Mallows/cross-validation

weighting, our proposed combination forecasts are based on constructing weights obtained

from an accumulated prediction errors criterion that directly targets the asymptotic forecast

risk instead of the in-sample AMSE. Our analysis �nds strong evidence in favor of a version

of the proposed approach that simultaneously addresses stochastic trend uncertainty and lag

order uncertainty. Our preferred approach can potentially serve as a useful univariate bench-

mark when evaluating the e¤ectiveness of methods that are designed to exploit information

in large data sets (e.g., Stock and Watson, 2002a).

We conclude with a discussion of three possible directions for future research. First,

the APE-based combination forecasts can potentially be used in conjunction with FGLS

estimation of the deterministic component, given that the latter has been shown to yield

improved forecasts over OLS estimation (Kejriwal and Yu, 2021). Second, while our approach

only considers a constant/linear trend for the deterministic component, it may be useful to

explore the possibility of allowing for nonlinear components through, say, the inclusion of

polynomial trends or a few low frequency trigonometric components (Gallant, 1981). To the

extent that the speci�c nonlinear modeling structure captures the observed nonlinearities,

such an approach may contribute to a further improvement in forecasting performance of the

methods analyzed in this paper. Third, and perhaps most challenging, while our numerical

and empirical analyses clearly document the desirability of the proposed approach based on

APE weighting relative to Mallows/CVweighting, an analytical comparison may shed further

light on the relative merits of the di¤erent methods. To our knowledge, such results are

primarily available in the context of the standard stationary framework with Mallows/cross-

validation weighting (e.g., Hansen, 2007; Zhang et al., 2013; Liao and Tsay, 2020). Extending

these results to the present nonstationary framework would be a potentially fruitful endeavor.
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Appendix A: Proofs

Let W (:) denote a standard Brownian motion on [0; 1] and de�ne the di¤usion process:
dWc(r) = cWc(r) + dW (r). For p 2 f0; 1g; let Xc(r) = (r

p;Wc(r))
0 and de�ne the detrended

processes

W �
c (r; p) =

8<: Wc(r)

Wc(r)�
R 1
0
Wc(s)ds

if

if

p = 0

p = 1

X�
c (r; p) =

8<: Xc(r)

Xc(r)�
R 1
0
Xc(s)ds

if

if

p = 0

p = 1

and the functionals

T0c = �cW �
c (1; p) + I(p = 1)W (1)

T1c = X
�
c (1; p)

0
�Z 1

0

X�
c (r; p)X

�
c (r; p)

0
��1 Z 1

0

X�
c (r; p)dW (r) + I(p = 1)W (1):

Let � = (�0; �1)
0
, zt = (1; t)

0
. Without loss of generality, we assume that �0 = �1 = 0 in the

true data generating process. For a matrix A; kAk2 = supkvk=1 v0A0Av with kvk denoting the
Euclidean norm for vector v. Unless otherwise de�ned, for any variable x; we use x� to denote
its demeaned version. For a random quantity �, we write � = �0+op(�0) as � = �0+s:o:, where
s:o: represents a term of smaller order in probability. For brevity, all proofs are provided
only for the case p = 1. The proofs for p = 0 are simpler and follow analogous arguments.

We start by noting that if ut is generated by (1), it has the AR(k + 1) representation
ut =

Pk+1
i=1 aiut�i + et; where a1 = � + �1; ai = �i � �i�1 (i = 2; :::; k); ak+1 = ��k. The

companion VAR(1) form of the model is expressed as

Yt = B
0Yt�1 + �t

where

Yt
(k+3)�1

= (1; t+ 1; yt; :::; yt�k)
0; �t
(k+3)�1

= (0; 0; et; 0; :::; 0)
0

B(k + 1)
(k+3)�(k+3)

=

0@ B1 B2

0(k+1)�2 F

1A ; B1
(2�2)

=

0@1 1

0 1

1A ; B2
2�(k+1)

=

0@0 0 ::: 0

0 0 ::: 0

1A
F

(k+1)�(k+1)
=

0@a(k) Ik

00k

1A ; F 0 = Ik+1; a(k) = (a1; :::; ak+1)0
A-1



With �hat�and �tilde�denoting the unrestricted and restricted OLS estimates, respectively,
the unrestricted and restricted forecasts can then be expressed as (see, e.g., Ing, 2003):

�̂T+h = yT (k + 1)
0B̂h�1
̂ (A.1)e�T+h = yT (k + 1)
0 eBh�1e
 (A.2)

where yT (k + 1) = (1; T + 1; yT ; :::; yT�k)
0; 
̂ = (�̂

�
0; �̂

�
1; â1; :::; âk+1)

0 and

B̂(k + 1)
(k+3)�(k+3)

=

0@ B1 B̂2

0(k+1)�2 F̂

1A ;
B1
(2�2)

=

0@ 1 1

0 1

1A ; B̂2
2�(k+1)

=

0@ �̂
�
0 0 ::: 0

�̂
�
1 0 ::: 0

1A
F̂

(k+1)�(k+1)
=

0@â(k) Ik

00k

1A ; F̂ 0 = Ik+1; â(k) = (â1; :::; âk+1)0
eB(k + 1)
(k+3)�(k+3)

=

0@ B1 eB2
0(k+1)�2 eF

1A ; eB2
2�(k+1)

=

0@ e��0 0 ::: 0

0 0 ::: 0

1A (A.3)

The matrix eF is constructed in the same way as F̂ with â(k) replaced by ea(k), whereea(k) = (ea1; :::;eak+1)0 = (1 + e�1; e�2 � e�1; :::; e�k � e�k�1;�e�k)0 with e
 = (e��0; 0;ea1; :::;eak+1)0.
Next, we state a set of lemmas that will be useful in developing the proofs of the main

results. Lemmas A.1-A.4, A.7-A.9 below parallel Lemmas A.1-A.4, B.1-B.3 in Ing et al.
(2009) who assume an exact unit root (c = 0): Since the sample moments have the same
order whether c = 0 or c < 0, the proofs of the following lemmas also follow directly those
in Ing et al. (2009) and are hence omitted.

Lemma A.1 Suppose fytg satis�es (1) and Assumptions (1)-(2). Then for any q > 0,

EjjR̂�1T jjq = O(1)

where

R̂T = T
�1DT

T�1X
j=k+1

yj(k + 1)yj(k + 1)
0DT

0

A-2



with

DT
(k+3)�(k+3)

= diag(1; T�1; �DT );

�DT
(k+1)�(k+1)

=

0BBBBBBBBBB@

1p
T

��1p
T

: : : : : :
��kp
T

1 �1 0 : : : 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 : : : 0 1 �1

1CCCCCCCCCCA
Lemma A.2 Suppose fytg satis�es (1) and Assumptions (1)-(2) and for some q1 � 2,
sup

�1�t�1
Ejetj2q1 <1. Then for any 0 < q < q1,

EjjR̂�1T � R̂��1T jjq = O(T�q=2)

where

R̂�T
(k+3)�(k+3)

= diag(R̂�c
3�3
; �̂T (k))

k�k

R̂�c =

0BBB@
T�1(T � 1� k) T�1

T�1P
j=k+1

X 0
t

T�1
T�1P
j=k+1

Xt T�2
T�1P
j=k+1

XtX
0
t

1CCCA
Xt = [T

�1(t+ 1); T�1=2Nt]
0; Nj = A(L)yj

�̂T (k) = T
�1

T�1X
j=k+1

sj(k)sj(k)
0

Lemma A.3 Suppose fytg satis�es (1) and Assumptions (1)-(2) with sup
�1�t�1

Ejetjq <

1 for some q � 2. Then,

EjjT�1=2DT

T�1X
j=k+1

yj(k + 1)ej+1jjq = O(1)

Lemma A.4 Suppose fytg satis�es (1) and Assumptions (1)-(2) with sup
�1�t�1

Ejetjr <

1 for some r > 4.. Then,
lim
T�!1

E(FT;k) = 0
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where

FT;k = sT (k)
0Mh(k)�̂

�1
T (k)

n T�1X
j=k+1

sj(k)ej+1

o
X 0
T

� T�1X
j=k+1

XjXj
0��1( T�1X

j=k+1

Xjej+1

)

Lemma A.5 Let X
T�(p+1)

= [X1
T�1
; X2
T�p
], X1 = (1; � � � ; 1)0, and assume X 0X is invertible. De�ne

M1 = I
T�T

�X1(X
0
1X1)

�1X 0
1, X

�
2 = M1X2. For any T � 1 vector e and any p� 1 vector x2,

we have x0(X 0X)�1X 0e = x1(X
0
1X1)

�1X 0
1e + x

�0
2 (X

�0
2 X

�
2 )
�1X�0

2 e, where x = (x1; x
0
2)
0, x1 = 1,

x�2 = x2 � (X 0
1X1)

�1X 0
2X1.

Lemma A.6 Under Assumptions (1)-(2),
p
Te��0
�

d�! Wc(1):

Lemma A.7 Under Assumptions (1)-(2) and sup
�1�t�1

Ejetjq <1 for some q > 2,

(i) For some �1 > 0, jj�̂(k)� �(k)jj = o(T��1) a:s:;
(ii) For some �2 > 0, jjR̂T � R̂�T jj = o(T��2) a:s:;
(iii) jjR̂�1T jj = O(log log T ) a:s:.

Lemma A.8 Under Assumptions (1)-(2) and sup
�1�t�1

Ejetjq <1 for some q > 2;
PT�h

i=mh
Fi;k =

o(T ) a:s:, where

Fi;k = si(k)
0Mh(k)�̂

�1
i (k)

n i�1X
j=k+1

sj(k)ej+1

o
X 0
i

� i�1X
j=k+1

XjXj
0��1( i�1X

j=k+1

Xjej+1

)

Lemma A.9 Let fxTg be a sequence of real numbers.
(i) If xT � 0; T�1

PT
j=1 xj = O(1), and for some � > 1; lim infT�!1

�T=T
� > 0, then,

PT
j=1 xj=�j =

O(1);
(ii) If T�1

PT
j=1 xj = o(1), then,

PT
j=1 xj=j = o(log T ).

Proof of Lemma A.5. Note, by block matrix inversion,

(X 0X)�1 =

0@X 0
1X1 X 0

1X2

X 0
2X1 X 0

2X2

1A�1

=

0@(X 0
1X1)

�1 + (X 0
1X1)

�1X 0
1X2(X

0
2M1X2)

�1X 0
2X1(X

0
1X1)

�1 �(X 0
1X1)

�1X 0
1X2(X

0
2M1X2)

�1

�(X 0
2M1X2)

�1X 0
2X1(X

0
1X1)

�1 (X 0
2M1X2)

�1

1A
then

(X 0X)�1X 0e =

0@(X 0
1X1)

�1X 0
1[I �X2(X

0
2M1X2)

�1X 0
2M1]e

(X 0
2M1X2)

�1X 0
2M1e

1A
A-4



Recall x = (x1; x02)
0 = (x1; x

�0
2 )
0 + (0; X 0

1X2(X
0
1X1)

�1)0, we have,

x0(X 0X)�1X 0e = [(x1; x
�0
2 )](X

0X)�1X 0e| {z }
Term 1

+ [(0; X 0
1X2(X

0
1X1)

�1)](X 0X)�1X 0e| {z }
Term 2

=x1(X
0
1X1)

�1X 0
1[I �X2(X

0
2M1X2)

�1X 0
2M1]e+ x

�0
2 (X

0
2M1X2)

�1X 0
2M1e| {z }

Term 1

+X 0
1X2(X

0
1X1)

�1(X 0
2M1X2)

�1X 0
2M1e| {z }

Term 2

=x1(X
0
1X1)

�1X 0
1e+ x

�0
2 (X

0
2M1X2)

�1X 0
2M1e

�x1(X 0
1X1)

�1X 0
1X2(X

0
2M1X2)

�1X 0
2M1e+X

0
1X2(X

0
1X1)

�1(X 0
2M1X2)

�1X 0
2M1e| {z }

=0; since x1 = 1, (X0
1X1)

�1 = 1=T , which is a constant

=x1(X
0
1X1)

�1X 0
1e+ x

�0
2 (X

�0
2 X

�
2 )
�1X�0

2 e

Proof of Lemma A.6. The true DGP can be expressed as

�yt = �
�
0 +

kX
j=1

�j�yt�j + e
�
t

where ��0 = 0 and e
�
t =

ac
T
ut�1 + et. Let _Zt = ( _Z1; _Z 02;t), _Z1 = 1, _Z2;t = (�yt�1; � � � ;�yt�k)0,

�1 = (1; 0; � � � ; 0)0, �[2:k+1] = (0; 1; � � � ; 1)0. Now
p
Te��0
�

=

p
T

�
�01(

TX
t=k+1

_Zt _Z
0
t)
�1

TX
t=k+1

_Z 0t(
ac

T
ut�1 + et) (A.4)

=

p
T

�
(

TX
t=k+1

_Z21)
�1

TX
t=k+1

_Z1(
ac

T
ut�1 + et) + op(1)

=
ca

�
p
T

TX
t=k+1

ut�1 +
1

�
p
T

TX
t=k+1

et + op(1)
d�! c

Z 1

0

Wc +W (1) = Wc(1)

Proof of Theorem 1. (a) De�ning 
 = (��0; �
�
1; a1; :::; ak+1)

0; L̂h =
Ph�1

j=0 bjB̂
h�1�j; and

A-5



Lh =
Ph�1

j=0 bjB
h�1�j, we can write

T

�2
E(�̂T+h � �T+h)2 =

T

�2
E
�
yT (k + 1)

0L̂h(
̂ � 
)
�2

=
T

�2

"
E
�
yT (k + 1)

0Lh(
̂ � 
)
�2

+ E
�
yT (k + 1)

0�L̂h � Lh	(
̂ � 
)�2 + o(1)#

=
1

�2
E
h
yT (k + 1)

0LhD
0
T (R̂

��1
T )

DTp
T

T�1X
j=k+1

yj(k + 1)ej+1

i2
+
1

�2
E
h
yT (k + 1)

0LhDT
0(R̂�1T � R̂��1T )

DTp
T

T�1X
j=k+1

yj(k + 1)ej+1

i2
+
T

�2
E
h
yT (k + 1)

0�L̂h � Lh	(
̂ � 
)i2 + o(1)
=(I) + (II) + (III) (A.5)

The (II) and (III) terms in (A.5) are each o(1) by Lemmas A.1-A.3 and Holder�s inequality
[see, e.g. the proof of Theorem 2.2 in Ing et al., 2009].
The term (I) can be written as:

1

�2
E
�
yT (k + 1)

0LhDT
0R̂��1T

DTp
T

T�1X
j=k

yj(k + 1)ej+1
�2

=
1

�2
E
�
yT (k + 1)

0DT
0 �LhR̂

��1
T

DTp
T

T�1X
j=k

yj(k + 1)ej+1
�2

(A.6)

where �Lh =
Ph�1

j=0 bjdiag(G
h�1�j
T ; �F h�1�j) with GT =

0@1 T�1

0 1

1A, �F = diag(1; SM(k)) and
SM(k) =

0@ �(k � 1) Ik�1

�k 00k�1

1A ; S0M(k) = Ik:
Note that yT (k + 1)

0DT
0 =

�
1; T�1(T + 1); T�1=2NT ; sT (k)

�
. Further, since GT is upper

A-6



triangular, (A.6) converges to

1

�2
� h�1X
j=0

bj
�2
lim
T�!1

E
n
T�1=2

T�1X
j=k+1

ej+1 +X
�
T
0� T�1X
j=k+1

X�
jX

�
j
0��1 T�1X

j=k+1

X�
j ej+1

o2
+ lim
T�!1

1

�2
E
n
s0T (k)Mh(k)�̂

�1
T (k)T

�1=2
T�1X
j=k+1

sj(k)ej+1

o2
+
2

�2
(

h�1X
j=0

bj) lim
T�!1

E(FT;k)

=B:1 +B:2 +B:3 (A.7)

where B:1 utilizes Lemma A.5. Since B:2 = gh(k) by Theorem 1 of Ing (2003) and B:3 = 0
by Lemma A.4, (A.7) simpli�es to:

B:1 +B:2 =
� h�1X
j=0

bj
�2
lim
T�!1

E
n
W (1) +X�

c (1)
0� Z 1

0

X�
cX

�
c
0��1 Z 1

0

X�
c dW

o2
+ gh(k)

=
� h�1X
j=0

bj
�2
E
�
T 21c
�
+ gh(k) (A.8)

The required result then follows from (A.5), (A.7) and (A.8).

(b) De�ning eLh =Ph�1
j=0 bj

eBh�1�j, with similar arguments as in (a), we can write:
T

�2
E(e�T+h � �T+h)2 = T

�2
E
h
yT (k + 1)

0eLh(e
 � 
)i2
=
T

�2
E
h
yT (k + 1)

0Lh(e
 � 
)i2 + o(1) (A.9)

Note that

Lh =
h�1X
j=0

bjB
h�1�j =

h�1X
j=0

bj

0@B1 0

0 F

1Ah�1�j

=
h�1X
j=0

bj

0@Bh�1�j1 0

0 F h�1�j

1A
Since B1 is upper triangular with B1(1; 1) = 1,

(A:9) =
T

�2
E
h
yT (k + 1)

0

0BBB@
Ph�1

j=0 bj

24e��0
0

35
Ph�1

j=0 bjF
h�1�j[ea(k)� a(k)]

1CCCAi2 + o(1)
=
T

�2
E
h� h�1X

j=0

bj
�e��0 + (yT ; :::; yT�k) h�1X

j=0

bjF
h�1�j[ea(k)� a(k)]i2 + o(1) (A.10)
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Now, consider the term

p
T

�
(yT ; :::; yT�k)

h�1X
j=0

bjF
h�1�j[ea(k)� a(k)]

=

p
T

�
(yT ; :::; yT�k)L

(F )
h [ea(k)� a(k)]

=

p
T

�
(yT ; :::; yT�k)L

(F )
h

h
â(k)� a(k) +HD0

T R̂
�1
T DTR

0(RD0
T R̂

�1
T DTR

0)�1(r �R
̂)
i
(A.11)

where

L
(F )
h =

h�1X
j=0

bjF
h�1�j; H

(k+1)�(k+3)
=
h
0(k+1)�2 I(k+1)

i
; R
2�(k+3)

=

240 1 0 ::: 0

0 0 1 ::: 1

35 ; r
2�1
= (0; 1)0

Next, de�ning �L(F )h = diag(
Ph�1

j=0 bj;Mh(k)), �̂
(k+1)�1

= (T (1� �̂)=a; 0; � � � ; 0)0, we have

(A:11) =
1

�
(yT ; :::; yT�k)

hp
TL

(F )
h fâ(k)� a(k)g+ L(F )h

�D0
T �̂
i

=
1

�
(yT ; :::; yT�k)

hp
TL

(F )
h fâ(k)� a(k)g+ �D0

T
�L
(F )
h �̂

i
=
1

�
(yT ; :::; yT�k)

p
TL

(F )
h (â(k)� a(k)) + 1

�
(NT=

p
T ; sT (k))diag(

h�1X
j=0

bj;Mh(k))�̂

=
1

�
(yT ; :::; yT�k)

p
TL

(F )
h (â(k)� a(k)) + NT

�
p
T

h�1X
j=0

bj
�
� c� T (�̂� �)=a

�
=
NT

�
p
T

h�1X
j=0

bj
�
T (�̂� �)=a

	
+
1

�
sT (k)

0Mh(k)�̂
�1
T (k)T

�1=2
T�1X
j=k

sj(k)ej+1

+
NT

�
p
T

h�1X
j=0

bj
�
� c� T (�̂� �)=a

�
=� c NT

�
p
T

h�1X
j=0

bj +
1

�
sT (k)

0Mh(k)�̂
�1
T (k)T

�1=2
T�1X
j=k

sj(k)ej+1 (A.12)
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Then, combining (A.10) with (A.12) and using Lemma A.6, we �nally get

lim
T�!1

T

�2
E(e�T+h � �T+h)2 = E� h�1X

j=0

bj(Wc(1)� cWc(1))
�2

+
1

�2
lim
T�!1

E
n
s0�T (k)Mh(k)�̂

�1
T (k)T

�1=2
T�1X
j=k

sj(k)ej+1

o2
=
� h�1X
j=0

bj
�2
E
�
T 20c
�
+ gh(k)

which uses the fact that Wc(1)� cWc(1) = W (1)� cW �
c (1), thereby proving the result.

Proof of Theorem 2. Henceforth, estimated parameters and quantities with subscript
i denotes the estimates using observations from 1 to i. We prove (a) �rst. It follows from
Chow (1965) and Ing (2004) that

APE1 �
T�hX
i=mh

�2i;h =
T�hX
i=mh

h
y0i(k + 1)L̂i;h(
̂i � 
)

i2
(1 + o(1)) +O(1)

Using similar algebra as in Theorem 1, we have:

T�hX
i=mh

h
y0i(k + 1)L̂i;h(
̂i � 
)

i2
=

T�hX
i=mh

"�
yi(k + 1)

0Lh(
̂i � 
)
�2

+
�
yi(k + 1)

0�L̂i;h � Lh	(
̂i � 
)�2
#
+ s:o:

=
T�hX
i=mh

1

i

h
yi(k + 1)

0LhDi
0(R̂��1i )

Dip
i

i�1X
j=k+1

yj(k + 1)ej+1

i2
+

T�hX
i=mh

1

i

h
yi(k + 1)

0LhDi
0(R̂�1i � R̂��1i )

Dip
i

i�1X
j=k+1

yj(k + 1)ej+1

i2
+

T�hX
i=mh

h
yi(k + 1)

0�L̂i;h � Lh	(
̂i � 
)i2 + s:o:
= (IV ) + (V ) + (V I) (A.13)

The (V ) and (V I) terms in (A.13) are each O(1) following similar arguments in Ing et al.
(2009) which build on Lemmas A.7-A.9.
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Analogous to (A.6) and (A.7) in the proof of Theorem 1, (IV) can be rewritten as:

(IV ) =
� h�1X
j=0

bj
�2 T�hX

i=mh

n
Zi
0� i�1X
j=k+1

ZjZj
0��1 i�1X

j=k+1

Zjej+1

o2
+

T�hX
i=mh

n
s0i(k)Mh(k)�̂

�1
i (k)

1

i

i�1X
j=k+1

sj(k)ej+1

o2
+ 2(

h�1X
j=0

bj)

T�hX
i=mh

1

i
Fi;k

= C:1 + C:2 + C:3

where Zj = (1; t+ 1; Nj)0. In analogy with Theorem 3.1 of Ing (2004),

C:2 = gh(k)�
2 log T + op(log T ) (A.14)

By Lemmas A.8 and A.9, C:3 = op(log T ). Now we focus on C:1. By Theorem 4 of Wei
(1987), we have

C:1 =
� h�1X
j=0

bj
�2
�2 log det(

T�1X
j=k+1

ZjZ
0
j) + op(log T )

De�ning the 3 � 3 matrix �T = diag(T; T 3; T 2= jcj) and using Lemma A of Phillips (2014)
in conjunction with the fact that jcjT�2 = O(T�1), we can calculate

log det(
T�1X
j=k+1

ZjZ
0
j) = log det(�

1=2
T �

�1=2
T

T�1X
j=k+1

ZjZ
0
j�

�1=2
T �

1=2
T )

= log det(�T ) +Op(1) = log(T
5) +Op(1)

= 5 log(T ) +Op(1) (A.15)

which leads to C:1 = 5�2
�Ph�1

j=0 bj
�2
log(T ) + op(log T ). Thus,

lim
T!1

1

�2 log T
(APE1 �

T�hX
i=mh

�2i;h) = 5
� h�1X
j=0

bj
�2
+ gh(k) (A.16)

where the right hand side of (A.16) is the limit of f1(c; p; k; h) = f1(c; p; h)+gh(k) as c!-1.

We next prove (b). Following similar steps as in the proof of (a) and the proof of Theorem
1 for the restricted case, we can derive

APE0 �
T�hX
i=mh

�2i;h =
� h�1X
j=0

bj
�2 T�hX

i=mh

(e��0;i � cNii )2
+

T�hX
i=mh

n
s0i(k)Mh(k)�̂

�1
i (k)

1

i

i�1X
j=k+1

sj(k)ej+1

o2
+ op(log T )

=D:1 +D:2
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In view of (A.4), taking the limit c! 0, we have

T�hX
i=mh

(e��0;i � cNii )2 =
T�hX
i=mh

[�01(

iX
t=k+1

_Zt _Z
0
t)
�1

iX
t=k+1

_Z 0tet]
2

=

T�hX
i=mh

[(

iX
t=k+1

_Z21)
�1

iX
t=k+1

_Z1et]
2 + s:o:

= log det(
T�1X
j=k+1

_Z21) + op(log T ) = �
2 log T + op(log T )

Further, using the same argument as in (A:14); we have D:2 = gh(k)�
2 log T + op(log T ).

Thus,

lim
c!0

lim
T!1

1

�2 log T
(APE0 �

T�hX
i=mh

�2i;h) =
� h�1X
j=0

bj
�2
+ gh(k) (A.17)

where the right hand side of (A.17) is the limit of f0(c; p; k; h) = f0(c; p; h) + gh(k) as
c! 0 since limc!0E(T

2
0c) = E[W (1)

2] = 1.
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Appendix B: Additional Simulation Results
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