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Abstract

This paper presents a new approach to constructing multistep combination fore-
casts in a nonstationary framework with stochastic and deterministic trends. Existing
forecast combination approaches in the stationary setup typically target the in-sample
asymptotic mean squared error (AMSE) relying on its approximate equivalence with
the asymptotic forecast risk (AFR). Such equivalence, however, breaks down in a non-
stationary setup. To address this issue, this paper develops combination forecasts
based on minimizing an Accumulated Prediction Errors (APE) criterion that directly
targets the AFR and remains valid whether the time series is stationary or not. We
show that the performance of APE-weighted forecasts is close to that of the infeasible
combination forecasts which assume that the optimal (i.e., AFR minimizing) weights
are known. Monte Carlo experiments are used to (i) demonstrate the finite sample
efficacy of the proposed procedure relative to Mallows/Cross-Validation weighting that
target the AMSE; (ii) underscore the importance of accounting for uncertainty about
the stochastic trend and/or the lag order. When applied to forecasting US macro-
economic time series, we find strong evidence in favor of a version of the advocated
approach that simultaneously addresses stochastic trend and lag order uncertainty.
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1 Introduction

The pioneering work of Granger (1966) demonstrated that a large number of macroeco-
nomic time series have a typical spectral shape dominated by a peak at low frequencies.
This finding suggests the presence of relatively long run information in the current level of
the variables which should be taken into account when modeling their time series evolu-
tion and can potentially be exploited to yield improved forecasts. One way to incorporate
this long-run information in econometric modeling is through stochastic trends (unit roots)
and/or deterministic trends. However, given that trends are slowly evolving, there is only
limited information in any data set about how best to specify the trend or distinguish be-
tween alternative models of the trend. For instance, unit root tests often fail to reject a unit
root despite the fact that theory does not postulate the presence of a unit root for many
macroeconomic variables (see Elliott (2006b), for further discussion of this issue). Clements
and Hendry (2001) documented, both analytically and numerically, the detrimental conse-
quences of trend misspecification on the resulting forecasts in the presence of parameter
estimation uncertainty. Specifically, they find that when the sample size increases at a faster
rate than the forecast horizon, misspecifying a difference stationary process as trend station-
ary or vice-versa yields forecast error variances of a higher order of magnitude relative to the
correctly specified model.

Notwithstanding the importance of the low frequency components and the uncertainty
surrounding their precise nature, a common practice in the economic forecasting literature is
to first apply a stationarity-inducing transformation (e.g., differencing or detrending) to the
time series of interest and then attempt to forecast the transformed series. Consequently,
most of the forecasting procedures in current use have been developed under the assumption
of data stationarity. The traditional approach of Box and Jenkins (1970) transforms the data
through differencing which amounts to modeling the low frequency peak in the spectrum as
a zero frequency phenomenon and proceeds to forecast the transformed series using stan-
dard stationary autoregressive moving average (ARMA) models. More recently, Stock and
Watson (2005, 2006) constructed a extensive database of 132 monthly macroeconomic time
series over the period 1959-2003 and applied a variety of transformations to render them sta-
tionary before using a handful of common factors extracted from the data set using principal
components as predictors (the so-called diffusion-index methodology). Similarly, McCracken
and Ng (2016) assembled a publicly available database of 134 monthly time series referred to
as FRED-MD and updated on a timely basis by the Federal Reserve Bank of St Louis. They



also suggest a set of data transformations which is used to construct factor-based diffusion
indexes for forecasting as well as analyze business cycle turning points.

This paper proposes a new forecast combination approach designed for forecasting a
highly persistent time series that simultaneously addresses uncertainty about the presence
of a stochastic trend as well as uncertainty about the nature of short-run dynamics within
a unified autoregressive modeling framework. Given that uncertainty about the nature of
the trend is likely to be particularly important for longer horizons, we focus on construct-
ing multistep forecasts instead of only one-step forecasts.! FExisting forecast combination
approaches employed in the stationary setup such as Mallows model averaging (MMA) and
cross-validation (CV) weighting typically target the in-sample asymptotic mean squared er-
ror (AMSE) relying on its approximate equivalence with the asymptotic forecast risk (AFR)
[e.g., Hansen, 2008; Hansen, 2010b; Liao and Tsay, 2020]. Such equivalence, however, breaks
down in a nonstationary setup. Hansen (2010a) shows, within a local-to-unity framework,
that the AMSE of unrestricted as well as restricted (imposing a unit root) one-step ahead
forecasts are different from the corresponding expressions for their AFR in autoregressive
models with a general lag order and a deterministically trending component (see section 3
for further discussion on the issue of equivalence or lack thereof).

To address the lack of equivalence between AMSE and AFR, we develop combination
forecasts based on minimizing the so-called Accumulated Prediction Errors (APE) criterion
that directly targets the AFR instead of the AMSE. Previous work in the context of model
selection has shown the APE criterion to remain valid whether the process is stationary or
has a unit root. Specifically, Ing (2004) shows that a normalized version of the APE con-
verges almost surely to the AFR in the stationary case while a similar result is obtained by
Ing et al. (2009) in the unit root case. Focusing on the first order autogressive case and one-
step ahead forecasts, Yu et al. (2012) extend the validity of the APE to a unit root model
with a deterministic time trend. Our analysis generalizes existing results by establishing the
asymptotic validity of the APE for multistep forecasts in the unit root and (fixed) stationary
cases, both for models with and without deterministic trends. We further show that, regard-
less of the presence of a unit root, the performance of APE-weighted forecasts remains close
to that of the infeasible combination forecasts which assume that the optimal (i.e., AFR min-

imizing) weights are known. Monte Carlo experiments are used to (i) demonstrate the finite

! Analytically, the importance of the trend component over long horizons can be seen by noting that
the trend/drift coefficient is multiplied by the forecast horizon when constructing forecasts so that any
specification/estimation error is magnified linearly as the forecast horizon increases (Sampson, 1991).



sample efficacy of the proposed procedure relative to Mallows/Cross-Validation weighting
that target the AMSE; (ii) underscore the importance of accounting for uncertainty about
the stochastic trend and/or the lag order. In a pseudo out-of-sample forecasting exercise
applied to US monthly macroeconomic time series, we evaluate the performance of a variety
of selection/combination-based approaches at horizons of one, three, six and twelve months.
Consistent with the simulation results, the empirical analysis provides strong evidence in
favor of a version of the advocated approach that simultaneously addresses stochastic trend
and lag order uncertainty regardless of the forecast horizon considered.

Our paper is closely related to the existing literature on methods for forecasting nonsta-
tionary time series. Diebold and Kilian (2000) show that a unit root pretesting strategy can
improve forecast accuracy relative to restricted or unrestricted estimation. Ng and Vogelsang
(2002) found that the use of feasible generalized least squares (FGLS) estimates of the trend
component can yield superior forecasts relative to their ordinary least squares (OLS) counter-
parts. Turner (2004) recommended the use of forecasting thresholds whereby the restricted
(unit root) forecast is preferred on one side of these thresholds while the unrestricted (OLS)
forecast is preferred on the other. His proposal is based on median unbiased estimation of
the local-to-unity parameter to determine the thresholds and is shown to dominate a unit
root pretesting strategy. Ing et al. (2009) derive the AFR of plug-in and direct multistep
forecasts in unit root autoregressions with a possibly unknown (finite) lag order but without
a deterministic component and provide asymptotic justification for the APE criterion for
selecting the best combination of model order and prediction method. Ing et al. (2012)
study the impact of nonstationarity, model complexity and model misspecification on the
AFR in infinite order autoregressions.

Hansen (2010a) adopts a local-to-unity framework to develop a one-step ahead combina-
tion forecast that combines forecasts from the restricted and unrestricted models with the
weights obtained by minimizing a one-step Mallows criterion, designed to provide an approx-
imately unbiased estimator of the in-sample asymptotic mean squared error. His analysis
shows that the unit root pretesting strategy can be subject to high forecast risk for a range of
persistence levels while his combination forecast performs favorably compared to a number
of methods popular in applied work and dominates the unrestricted forecast uniformly in
terms of finite sample forecast risk. Kejriwal and Yu (2021) develop improved combination
forecasts that employ FGLS estimates of the trend parameters in conjunction with Mallows
model averaging. Tu and Yi (2017) analyze one-step forecasting based on the Mallows av-

eraging estimator in a cointegrated vector autoregressive model and finds that it dominates



the commonly used approach that entails pretesting for cointegration. For further discussion
and references in this literature, see Elliott (2006a) and Elliott and Timmermann (2016).

The present paper can be viewed as extending Hansen’s (2010a) approach in two prac-
tically relevant directions. First, in addition to one-step ahead forecasts, we also analyze
the statistical properties of multistep forecasts focusing on their dependence on the forecast
horizon and the uncertainty pertaining to the presence of a stochastic trend in the time
series. Second, in addition to Mallows weighting, we also evaluate the performance of com-
bination forecasts based on APE/CV weights, both empirically and via simulations. Such a
comparison serves to clarify the importance of directly targeting the AFR when estimating
the combination weights in a nonstationary framework.

The rest of the paper is organized as follows. Section 2 presents the model and the related
estimators that form the basis for the proposed combination forecasts. Section 3 analyzes
the AMSE and AFR as alternative measures of forecast accuracy. Section 4 discusses the
choice of combination weights based on the APE criterion. Section 5 extends the analysis
to allow for lag order uncertainty in the construction of the forecasts. Monte Carlo evidence
including comparisons with various existing methods are provided in Section 6. Section 7
details an empirical application to forecasting US macroeconomic time series. Section 8 offers
concluding remarks and some directions for future research. Supplementary Appendices A

and B (not for publication) contain the proofs and additional simulation results, respectively.
2 Model and Estimation

We consider a univariate time series y; generated as follows:

Yr = My + Uy
my = Bo + Bit + ... + Byt?
U = QUp—1 + 1 Aus_1 + -+ + apDAuy_y, + €

azl—i—%c, a=1—a;—--—a ¢<0 (1)

where p € {0, 1} is the order of the trend component and the stochastic component u; follows
a finite order autoregressive process of order (k + 1) process driven by the innovations e;.
The uncertainty about the stochastic trend is captured by the persistence parameter o that
is modeled as local-to-unity with ¢ = 0 corresponding to the unit root case and ¢ < 0 to the

stationary case. The initial observations are set at ug, u_1,--- ,u_ = Op(1).* This section

2The conclusion for the subsequent analysis will not be affected as long as the initial observations are
0,(T1/?).



treats the true lag order k as known. Lag order uncertainty is addressed in section 4. Our

analysis is based on the following assumptions:

Assumption 1 The sequence {e;} is a martingale difference sequence with F(e;|F;_1) =
0 and E(e?|Fi_1) = o2, where 0 < 0 < oo, and F; is the o-field generated by {es; s < t}.
Moreover, there exists small positive numbers ¢ and ¢o and a large positive number My such
that for 0 < s —s' < ¢o,

Sup | Fomovn (8) = Frmov,, ()] < Ma(s — )™,
1<m<t<oo, [|[vim|=1
where Vi, = (U1, ., 0) € R™, v || = 3770 0% and Fy oy, (.) denotes the distribution of
Z?il Vi€t41-1-

Assumption 2 All roots of A(L) =1 — Zle a; L' lie outside the unit circle.

The data generating process in (1) and Assumptions 1-2 are adopted from Hansen (2010a)
with an additional restriction on the distribution of{e;} which ensures that the sample second
moments of the regressors are bounded in expectation (see Ing et al., 2009). For h > 1, let the
optimal (infeasible) mean squared error minimizing h-step ahead forecast of y; be denoted
tian- It is the conditional mean of y;., given F;, which is obtained from the following
recursion (Hamilton, 1994, p. 80-82):

peen = 2B+ a(pena = 21 B8) + 01 (Dpegn—1 — Azpyy 4 B)
+ oA ap(Dptrynr — Dz, 1) @

with e j =44 if j <0; B=fpand z, =11if p=0; 8= (6o, /1) and 2, = (1,¢) if p=1.
We can further rewrite (2) as

k

ferh = 23"+ apiegn—1 + Z PYAVIWA (3)
=1

where 3* = (1—a)fy if z = 1 and 3 = (55, 8;)" with 55 = (1—)fo+(a= 35, @), B =
(1 —a)py if z, = (1,¢).
We consider three alternative estimators of p;, 5. The first is the unrestricted estimator

flt+n obtained as
k

flevh = Z£+hB* + Qg p1 + Z FYAVINA (4)
=1



N

with fies; =y if j < 0 where (5%, &, &;) are the OLS estimates from the regression

k
ys = 2.0% + ays1 + ZajAyS_j +es, s=k+2,..,T
j=1

Instead of using (4), one may consider a two-step strategy for estimating pi;,, that entails
regressing y; on z; and obtaining the estimate B of 5 and the residuals 4; = 1y, — zéB in a first
step and then estimating an autoregression of order k + 1 in @; to obtain the estimates of
(e, a1, ..., ). The forecasts are obtained from (4). However, as shown in Ng and Vogelsang
(2002), the one-step estimate fi;1, is preferable to the two-step estimate with persistent data.

The second estimator is the restricted estimator ji;,, that imposes the unit root restriction
a =1 and is obtained as

k

Tiern = Dz, B 4 Hgn1 + Z ALy hj
j=1

with fiyy; = y4; if j <0 where (5*, a, a;) are the OLS estimates from the regression

k
Ay, = AZLG* + ZajAyS_j +es, s=k+2..,T

j=1
Finally, the third estimator is based on taking a weighted average of the unrestricted and

restricted forecasts. Letting w € [0, 1] be the weight assigned to the unrestricted estimator,

the averaging estimator is given by

frr+n(w) = Whigrn + (1 — w)figsn
The relative accuracy of the three foregoing estimators can be evaluated using the asymptotic
forecast risk (AFR) which is the limit of the h-step ahead expected squared forecast error:
T 5
fole,p K h) = Tlgfolo ;E(MTM — HT+h)

T
file,p,k,h) = lim _2E<,UT+h - MT+h)2

T—oo O

T
fw(cvpa k7 h) = lim _2E<,U/T+h(w) - ,LLT+h)2

T—oo O

In order to derive analytical expressions for the AFR, we introduce the following notation.

Let W(.) denote a standard Brownian motion on [0, 1] and define the diffusion process
AW, (r) = cWe(r) + dW (r)
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For p € {0,1}, let X.(r) = (r?, W,(r))" and define the stochastic processes

. W(r) if p=0
WC (T7 p) = 1

We(r) — [, We(s)ds if p=1

. X.(r) it p=0
XC (T, p) - 1

Xe(r) — [y Xe(s)ds if p=1
and the functionals
Toe = —cWi(1,p) + I(p = )W (1)

T = X*(Lp) ( / X)X p>')_1 / X2 )W)+ 1o = DIW()

Next, note that from (1), we can write

h-1
Yien = Buyen) + Y bierin

=0
where Fy(.) denotes conditional expectation with respect to information at time ¢ and the
coefficients b; (j = 0,...,h — 1) are obtained by equating coefficients of L’ on both side of

the equation
b(L)d(L) =1

where b(L) = Z?;é b;L7 and d(L) = 1 —aL — (1 — L) Zle a;L7. When a = 1, b; =
S v, vo=1and vj; j > 1, satisfies 1 + >o2 vl = 1/A(L) [see Ing et al., 2009).
Denoting a(k) = (aq, ..., ag)’, we define the following quantities:

Sy (k) = ok =1) L . S0 (k) =1,

/
Ok 0%—1

M) = Y Sl ), D) = lim B (B)s,(8)). 5i(F) = (B, Ay i)

J—00

0 itk=0

gn(k) = .
tr (D (k) M, (KDY (k)M (k) if k> 1

With the above notation in place, we have the following result which provides an analyt-

ical representation for the AFR of the unrestricted and restricted forecasts:



Theorem 1 Under Assumptions 1-2 and sup, E(|e,|™) < oo, where 0, = max{8, 2(h +
2)} for some 6 > 0,

(@) fale.p k. h) = file,p.h) + on(h), fulep, ) = (Shdny) E(TR)

(8) fole,p, k) = folep. ) + an(k), Fole.p, ) = (Sosty) B(TR)

Theorem 1 shows that the AFR of both the restricted and unrestricted forecasts can be
decomposed into two components: the first component f;(c,p, h), j = 0,1, depends on both
the underlying stochastic/deterministic trends as well as the short-run dynamics through the
coefficients {b;}; the second component gy, (k) is common to the restricted and unrestricted
estimators and depends on the parameters governing the short-run dynamics of the time
series. The result generalizes Theorem 2 of Hansen (2010a) for one-step forecasts to multi-
step forecasts. Interestingly, when h = 1, the AFR can be expressed as the sum of a purely
nonstationary component representing the stochastic/deterministic trends (since by = 1) and
a stationary short-run component which is simply the number of first-differenced lags, i.e.,
g1(k) = k. However, as Theorem 1 shows, when h > 1, such a stationary-nonstationary
decomposition no longer holds since both components now depend on the short-run coeffi-
cients {a;}. Theorem 1 also generalizes Theorem 2.2 of Ing et al. (2009) which derives an
expression for AFR assuming an exact unit root (¢ = 0) and no deterministic component.

The next result, which follows as a direct consequence of Theorem 1, shows that the
optimal combination weight is independent of the forecast horizon and the moving average

coefficients {b;} but depends on the nuisance parameter c:

Corollary 1 The AFR of the combination forecast is given by

fuwle,p, Kk, h) (Z b; ) {wQE(ch) + (1 —w)?B(TE) + 2w(1 — w)E(TlcTOC)} + gn(k)

with optimal (i.e., AFR minimizing) weight
E(TOQC) — E(TOchc)
E(T5.) + E(T7,) — 2E(TocThe)

*

w =

3 Asymptotic Mean Squared Error and Asymptotic Forecast Risk

An alternative measure of forecast accuracy is the in-sample asymptotic mean squared error

(AMSE) defined as
T—h

1
my(c,p, k,h) = lim — ZE flesh — fesn)’



for the unrestricted estimator with similar expressions in place for the restricted and averag-
ing estimators. Hansen (2008) establishes the approximate equivalence between this measure
and the AFR under the assumption of strict stationarity. Accordingly, existing forecast com-
bination approaches developed in the stationary framework are based on targeting the AMSE
by appealing to its equivalence with the AFR. Hansen (2008) proposes estimating the weights
by minimizing a Mallows (2000) criterion which yields an asymptotically unbiased estimate
of the AMSE. Similarly, Hansen (2010b) demonstrates that a leave-h-out cross validation
criterion delivers an asymptotically unbiased estimate of the AMSE.

This equivalence result, however, breaks down in a nonstationary setup. For instance,
when the process has a unit root with no drift and the regression does not include a deter-
ministic component, it follows from the results in Hansen (2010a) that the AMSE of the one-
step ahead forecast coincides with the expected value of the squared limiting Dickey-Fuller
t-statistic. This expectation has been shown to be about 1.141 by Gonzalo and Pitarakis
(1998) and Meng (2005) using analytical and numerical integration techniques, respectively.
In contrast, Ing (2001) theoretically establishes that the AFR of the one-step ahead forecast
for the same data generating process and regression is 2. More recently, Hansen (2010a)
demonstrates the lack of equivalence within a local-to-unity framework showing that the
AMSE of unrestricted as well as restricted (imposing a unit root) one-step ahead forecasts
are different from the corresponding expressions for their AFR in autoregressive models with
a general lag order and a deterministically trending component. Notwithstanding this result,
he suggests using a Mallows criterion to estimate the combination weights and evaluates the
adequacy of the resulting combination forecast in finite samples via simulations. A simi-
lar approach is taken by Kejriwal and Yu (2021) who also employ Mallows weighting but
estimate the deterministic component by FGLS in order to improve upon the accuracy of
OLS-based forecasts.

To illustrate the failure of equivalence, Figure 1 plots the AMSE and the AFR of the
unrestricted estimator for the case p = 0 and k& = 0.® The figure clearly illustrates that while
the two measures of forecast accuracy follow a similar path for ¢ sufficiently far from zero,
they tend to diverge as the process becomes more persistent. This pattern remains robust
across different forecast horizons and suggests that a forecast combination approach that
directly targets AFR instead of AMSE can potentially generate more accurate forecasts of

highly persistent time series when forecast risk is used as a metric for forecast evaluation.

3The figure was obtained by simulating the AMSE and AFR assuming i.i.d. normal errors with 7' = 1000.
5000 replications were used.



4 Choice of Combination Weights

The optimal combination forecast fi;,(w*) is infeasible in practice since the weight w* de-
pends on the unknown local-to-unity parameter ¢ that is not consistently estimable. Given
the lack of equivalence between AMSE and AFR for nonstationary time series as discussed
in the previous section, we pursue an alternative approach to estimating the combination
weights that directly targets the AFR, which is a more direct and practical measure of fore-
cast accuracy than AMSE. In particular, the estimated weight @ is obtained by minimizing
the so-called Accumulated Prediction Errors (APE) criterion defined as

APEw) = 3 {yin — fin (@)} = 3 {wlyien — esn) + (1 — w)(in — T} (5)

i=mp i=mp

with respect to w, where w € [0, 1], fi;4p(w) is the h-step ahead combination forecast based
only on data up to period i, and m;, denotes the smallest positive number such that the

forecasts fi;1, and ;1) are well-defined for all i > my,. The solution is given by
—h ~ —h A ~
Z?:mh(yi-‘rh — itn)® — ZzT:mh (Yitn — Bivn) Yirn — Hith)
~h po ~h - ~h - ~
ZiT:mh<yi+h — Ritn)? + ZiT:mh@Hh — flisn)? — 2 Eiszh (Yirn = flin) (Yien — Hisn)
The APE criterion with h = 1 was first introduced by Rissanen (1986) in the context of

model selection. Wei (1987) derives the asymptotic properties of APE in general regression

w =

models and specializes his results to stationary and nonstationary autoregressive processes
with h = 1. Ing (2004) demonstrates the strong consistency of the APE-based lag order
estimator in stationary autoregressive models for A > 1. In particular, he shows that a
normalized version of the APE converges almost surely to the AFR in large samples. Ing et
al. (2009) extends the analysis to autoregressive processes with a unit root. The results in
Wei (1987), Ing (2004) and Ing et al. (2009) all rely on the law of iterated logarithm which
ensure that, in large samples, APE is equivalent to logT" times the AFR, almost surely. It
is, however, important to note that while this convergence result holds pointwise for |a| < 1,
they do not hold uniformly over . In particular, it does not hold in the local-to-unity setup
considered in this paper for ¢ < 0.* Nevertheless, the following result shows that the APE
criterion remains asymptotically valid in the current framework at the two limits of ¢ which

represent the unit root and fixed stationary cases:

4To illustrate the lack of uniformity, consider the case p = 1 with k = 0. Using the same arguments as
in the proof of Theorem 2 of Yu et al. (2012), it follows that, for any finite ¢ < 0, Z;‘F:_,f’ {yisn — frign} =
E(TE)logT + 0,(log T), where E(TZ) = 6. The lack of uniformity follows since E(TZ) # E(T%) for any
c<O0.
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Theorem 2 For a given k, let APEy = ZiT:_niLh {Yisn — Tiizn}>, APE; = ZiT:_Tsh {Yiin — frizn}>
Under Assumptions 1-2 and sup, E(|e;|”) < 0o, for some r > 2,
(a) For c = O(T), limr_.s (c*logT)™! (APEl — S rn 2h) =lim. ., o fi(e,p, k, h).

i:mh 771

(b) limg_o limpo (02 log T)™" <APE0 e ngh) — lim, o folc, p, k. h).

Remark 1 In a similar vein, Hansen (2010a) develops feasible combination weights by eval-
uating the Mallows criterion at the two limits of ¢, given that the criterion depends on ¢ and
is therefore infeasible in general. Thus, while his analysis demonstrates that the infeasible
Mallows criterion is an asymptotically unbiased estimate of the AMSE for any c, the fea-
sible version of the criterion remains valid only in the two limit cases. When estimation
is performed using FGLS instead of OLS, Kejriwal and Yu (2021) show that the infeasible
Mallows criterion also depends on the parameter a in (1) which governs the short-run dy-
namics. Fvaluating the criterion at the two limits, however, eliminates the dependence on

both nuisance parameters.

Figure 2 plots the AFR of the optimal (infeasible) and APE-based combination forecasts
for p = 1 and &k = 0.° For comparison, the unrestricted and restricted forecasts are also
presented. As expected, the forecast risk of the restricted estimator increases with |c¢| while
the risk function of the unrestricted estimator is relatively flat as a function of c¢. Regardless
of the forecast horizon, the feasible combination forecast maintains a risk profile close to that
of the optimal forecast. In particular, the risk of the APE-weighted forecast is uniformly
lower than that of the unrestricted estimator across values of ¢ as well as lower than that
of the restricted estimator unless ¢ is very close to zero. These results suggest that the
loss in forecast accuracy due to the unknown degree of persistence is relatively small when
constructing the combination weights based on the APE criterion. In sections 5 and 6, we
will conduct an extensive comparison of the APE-based combination forecasts with both the

Mallows and cross-validation based combination forecasts.

5 Lag Order Uncertainty

This section extends the preceding analysis to the case where the lag order k is unknown.
In order to accommodate lag order uncertainty, the set of models on which the combination
forecast is based needs to be expanded to include models with different lag orders. Such

a forecast can potentially trade off the misspecification bias inherent from the omission of

>This figure was obtained using the same method as Figure 1.
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relevant lags against the problem of overfitting induced by the inclusion of unnecessary lags.
We include sub-models with | € {0,1,..., K}, K > k, with the corresponding restricted
and unrestricted forecasts given by 11;(1) and fi;(1), respectively. We consider two types of
combination forecasts. The first is a “partial averaging” forecast that only addresses lag
order uncertainty by averaging over the K + 1 unrestricted forecasts:
K
feen(W) =D (1) (6)

=0

The weights W = (g, W1, ..., Wg)" are obtained by minimizing the APE criterion

APEp(W) = z_: {Z [wi(Yirn — ﬂi+h(l))]} (7)

i=mp, =0

where w; > 0 (I = 0,..., K), Zzlio w; = 1. We refer to (6) as the APE-based Partial
Averaging (APA) forecast.
The second forecast is a “general averaging” forecast that accounts for both persistence

and lag order uncertainty and thus combines the forecasts from all 2(K + 1) sub-models:
K
fiean(W) = ) (ufie(l) + doufie(1)) (8)
1=0
The weights W = (Wo1, Wo2, .-+, Wogc, W11, W12, ..., W1k ) are obtained by minimizing a gener-
alized APE criterion of the form

=0

T-h ( K 2

APE(W) =) {Z w1 (Yisn — flivn(l)) + wou(Yirn — ﬁi+h(l))]} (9)
i=mp

where wy; > 0,wy; >0 (1 =0,..., K), Z{io(wm—}—wll) = 1. We refer to (8) as the APE-based

General Averaging (AGA) forecast. Comparing the APA and AGA forecasts will serve to

isolate the effects of the two sources of uncertainty on forecast accuracy.

6 Monte Carlo Simulations

This section reports the results of a set of Monte Carlo experiments designed to (1) evaluate
the finite sample performance of the proposed approach relative to extant approaches; (2)
quantify the importance of accounting for each source of uncertainty in terms of its effect on

finite sample forecast risk. Section 6.1 lays out the experimental design. Section 6.2 details

12



the different forecasting procedures included in the analysis. Sections 6.3 and 6.4 present
the results. Results are obtained for p € {0,1}. For brevity, we report the results only for
p = 1. The results for p = 0 are qualitatively similar, although the improvements offered by
the proposed approach are more pronounced for p = 1 than p = 0. The full set of results is

available upon request.

6.1 Experimental Design

We adopt a design similar to that in Hansen (2010a) and Kejriwal and Yu (2021) to facilitate
direct comparisons. The data generating process (DGP) is based on (1) and specified as
follows: (a) the innovations e; "N (0,1); (b) the trend parameters are set at fy = 1 =
0; (c) the true lag order k € {0,6,12} with a; = —(—6)? for j = 1, ...,k and # = 0.6. The
maximum number of first-differenced lags included is set at K = 12. The sample size is set
at T € {100, 200}. The local-to-unity parameter ¢ varies from —20 to 0, implying « ranging
from 0.8 to 1 for 7" = 100 and « ranging from 0.9 to 1 for 7" = 200. At each ¢ value, the
finite-sample forecast risk TE [(fiz1n — pirsn)?] is computed for all estimators considered,
where h € {1,3,6,12}. All experiments are based on 10,000 Monte Carlo replications.

We report two sets of results. The first assumes k is known thereby allowing us to
demonstrate the effect of persistence uncertainty on forecast accuracy while abstracting from
lag order uncertainty. The second allows k to be unknown and facilitates the comparison
between forecasts that address both forms of uncertainty with those that only account for

lag order uncertainty.

6.2 Forecasting Methods

Unrestricted Autoregressive Model (Benchmark). The benchmark forecast is calcu-

lated from a standard autoregressive model of order K + 1 estimated by OLS:
K

Y = By + Bit + o1 + Z a;Ay_j + €,
j=1

Mallows Selection. Hansen (2010a) demonstrates the validity of the Mallows criterion
for selecting between the restricted and unrestricted models when h = 1. When the number
of lags k is known, the criteria for the restricted and unrestricted models are, respectively,
given by

My =T5% + 26°(p + k)
M, =T6*+26*(2+p+ k)
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where 5% = T2 (y, — i1)? and 02 = T~' 2] (1, — fu)>. The Mallows selection esti-
mator picks the restricted model if My < M; and the unrestricted model otherwise. This
is equivalent to picking the unrestricted model when Fr = T(2 _“2) > 4. The Mallows

selection forecast can then be expressed as fiy1n v = flern1(Fr > 4) + fien 1(Fr < 4). When

the number of lags is unknown, the relevant Mallows criteria are obtained as (see Kejriwal
and Yu, 2021):

My(l) = T&? 4 26%(p + 1)
Mi(l) =Té67 +265%(2+p+1)

T
for 1 =0,1,..., K, where 67 =T~ Z(yt ()% j=1Kand 67 = T > (y: — m(1))*
=1
Then, defining [ = arg mmleg{Mo( )}, [ = argmineg{M:(l)}, where S = {0,1, ..., K}, the
Mallows selection forecast is obtained as
frpn(D), if mines{My(1)} < minjes{Mo(1)}

lat-i‘h,M - - ~ . . .
fern(l), if mineg{M;(l)} > mines{Mo(l)}

Mallows Averaging. As an alternative to Mallows selection, Hansen (2010a) develops
the Mallows combination forecast that entails taking a weighted average of the unrestricted
and restricted forecasts where the weights are chosen by minimizing a Mallows criterion.

When the number of lags is known, the criterion is

My = (n 24 2622w+ p+ k) (10)

t=1

with f;(w) = wiy, + (1 —w), and 62 =T~ Z(yt fi:)%. The Mallows selected weight 1 is

derived from minimizing (10) over w € [0, 1] The solution is

. 1-— 2/FT Zf Fr>2
w =
0 otherwise

The Mallows averaging estimator is then defined as

(1- F%)ﬂﬁh + FlTlN/JHh if Fr>?2

fivh otherwise

(11)

frepnar (W) = Wy + (1 — D) flgyp =
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When the number of lags is unknown, Hansen (2010a) considers two alternative Mallows
combination forecasts. The first is the so-called partial averaging forecast that averages
only over unrestricted forecasts that vary according to the number of first-differenced lags

included. With a maximum of K lags, this forecast is given by
K
fisn (W) = Zwlﬂwh(l) (12)
1=0
where W = (i, w1 ..., W)’ minimizes the criterion (with fi,(W) = S wifie (1)),

Mp(W) = Z(yt — i (W))? + 262 (Z[wz(2 +1 —|—p)])

t=1 1=0
subject to the restrictions w; > 0 (j = 0,1,...K), Z]K:O w; = 1. The second combination
forecast is the so-called general averaging forecast that averages over the forecasts from all
2(K + 1) models that include the (K + 1) restricted models. This forecast is given by

K

fiesnat (W) =Y (bufieen(l) + dorfiz (1)) (13)

1=0
with W = (W00, Wo1s -y Wokc, W10, W11, W12, ..., Wi ) minimizing the criterion (with (W) =
S (woifir(1) + wujie(1)),

Ma(W) = (e — fi(W))* + 26% (Z[wozl +wu(2+1)] +p>

t=1 1=0
where the weights are non-negative and sum to one: wy; > 0, wqy > 0, Zlfio(wol +wy) = 1.

In what follows, we will refer to (12) and (13) as the MPA (Mallows Partial Averaging) and
MGA (Mallows General Averaging) forecasts, respectively.

Leave-h-out Cross Validation Selection. Hansen (2010b) provides theoretical justi-
fication for constructing h-step ahead forecasts using leave-h-out cross validation under the
assumption that the data are strictly stationary. For model selection with a known number of
lags, let C'Vy and C'V; denote the cross-validation criteria for the restricted and unrestricted
models, respectively. These criteria are computed as

T—h

Vo= (yn — A,)? (14)
t=k+1
T—h

CVi= Y (ywn — inn)? (15)
t=k+1
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(®)

ion and ﬂg?h are the restricted and unrestricted leave-h-out forecasts, respectively.

Specifically, ﬁgh is obtained using parameter estimates from the restricted model after leav-

ing out the observations {t + 1,....t + h}":

where /i

k
:BS+Zakij—s+€j, JAEt+1,.. t+h

s=1
Similarly, ut +h is obtained from estimating the unrestricted model after leaving out the
observations {t + 1,...,t + h}:

k

yj =B+ B1J + oy + ZOékijfs +e, JjFt+1, ., t+h
s=1

Then the cross-validation based forecast is
furncv = furnl(CVo > CVi) + n 1(CVy < CVY)

When the number of lags is unknown, the cross-validation criterion is computed for each of
the 2(K + 1) possible models and the selected forecast is the one that corresponds to the
model with the minimum value of this criterion.

Leave-h-out Cross Validation Averaging. When the number of lags is known, the

cross validation weights (w,1 — ) are obtained by minimizing the criterion

T—h

2
V= 3 {wlgeen = 1) + (1= w)(yern — i) }

t=k+1

and the resulting forecast is fiyypn.cv (W) = Wity + (1 — W) fig+n. When the number of lags
is unknown, the partial combination forecast that only combines the unrestricted forecasts

with different lags is obtained as
frinov(W) = dujin(l) (16)

where W = (g, W;..., g ) minimizes the criterion

T—h

OVP( Z {Zwl Yt+h — Mtlh(l))} (17)

t=k+1

SHansen (2010b) instead leaves out the 2h—1 observations {t—h+1,...,t,t+1,...,t+h—1}. The difference
emanates from the fact that he constructs direct forecasts while our forecasts are constructed iteratively which
exploit the autoregressive structure and hence necessitate leaving out only the h observations {¢t+1,...,t+h}.
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subject to the restrictions w; > 0 (j = 0,1, ...K), Z]K:O w; = 1, and ﬂgh(l) is the unre-
stricted leave-h-out forecast assuming [ first-differenced lags. As with weight selection using
the Mallows criterion, we also construct a general combination forecast that combines fore-
casts from the K +1 unrestricted models as well as the K +1 restricted models. This forecast

is given by

K
fiesnov(W Z W1y flan (1) + Worfiern (1)) (18)
=0

with W = (g1, Wog, ..., Wor , W11, W12, -.., W1k ) minimizing the criterion

VW) = Y {Z wu(gen = i (D) + wo(yeen = i2,(0)] }

t=k+1 =0

where wy > 0,we > 0,31 (wo + wy) = 1, ﬂgh(l) is as defined in (17) and ﬁgzh(l) is

the restricted leave-h-out forecast assuming [ first-differenced lags. In what follows, we will
refer to (16) and (18) as the CPA (Cross-Validation Partial Averaging) and CGA (Cross-

Validation General Averaging) forecasts, respectively.

APE Selection. With a known number of lags, this forecast is computed from the

model that corresponds to the lower APE between the restricted and unrestricted models:

ﬂt—&—h,S = /ALH_h](APEO > APEl) + /jt+h](APE0 < APEl)

APE, = Z {Yisn — Rin}’, APEy = {Yisn — fin}’
i=mp, =my
In the unknown lags case, the forecast is computed from the model that minimizes the
APE criterion among all 2(K + 1) possible models, comprising the K + 1 restricted and
K + 1 unrestricted models.

APE Averaging. The APE combination forecasts are constructed as described in
Section 3 and 4 by minimizing the weighted accumulated sum of prediction errors. When
the number of lags is known, the relevant APE criterion for weight selection is given by
(5). With an unknown number of lags, we again have two different combination forecasts
depending on whether averaging accounts for both persistence and lag order uncertainty
(general averaging) or only the latter (partial averaging). The general averaging forecast,
denoted by AGA, is constructed by estimating the weights from the criterion (9). For the
partial averaging forecast, denoted by APA, the weights are computed from a version of (7)

that only considers the set of unrestricted models for different lags.
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Both the APE selection and combination forecasts require a choice of my. To our knowl-
edge, no data-dependent methods for choosing m, are available in the existing literature.
We therefore examined the viability of alternative choices via simulations. Specifically, for
each persistence level (value of ¢), we computed the minimum forecast risk over all values
of my, in the range [15,70] with a step-size of 5 (assuming a known number of lags k).
While no single value was found to uniformly dominant across persistence levels/horizons,
my, = 20 turned out to be a reasonable choice overall.” To justify this choice, Figure B.1 in
Appendix B plots the difference between the optimal forecast risk and the risk of the APE
selection forecasts for m; = 20 expressed as a percentage of the forecast risk for m; = 20.
The corresponding results for the APE combination forecasts are presented in Figure B.2. It
is evident that using mj, = 20 entails only a marginal increase in forecast risk (at most 5%)
for the combination forecasts over the optimal forecast risk across different persistence levels
and horizons. In contrast, the optimal choice of my for the selection forecasts is somewhat
more unstable and appears to depend more heavily on the forecast horizon and the level
of persistence. This robustness in behavior provides additional motivation for employing a

combination approach to forecasting in practice.

6.3 Forecast Risk with Known Lag Order

Figures 3-5 plot the risk of the three selection and three combination forecasts for known
k described in Section 6.2 relative to the benchmark. Consider first the case £ = 0. Sev-
eral features of the results are noteworthy. First, the selection forecasts typically exhibit
higher risk than the corresponding combination forecasts across sample sizes and horizons.
Second, when 7" = 100, the APE combination forecast is clearly the dominant method,
performing discernibly better than forecasts based on either of the two competing weight-
ing schemes. When 7' = 200, its dominance continues except when |c| is sufficiently large
(the exact magnitude being horizon-dependent) in which case the benchmark delivers the
most accurate forecasts and averaging over the restricted model becomes less attractive.
Third, the relative performance of the Mallows and cross-validation weighting schemes de-
pends on the horizon: at h = 1, the two schemes yield virtually indistinguishable forecasts;
when h € {3,6}, Mallows weighting yields uniformly lower risk over the parameter space;
at h = 12, Mallows weighting is preferred when persistence is high (¢ close to zero) while

cross-validation weighting dominates for lower levels of persistence.

"This choice was also adopted by Ing and Yang (2014) in their Monte Carlo analysis of forecasting using
autoregressive models with positive-valued errors.
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In the presence of higher order serial correlation (k > 0), the superior performance of
the APE combination forecast becomes even more evident: it now dominates all competing
forecasts regardless of horizon and sample size. In particular, APE weighting outperforms
the benchmark at all persistence levels even at T' = 200, unlike the £ = 0 case. The
intuition for this difference in relative performance between the cases with and without
higher order serial correlation is that in the former case, averaging is comparatively more
beneficial since imposing the unit root restriction can potentially reduce the estimation
uncertainty associated with the coefficients of the lagged differences. This reduction in
sampling uncertainty in turn engenders a reduction in the overall risk of the combination
forecast relative to the unrestricted benchmark forecast. Another notable difference from
the £ = 0 case is that while Mallows and cross-validation weighting are comparable for

h € {1, 3}, the former now dominates for h € {6, 12} uniformly over the parameter space.

6.4 Forecast Risk with Unknown Lag Order

When the lag order is unknown, we evaluate the performance of six combination forecasts,
relative to the benchmark, of which three account for both persistence and lag order un-
certainty (MGA, CGA, AGA) and three that only account for lag order uncertainty (MPA,
CPA, APA).® Figures 6-8 plot the relative risk of the different methods. A clear implica-
tion of these results is that general averaging methods typically exhibit considerably lower
forecast risk than partial averaging methods unless the process has relatively low persistence
in which case averaging over the unit root model increases the forecast risk incurred by the
general averaging methods. The improvements offered by general averaging hold both across
horizons and the number of lags (k) in the true DGP and become more prominent as the
sample size increases.

Among the three weighting schemes, APE-based weights are the preferred choice except
when h € {6,12} and 7" = 100 where Mallows weighting turns out to be the dominant
approach if persistence is relatively low. A potential explanation for this result is that with
long horizons and a small sample size, the APE criterion is based on a relatively smaller
number of prediction errors which increases the sampling variability associated with the
resulting weights thereby increasing the risk of the combination forecast. As in the known lag

order case, the choice between Mallows and cross-validation weighting is horizon-dependent:

8We do not report the results for the selection forecasts since their performance relative to the combination
forecasts is qualitatively similar to the known lag order case. The results are nevertheless available upon
request.
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when h = 1, cross-validation weighting is preferred while when h > 1, Mallows weighting is
preferred with the magnitude of reduction in forecast risk increasing as h increases.

In summary, the results from the simulation experiments make a strong case for employing
APE weights when constructing the combination forecasts and clearly highlight the benefits
of targeting forecast risk rather than in-sample mean squared error. The comparison of
general and partial combination forecasts also underscore the importance of concomitantly
controlling for both stochastic trend uncertainty and lag order uncertainty in generating

accurate forecasts.

7 Empirical Application

This section conducts a pseudo out-of-sample forecast comparison of the different multistep
forecast combination methods using a set of US macroeconomic time series. Our objectives
are to empirically assess (1) the efficacy of different averaging/selection methods relative
to a standard autoregressive benchmark; (2) the importance of averaging over both the
persistence level and the lag order; and (3) the relative performance of alternative weight
choices for constructing the combination forecasts at different forecast horizons.

Our analysis employs the FRED-MD data set compiled by McCracken and Ng (2016)
containing 123 monthly macroeconomic variables over the period January 1960 - Decem-
ber 2018.° McCracken and Ng (2016) suggest a set of seven transformation codes designed
to render each series stationary: (1) no transformation; (2) Ay; (3) A2y;; (4) log(y:); (5)
Alog(y;); (6) A? log(y); (7) A(ye/ys—1 — 1). To ensure that the series fit our framework
that allows for highly persistent time series with/without deterministic trends, we adopt the
following transformation codes as modified by Kejriwal and Yu (2021): (1’) no transforma-
tion; (2') yi; (37) Ay, (47) log(ys); (57) log(ys); (67) Alog(yy); (7°) ye/yi—1 — 1. For series
that correspond to codes (1’) and (4’), we construct the forecasts from a model with no
deterministic trend (p = 0), while for the remaining codes, we use forecasts from a model
that include a linear deterministic trend (p = 1). Besides analyzing the full data set, we also
report results for eight core series as in Stock & Watson (2002b), comprising four real and
four nominal variables.

As in the simulation experiments, four alternative forecast horizons are considered: h €
{1,3,6,12}. We use a rolling window scheme with an initial estimation period between
1960:01-1969:12 so that the forecast evaluation period is 1970:01-2018:12 (588 observations).

9The data set is publicly available for download at https://research.stlouisfed.org/econ /mccracken /fred-
databases/
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The size of the estimation window changes depending on the forecast horizon h. For example,
when h = 1, the initial training sample contains 120 observations from 1960:01-1969:12 while
for h = 3, it contains only 118 observations from 1960:01-1969:10. This ensures that the
forecast origin is 1970:01 for all forecast horizons considered. We compare ten different
methods in terms of the mean squared forecast error (MSFE) computed as the average of
the squared forecast errors: (1) MPA: Partial Mallows averaging over the number of lags
only in the unrestricted model; (2) MGA: General Mallows averaging over both the unit root
restriction and the number of lags; (3) CPA: Leave-h-out cross-validation (CV-h) averaging
over the number of lags only in the unrestricted model; (4) CGA: Leave-h-out cross-validation
averaging over both the unit root restriction and the number of lags; (5) APA: Accumulated
Prediction Error averaging over the number of lags only in the unrestricted model; (6) AGA:
Accumulated Prediction Error averaging over both the unit root restriction and the number
of lags; (7) MS: Mallows selection from all models (unrestricted and restricted) that vary
with the number of lags; (8) CVhS: Leave-h-out cross-validation selection from all models
(unrestricted and restricted) that vary with the number of lags; (9) APES: Accumulated
Prediction Error Selection from all models (unrestricted and restricted) that vary with the
number of lags; (10) AR: Unrestricted autoregressive model (benchmark). The maximum
number of allowable first differenced lags in each method is set at K = 12. The benchmark
forecast is computed from unrestricted OLS estimation of an autoregressive model that
uses 12 first-differenced lags of the dependent variable and includes/excludes a deterministic
trend depending on the transformation code the series corresponds to as discussed above.

Specifically, the benchmark model takes the form:

« 12
Y = {50 +ay1 + Zj:l Ay + €, p=0 (19)

Bo + Bit + ay1 + 2]111 @Ay +e&, p=1

Table 1a (h = 1,3) and Table 1b (h = 6, 12) report the percentage wins and losses based on
the MSFE for the 123 series. Specifically, it shows the percentage of 123 series for which a
method listed in a row outperforms a method listed in a column, and all other methods (last

column). A summary of the results in Tables 1la and 1b is given below:

1. The averaging methods uniformly dominate their selection counterparts at all forecast
horizons. For instance, Mallows/cross-validation averaging outperform the correspond-
ing selection procedures in more than 90% of the series at each horizon. The perfor-
mance of AGA relative to APES is relatively more dependent on the horizon, with

improvements observed in 77% (65%) of the series for h = 1 (h = 12), respectively.
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2. Given a particular weighting scheme, averaging over both the unit root restriction and
number of lags (general averaging) outperforms averaging over only the number of lags
(partial averaging) at all horizons. For instance, when h = 1, MGA (CGA, AGA)
dominate MPA (CPA, APA) in 95% (81%, 79%) of the series, respectively, based on

pairwise comparisons. A similar pattern is observed for multi-step forecasts.

3. Across all horizons, AGA emerges as the leading procedure due to its ability to deliver
forecasts with the lowest MSFE among all methods for the maximum number of series
(last column of Tables 1a and 1b). This approach also dominates each of the competing
approaches in terms of pairwise comparisons. The APES approach ranks second among
all methods so that forecasting based on the accumulated prediction errors criterion
(either AGA or APES) outperforms the other approaches for more than 50% of the
series over each horizon (the specific percentages are 68.3% for h = 1,3; 57.7% for
h = 6; 55.3% for h = 12).

Next, we examine the performance of the forecasting methods for different types of series
based on their groupwise classification by McCracken and Ng (2016) in an attempt to uncover
the extent to which the best methods vary by the type of series analyzed. In particular,
McCracken and Ng (2016) classify the series into eight distinct groups: (1) output and
income; (2) labour market; (3) housing; (4) consumption, orders and inventories; (5) money
and credits; (6) interest and exchange rates; (7) prices; (8) stock market. For each of
these groups, Table 2 reports the method(s) with the lowest MSFE for the most number
of series compared to all other competing methods. We also report the number of horizons
in which (a) averaging outperforms selection and vice-versa; (b) averaging over both the
unit root restriction and number of lags (general averaging - GA) methods is superior to
averaging over only the number of lags (partial averaging - PA) and vice-versa; (c) each
of the three weighting schemes dominates the other two. The results are consistent with
those in Tables la-b and clearly demonstrate (1) the dominance of averaging over selection
(with the exception of Group 3) ; (2) the benefits of accounting for both stochastic trend
uncertainty and lag order uncertainty (GA) relative to only the latter (PA) for five out of the
eight groups; (3) the superiority of APE weighting over the two competing weighting schemes
(the exception is Group 5 where cross-validation weighting is the dominant approach).

Finally, we present a comparison of the different methods with respect to their ability in
forecasting the eight core series analyzed in Stock and Watson (2002b). Table 3 reports the
MSFE of the eight methods relative to the benchmark model (19) for four real variables (in-
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dustrial production, real personal income less transfers, real manufacturing and trade sales,
number of employees on nonagricultural payrolls) while Table 4 reports the corresponding
results for four nominal variables (the consumer price index, the personal consumption ex-
penditure implicit price deflator, the consumer price index less food and energy, the producer
price index for finished goods). To assess whether the difference between the proposed meth-
ods and the benchmark model is statistically significant, we use a two-tailed Diebold-Mariano
test statistic (Diebold and Mariano, 2002). A number less than one indicates better forecast
performance than the benchmark and vice versa. The method with smallest relative MSFE
for a given series is highlighted in bold.

Consider first the results for real variables (Table 3). The performance of the best
method is statistically significant (at the 10% level) relative to the benchmark in twelve
out of the sixteen cases. Consistent with the results in Tables la-b and 2, general averag-
ing typically dominates partial averaging, the exceptions being nonagricultural employment
for h < 6, industrial production at A~ = 12, and real manufacturing and trade sales for
h = 6,12, where APES is the dominant procedure. The AGA approach turns out to have
the highest relative forecast accuracy in 50% of all cases with the improvements offered over
rival approaches particularly notable at h = 12. While cross-validation weighting does not
yield the best forecasting procedure in any of the cases, Mallows weighting is the preferred
approach in only two cases although the improvements are statistically insignificant. Turning
to the results for nominal variables (Table 4), the best method significantly outperforms the
benchmark in ten cases. Again, general averaging is usually preferred to partial averaging,
the exception being the case h = 12 where APA outperforms all other methods for three
of the four variables. As with the real variables, the AGA forecast is the most accurate
in 50% of all cases though the improvements are now comparable across horizons. Finally,
cross-validation weighting redeems itself to some extent by providing the best forecast in
four cases while Mallows weighting is the preferred method is only one case.

In summary, the empirical results are consistent with the simulation results in finding
that (1) addressing both persistence uncertainty and lag-order uncertainty are crucial for
generating accurate forecasts; (2) a weighting scheme that directly targets forecast risk in-
stead of in-sample mean squared error yields an efficacious forecast combination approach

at all horizons.
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8 Conclusion

This paper develops new multistep forecast combination methods that can deal with the
sources of uncertainty pertaining to the nature of the underlying trends and the lag struc-
ture driving a time series. In contrast to existing methods based on Mallows/cross-validation
weighting, our proposed combination forecasts are based on constructing weights obtained
from an accumulated prediction errors criterion that directly targets the asymptotic forecast
risk instead of the in-sample AMSE. Our analysis finds strong evidence in favor of a version
of the proposed approach that simultaneously addresses stochastic trend uncertainty and lag
order uncertainty. Our preferred approach can potentially serve as a useful univariate bench-
mark when evaluating the effectiveness of methods that are designed to exploit information
in large data sets (e.g., Stock and Watson, 2002a).

We conclude with a discussion of three possible directions for future research. First,
the APE-based combination forecasts can potentially be used in conjunction with FGLS
estimation of the deterministic component, given that the latter has been shown to yield
improved forecasts over OLS estimation (Kejriwal and Yu, 2021). Second, while our approach
only considers a constant/linear trend for the deterministic component, it may be useful to
explore the possibility of allowing for nonlinear components through, say, the inclusion of
polynomial trends or a few low frequency trigonometric components (Gallant, 1981). To the
extent that the specific nonlinear modeling structure captures the observed nonlinearities,
such an approach may contribute to a further improvement in forecasting performance of the
methods analyzed in this paper. Third, and perhaps most challenging, while our numerical
and empirical analyses clearly document the desirability of the proposed approach based on
APE weighting relative to Mallows/CV weighting, an analytical comparison may shed further
light on the relative merits of the different methods. To our knowledge, such results are
primarily available in the context of the standard stationary framework with Mallows/cross-
validation weighting (e.g., Hansen, 2007; Zhang et al., 2013; Liao and Tsay, 2020). Extending

these results to the present nonstationary framework would be a potentially fruitful endeavor.
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Appendix A: Proofs

Let W(.) denote a standard Brownian motion on [0, 1] and define the diffusion process:
dW.(r) = cW.(r)+dW (r). For p € {0,1}, let X.(r) = (r?, W.(r))" and define the detrended
processes

. We(r) if p=0
W (r,p) = .
We(r) — [y We(s)ds if p=1
Xi(r,p) =

X.(r) — fol X(s)ds if p=1

and the functionals

T = —aW*(Lp) + I(p = DW(L)
=) ( X p) X ) X p)dW () + 1(p = YW (D).

Let 3= (8o, 5,) s z = (1,t). Without loss of generality, we assume that 5, = 8; = 0 in the
true data generating process. For a matrix A, ||A||> = sup,( =1 v'A’Av with ||v|| denoting the
Euclidean norm for vector v. Unless otherwise defined, for any variable x, we use x* to denote
its demeaned version. For a random quantity 6, we write § = dg+0,(do) as 6 = dp+s.0., where
s.o. represents a term of smaller order in probability. For brevity, all proofs are provided
only for the case p = 1. The proofs for p = 0 are simpler and follow analogous arguments.

We start by noting that if u; is generated by (1), it has the AR(k + 1) representation
Uy = f:ll a;uy_; + e;, where ay = a+ oy, a; = o; — a1 (i = 2,...,k), axr1 = —ag. The
companion VAR(1) form of the model is expressed as

Y, =BY, 1+
where

YIE = (17t+]-7yt7"’7yt—k)/7 Vi = (07076t707'”70)/

(k+3)x1 (k+3)x1
B, B, 11 00 .. 0
B(k‘—f-l) = ,Bl - y BQ -
(k+3) % (k+3) 0(k+1)><2 F (2x2) 01 2x(k+1) 00 .. 0
F ) P = e = ( y
=1|a , = . a(k) = (ai,...,a
(k4+1)x (k+1) 0;4; s ! A



With “hat” and “tilde” denoting the unrestricted and restricted OLS estimates, respectively,
the unrestricted and restricted forecasts can then be expressed as (see, e.g., Ing, 2003):

fren = yT(k"‘l),Bh_l& (A1)
fryn = yr(k+1)B"'5 (A.2)

A% Ak

where yp(k+1) =1, T+ 1, yr,...,yr—x), 7= By, By, a1, -, ag11) and

) B, B,
B(k+1) == ~ 9
(k+3)x (k+3) 0(k+1)><2 F
11 X 3.0 .. 0

Bl - ) B2 = ég

(2x2) 01 2x (k1) By 0 .. 0

; ) ) B = s (k) = (a1, i)’
(k+1)><(k+1) O;C 3 k+1, 1, y W1
N B B - 30 .. 0
Blk+1) = S DU A (A3)
(k+3)x (k+3) 0(k+1)><2 F 2x(k+1) 0 0 .. 0

The matrix F is constructed in the same way as F with a(k) replaced by a(k), where
a(k) = (@1, ... dps1) = (1 + Gy, dg — G, ..., O — 1, —g) With 5 = (B, 0,1, ..., Gyt

Next, we state a set of lemmas that will be useful in developing the proofs of the main
results. Lemmas A.1-A.4, A.7-A.9 below parallel Lemmas A.1-A.4, B.1-B.3 in Ing et al.
(2009) who assume an exact unit root (¢ = 0). Since the sample moments have the same
order whether ¢ = 0 or ¢ < 0, the proofs of the following lemmas also follow directly those
in Ing et al. (2009) and are hence omitted.

/

Lemma A.1 Suppose {y:} satisfies (1) and Assumptions (1)-(2). Then for any q > 0,
E[| R = O(1)

where
T-1

Ry =T7'Dr Y y;(k+1)y;(k+ 1) Dy’

j=k+1

A-2



with

Dy = dz’ag(l,Tﬁl, DT),

(k+3) x (k+3)

- - y-
Sl
=32

Dr =

(k+1) x (k+1)

Lemma A.2 Suppose {y;} satisfies (1) and Assumptions (1)-(2) and for some ¢ > 2,
sup Ele*t < co. Then for any 0 < q < q1,
—oo<t<oo
E||Rz' = Ry | = O(T~"?)

where

R; = diag(R;, Tr(k))

(k+3) x (k+3) 3x3  kxk
-1
TUT-1-k) T'Y X

P j=k-+1

R, = T—1 7]“71+
TS X, T?Y XX

j=k+1 j=k+1
X, = [T t+1), T2N], N; = A(L)y;
T—1
Pp(k) =T > s;(k)s;(k)

kit 1

Lemma A.3 Suppose {y;} satisfies (1) and Assumptions (1)-(2) with sup Ele|? <
—oo<t<oo
oo for some q > 2. Then,

-1
E([T72Dr > y;(k+ 1)ejpa||” = O(1)
j=k+1
Lemma A.4 Suppose {y:} satisfies (1) and Assumptions (1)-(2) with sup Ele|"” <

—oo<t<oo
oo for some r > 4.. Then,

lim E(Fry) =0

T—ro0

A-3



where

T—1 T-1 T-1
Fry= sT(k)/Mh(k:)f;l(k){ 3 sj(k;)ejﬂ}X/T( 3 Xij’)_l{ 3 XjejH}
j=k+1 j=k+1 Jj=k+1

Lemma A.5 Let X =[X1,X5], X;=(1,---,1), and assume X'X is invertible. Define

T x(p+1) Tx1 Txp

My = I —X{(X|X1)'X], X5 =M X,. For any T x 1 vector e and any p x 1 vector s,

we have o' (X'X) ' X'e = 21 (X| X1) ' Xje + o3 (X3 X3) 1 X3'e, where v = (x1,24), x1 =1,
ZE; = T9 — (X{Xl)ilXéXl

Lemma A.6 Under Assumptions (1)-(2), fTTBO 4, W.(1).

Lemma A.7 Under Assumptions (1)-(2) and sup FEle:|? < oo for some q > 2,

—oo<t<oo
(i) For some ky > 0, ||T'(k) — D(k)|| = o(T~™) a.s.;
(i1) For some ky > 0, ||[Rr — Rp|| = o(T™"2) a.s.;
(i) ||R7'| = O(loglog T) a.s..

Lemma A.8 Under Assumptions (1)-(2) and sup Ele)|? < oo for someq > 2,3

—OO OO

1=mp iJf_

o(T) a.s., where

Fip = si(k)'Mh(k)fi_l(k){ i 55 e]H} Z X, X/) { Z X; e]H}

j=k+1 J=k+1 Jj=k+1
Lemma A.9 Let {xr} be a sequence of real numbers.
(i) Ifxp > 0,771 Zle z; = O(1), and for some & > 1,1%12}1(1)15 vy /TS > 0, then, Zle IR
o(1);
(i) If T—1 er:l x; = o(1), then, Z;‘.le z;/j = o(logT).
Proof of Lemma A.5. Note, by block matrix inversion,

-1

XIX) X!X,
XLX: XLX,

(XX =

(X1X0) ™+ (XX0) T XX (X M Xo) I X X (X XG) ™ — (X X0) T X X (XM Xo) ™
— (XM X)X X (X X)) ™ (X5 M Xp) ™

then
(X{Xl)ilX{ [I — XQ(X%M1X2)71X5M1]€

(X'X) ' X'e =
(XéMlXQ)_1XéM1€

A4



Recall © = (z1,25) = (z1,2%) + (0, X] Xo( X[ X1) ™), we have,

(X' X)X e = [(21, 23)|(X' X)X e 4+ [(0, X Xo( X1 X)) H(X'X) 1 X e
Te?r?ll Te?l?l 2
:(’L'l(Xin)ilX{[[ — XQ(X5M1X2)71X£M1]€ =+ 1'2 (X Mng) 1XéM1€

~~
Term 1

+ X1 Xo (X1 X)) H XM X)X Me
Torm 2 .
=11 (X X)) ' X e + 2y (XIM Xo) X Me
= (X1 X0) T X X (X My Xo) T X Mie + X7 X (X X0) H(XG M Xo) T X Mye
=0, since 71 =1, (X{Xl):lr: 1/T, which is a constant

=21 (X X1) " X e+ 23 (X3 X)X e

[ |
Proof of Lemma A.6. The true DGP can be expressed as

k
Ay =B85+ Ay + ¢

J=1

where 35 = 0 and ej = Fuy_1 + ¢;. Let 7, = (Zl, Zé,t)» Z1 =1, Z.Q’t = (Ayi1, -+, Ay ),
L1 = (17 0,--- 70)/7 Li2:k+1] = <07 L 1), Now

ﬁ~* Z 2,70 Z A —ut L +e) (A.4)

t=k+1 t=k+1
ﬁ T c o T - ac
= >y, Z1 (-1 + ) + 0p(1)
t=k+1 t=k+1
ca d L
== Y weat = D ato(l) e | Wt W(1) = W(1)
o157 \/_t:k:-i-l 0

n
Proof of Theorem 1. (a) Defining v = (85, 8%, a1, ..., apy1)’, L, = Z;:é b; B"'~J and
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_ \h-1 h—1—j .
Ly =>7_,b;B , we can write

T

. T . 2
;E(MTM - #T+h)2 :;E[ZJT(k’ + 1)/Lh(’7 - ’7)]

! E[yz(k+1)Lu(3 — )]

o2

+ E[yp(k+1){Ly, — Ly} (5 — 7)]2 + o(1)

= LB [ur - DAY DL S g e
. R D T-1 9
+ S E|yp(k+1)LyDy' (R — Ry =% ik +1)eji
Py 77 2o i D
+ gE[yTUc +1'{Ly — Ln} (5 — 7)]2 +o(1)
=(I) + (IT) + (I1T) (A.5)

The (I1) and (/1) terms in (A.5) are each o(1) by Lemmas A.1-A.3 and Holder’s inequality
[see, e.g. the proof of Theorem 2.2 in Ing et al., 2009].
The term () can be written as:

T-1
1 Sx—1 DT 2
;E[yT(’f +1)'LyDr' R}, T jz:; y;(k+1)ej4]

T-1
1 D )
= ;E[yT(k? + 1>/DT/LhRT 17; Z y](l{} + 1)€j+1] (A6)
=k
7 h=1, ;. Rl Bhel—iy\ - 1 7! - .
where Ly, = > .7 bjdiag(Gy 7, F"'77) with G = , F' = diag(1, Sy (k)) and
0 1
Oé(k‘ — 1) ]k—l
Su(k) = , S8 (k) = 1.
Ak 0%

Note that y,(k + 1)'Ds’ = (1, 74T + 1),T~Y2Nr, sp(k)). Further, since Gr is upper



triangular, (A.6) converges to

h—1 T-1
L
=109 T@NE{T—W 3 e+ X5 Z X:X:)" Z X* eﬁl}
Jj=0 j=k+1 j=k+1 j=k+1
1
+Th_r>nooa—E{ (k)M (k)DF (k)T 172 Z 5( eﬁl} Zb lim_B(Fr)
j=k+1
—B1+B2+B3 (A7)

where B.1 utilizes Lemma A.5. Since B.2 = g, (k) by Theorem 1 of Ing (2003) and B.3 =0
by Lemma A.4, (A.7) simplifies to:

1 1
B1+B2=(Y 1) lim E{W(1)+X§(1)’(/ Xij’)l/ X:dw}2+gh(k)
0 0

T—o0
= (D b) B[TL] + gu(k) (A.8)
=0
The required result then follows from (A.5), (A.7) and (A.8).

(b) Defining Lj, = Z?;& bjéhflfj, with similar arguments as in (a), we can write:

T ~ 2 T 17 ~ 2
Bz = ) = —B|yr b+ 1 LG = )]
T L 2
= SB|yr(k+ 1L )| +o() (A.9)
Note that
h—1—j
h—1 h—1 B{wkg 0
- ph=1-7 _ - .

7=0 7=0 7=0

Since Bj is upper triangular with B;(1,1) = 1,

-1, |Po
ijobj 0

(A.9) = ;E['yT(k +1) r +o(1)
>0 b PP a(k) — a(k))
= ;E [( bi)Bo + (yrs - yr—s) Db falk) — a(k:)]] Tro(l)  (A10)

A-7



Now, consider the term

\/T h—1 L
T(QTa---nyfk)ijFh a(k) - a(k)]
=0

VT _

= " (yrs e yr i) L (k) — a(k)]

= = (yr, e yr- ) L7 (k) — alk) + HDp R Dr R (RDp R DrRY ™ r = 73)| - (A1)
where

’“ 010 0
(F) h-1-j _ NN

L jzob o (k+1)Hx(k+3) [O(kJrl)XQ [(k+1)} ’2X(]§+3) N 001 .. 1 ’27;1 B (0’1)

Next, defining L\ = diag(3-"" b;, My(k)), 0 = (T(1—&)/a,0,---,0), we have

(k+1)x1

(A1) == (0, ) [VTED{(R) — a(k)} + 247 D)
= (o) [VTED () — a(h) + D8]
(s VT LD ) = (k) + §<NT/ﬁ, sT(k))diag(}Zi by, My ()0
:é(yT, e yr VL (a(k) — Z b T(& — a)/d]
3 a)/a} + ;sT(k) M, (k)DL (k)T Y2 Z s;(k)eji
+ U%;Z:bj[_ ¢~ T a)/d]
=— CUJY/TT g b; + i_ (k) My (k)T (k)T Y/? g s;(k)ej (A.12)
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Then, combining (A.10) with (A.12) and using Lemma A.6, we finally get

>
—_

lim - F(firay — pran)® = B[S b (Wa(1) — W, (1))

T— o0 0'

=0
1 . T-1 9
P 7T 0 891}

>

-1

= (Y ) EI] + k)

<
Il
o

which uses the fact that W.(1) — cW,.(1) = W(1) — cWZ(1), thereby proving the result. m

Proof of Theorem 2. Henceforth, estimated parameters and quantities with subscript
i denotes the estimates using observations from 1 to i. We prove (a) first. It follows from
Chow (1965) and Ing (2004) that

T—h T—h
R 2
APE = Y w3y = 3 [yilk + DLin(3, = )] (1 +0(1) + 0(1)
i=mp, =my,

Using similar algebra as in Theorem 1, we have:

T—h , T-h )
> [tk DL =] = 3 | [wilk + 1/ Lal5 = )]
i=myp, 1=mp,
[0k D' Len — L} Gy~ )%+ 50
T— i—1
1 w1\ Di 2
= Z Z |:yl(k’ + 1) LyD; (RZ 1)% Z yj(k + 1)6]‘-1-1]
1=my, j=k+1
T—h i—1
1 R D; 2
+ —[yl(k:jtl) LD/(R7 - RS yj(k;+1)ej+1]
P— \/zj—kJrl

>

. 2
+ [yz(k +1){Lip — L} (% — ’y)} + s.0.
i=mp

=({UV)+(V)+(VI) (A.13)

The (V) and (VI) terms in (A.13) are each O(1) following similar arguments in Ing et al.
(2009) which build on Lemmas A.7-A.9.



Analogous to (A.6) and (A.7) in the proof of Theorem 1, (IV) can be rewritten as:

h 1 T—h i-1 i—1 )
bJ 2 {Zzl ZJZJI)_l Z ZjeyH}
9:0 =my, j=k+1 j=k+1
—h A = ) el Tohy
b S {0 mE 0 Y smea) > 5) Y <P
i=mp, Jj=k+1 7=0 1=mp,
=C1+C2+C3
where Z; = (1,t 4+ 1, N;)'. In analogy with Theorem 3.1 of Ing (2004),
C.2 = gp(k)o?logT + o,(logT) (A.14)

By Lemmas A.8 and A.9, C.3 = 0,(logT). Now we focus on C.1. By Theorem 4 of Wei

(1987), we have
h—1 -1

C.1=( bj)202 log det( Z Z;Z5) 4 op(log T)
=0 j=k+1
Defining the 3 x 3 matrix Tr = diag(T,T%,7?/|c|) and using Lemma A of Phillips (2014)
in conjunction with the fact that |¢| 772 = O(T '), we can calculate

-1
log det( Z Z;25) = log det (YY" N~ z, 20, P ry/?)
J=k+1 j=k+1
= log det(Y7) + O,(1) = log(T®) + O,(1)
=5log(T) + O,(1) (A.15)

which leads to C.1 = 502( E?;& bj)2 log(7T") + o,(log T"). Thus,

h—1
2
Jim — logT (APE; — Z n2,) = 5( ngbj) + gn(k) (A.16)
i=mp, =

where the right hand side of (A.16) is the limit of fi(c,p, k, h) = fi(c,p, h)+ gn(k) as ¢ —-o0.

We next prove (b). Following similar steps as in the proof of (a) and the proof of Theorem
1 for the restricted case, we can derive

T—h h—1 ) T—h ey N,
APEy — Z n?,h :( bj) Z (B0, — C71>2
i:mh jZO i:mh
T—h 1 i—1
+ 3 {SWMBIT k)= D si(k)ej ) +0,logT)
i=myp, Jj=k+1
=D.1+D.2
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In view of (A.4), taking the limit ¢ — 0, we have

T-h N T—h i i
D Boime) =3 ()Y 42T ) Ll
i=myp i=mp t=k+1 t=k+1
T-h i i
= Z [( Z Z3)t Z Zie? + s.0.
i=mp,  t=k+1 t=k+1
-1
=log det( Z 7Z3) + 0,(log T) = 0*log T + 0,(log T)
j=k+1

Further, using the same argument as in (A.14), we have D.2 = g,(k)o?logT + o,(logT).
Thus,

T—h h—1

. . 1 2 2

lim lim W(APEO — § Min) = (j O bj)” + gn(k) (A.17)
i=mp, =

where the right hand side of (A.17) is the limit of fo(c,p,k,h) = fole,p,h) + gn(k) as
¢ — 0 since lim._o E(TE) = E[]W(1)?]=1. m
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lation Results

Additional Simu

Appendix B
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(T = d) o8e1one VY ‘07 = Yw pue Yw Tewrydo yimm YSLI JSeI0I0] g " 9INSI

0 4 2 9 8 0k~ 48 i 9l 8l 0z 0 2z 14 9 8- 0k~ 2 vi- 9l 8- 0z
T T ! T T T T T T T T X T T T T T T T T
= 0 T =
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