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Abstract

We analyse the all-pay auction with incomplete information and variance-averse
bidders. We characterise the unique symmetric equilibrium for general distribu-
tions of valuations and any number of bidders. Variance aversion is a sufficient
assumption to predict that high-valuation bidders increase their bids relative to
the risk-neutral case while low types decrease their bid. Considering an asym-
metric two-player environment with uniformly distributed valuations, we show
that a variance-averse player always bids higher than her risk-neutral opponent
with the same valuation. Utilising our analytically derived bidding functions we
discuss all-pay auctions with variance-averse bidders from an auction designer’s
perspective. We briefly consider possible extensions of our model, including
noisy signals, type-dependent attitudes towards risk, and variance-seeking pref-
erences.
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1 Introduction

In economic contests players make irrecoverable investments in order to increase their

chances of winning a prize. As such, the nature of a bid in an all-pay auction is very
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similar to choosing a lottery. A high bid corresponds to lower payoffs in both the states

of winning and losing, but increases the likelihood of the positive state. Alternatively, a

low bid yields a lower probability of winning, but payoffs in both states are higher. The

all-pay auction is therefore a game of risky choices.1 Nevertheless, typical analyses of

all-pay auctions with private values focus on risk-neutral players, i.e., the maximisation

of expected payoffs.2

It is known that risk-aversion systematically alters bidding behaviour in auctions

and contests. Risk-averse bidding in winner-pay auctions has been analysed both

with private values (e.g., Riley & Samuelson, 1981; Maskin & Riley, 1984; Matthews,

1987) and with complete information (e.g., Hillman & Samet, 1987; Esö & White,

2004; Fibich & Gavious, 2003). A bidder in a (first-price) winner-pay auction controls,

through her bid, both the probability of winning and the amount she wins. A risk

averse bidder is willing to sacrifice some of this payoff (the individual value minus her

bid) for a higher probability of winning (through a higher bid). Hence, in a first-price,

winner-pay auction, risk aversion causes an increase in equilibrium bids relative to the

risk neutral case.

In all-pay auctions, in addition, increasing one’s bid has the direct negative effect

of increasing the certain payment independently of both other effects. In consequence,

a low valuation bidder under risk aversion wants to decrease her losses while a risk

averse, high-valuation bidder wants to increase her probability of winning through

more aggressive bidding in the all-pay auction. The all-pay auction with complete

information has been solved in a formulation that is sufficiently general to account for

risk-aversion (Siegel, 2009). Chen et al. (2017) allow for heterogeneously risk-averse

bidders in a complete information all-pay auction. Nevertheless, the bidding functions

of risk-averse players in the all-pay auction with incomplete information have not been

found to date. Fibich et al. (2006) use asymptotic techniques to approximate players’

bidding function in the limit as their utility functions approach linearity. Parreiras &

Rubinchik (2010) develop a technique to identify whether or not a particular strategy

can be part of the equilibrium support or not. Consequently they study drop out

and “all-or-nothing” strategies in all-pay auctions with three or more heterogeneously

risk-averse players and private values drawn independently from distinct distributions.

Mean-variance analysis (Markowitz, 1952) has long been successfully applied to

portfolio choice investment problems where asset managers evaluate alternative port-

folios on the basis of the mean and variance of their return. It therefore may be

surprising that the mechanism design literature and, specifically, the large literature on

1 Leininger (2000, p. 2) presents a similar lottery-based interpretation of a bid in an all-pay auction.
2 This analysis coincides with expected utility maximisation if valuations and bids are measured in
utility units and utility is quasi-linear.

2



auctions has not yet employed this tool for studying the decision making problem of

players in risky environments. Markowitz (1959) shows that mean-variance preferences

approximately maximise expected utility for a wide variety of concave utility functions.

Technically, whenever a second-order Taylor approximation does well over the rele-

vant range of returns, mean-variance analysis approximates expected utility closely.

Hence, mean-variance analysis is useful even when the true underlying utility function

is unknown. This method is known in the literature as “implicit expected utility max-

imisation” (compare Markowitz, 2014). If a utility function is available explicitly, Levy

& Markowitz (1979) show that mean-variance analysis is typically accurate3 with the

benefit of being more convenient and economical.

In the present paper, we attempt to close the aforementioned gap in the literature by

characterising bidding and revenue-optimal sales behaviour in the all-pay auction with

private values and risk-averse bidders. This auction type may be viewed as a natural

candidate for an analysis that incorporates attitudes towards risk because it exposes

a bidder to the inherent risk of either winning the object (potentially at a bargain) or

losing one’s bid without gaining anything. Employing mean-variance preferences – with

the understanding that these will closely approximate expected utility maximisation for

a large class of von-Neumann-Morgenstern utility functions – allows us to derive closed

form solutions for the equilibrium bidding functions. These can then be used to perform

comparative statics and analyse revenue.

Literature

To the best of the authors’ knowledge there are no existing papers which analyse auc-

tions or contests under mean-variance preferences.4 Papers relating to the analysis of

risk aversion in general winner-pay auction environments include Maskin & Riley (1984)

and Matthews (1987), both discussing risk-averse bidders’ behaviour in auctions. Fur-

ther fundamental contributions include Esö & White (2004) wo analyse precautionary

bidding in auctions and Esö & Futó (1999) who derive the revenue-optimal strategy

for a risk-averse seller. Hu et al. (2010) discuss the implications of introducing reserve

3 The standard exception is exponential utility with extreme levels of risk-aversion. Such a preference
implies that agents choose a small but certain gain over a “blank check,” a 50-50 lottery of either
breaking even or a huge gain. However, Markowitz et al. (1994) do not find any evidence for
the existence of such preferences in their sample. Moreover, Simaan (1993) shows that even with
highly risk-averse players, mean-variance analysis approximates expected utility well whenever a
risk-free asset is available. (In the all-pay auction, the possibility of submitting a bid of zero
ensures this availability of a risk-free asset.)

4 It may be worth pointing out that the quadratic expected utility analysis of risk-aversion in Lazear
& Rosen (1981) also boils down to a mean-variance preference analysis as their output noise term
is fully characterised by the mean and variance of the Normal distribution.
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prices. The existing analyses of asymmetric auctions, for instance Amann & Leininger

(1996), Lizzeri & Persico (2000), Maskin & Riley (2000), Fibich et al. (2004), Parreiras

& Rubinchik (2010), Kirkegaard (2012), or Kaplan & Zamir (2012), typically employ

asymmetric distributions (or supports) while we use our idiosyncratic variance-aversion

parameter. Next to Parreiras & Rubinchik (2010), to the best of the authors’ knowl-

edge, this is the only paper to analyse bidding in a contest when players are asymmetric

in their degree of risk-aversion. Chen et al. (2017) compare heterogeneity in risk aver-

sion to heterogeneity in valuations in their analysis of the complete information all-pay

auction. They find that heterogeneously risk averse players typically participate in the

auction while a similar heterogeneity in valuations precludes low-valuation players form

bidding. Moreover, they show that further increasing the risk-aversion of the more risk

averse player may result in non-monotonic total expected efforts.

In terms of revenue and payoff analysis, Matthews (1987) compares payoffs for risk

averse behaviour when bidders exhibit constant and increasing absolute risk aversion

(CARA and IARA, respectively). For CARA, he finds that bidders are indifferent

between first- and second-price auctions, while for IARA bidders prefer the first-price

auction. Smith & Levin (1996) show that this ranking can be reversed under decreasing

absolute risk aversion.

Most existing work on risk aversion in contests applies to full information Tullock

contests.5 Several papers study the implications of introducing risk-aversion into this

rent-seeking case. Konrad & Schlesinger (1997) compare the differing implications of

risk aversion on rent-seeking contests which allow players to increase the probability

of obtaining a rent with those models in which contestants can increase the rent

itself. Treich (2010) derives “prudency” conditions which ensure that risk-aversion

and risk decrease efforts in rent-seeking contests.6 A more general analysis in terms of

risk aversion of the same setup is Cornes & Hartley (2012b) who focus on existence

questions of both symmetric and asymmetric Nash equilibria (for the case of loss

aversion see Cornes & Hartley, 2012a; Mermer, 2013).

Despite similarities of the Tullock contest with complete information and the all-

5 An analysis of the (repeated) full information case for more general success probabilities is Ireland
(2004).

6 Sahm (2017) generalises this result by specifying a sufficient condition on comparative downside
risk aversion under which a higher common level of risk aversion leads to lower aggregate effort in
symmetric two-player Tullock contests. Robson (2012) uses a mean-variance model of preferences
to confirm Treich’s (2010) “irrelevance result” in the sense that for two-player Tullock contests,
bidding behaviour is not affected by the introduction of an aversion to variance. We can interpret
this paper as another instance of mean-variance analysis representing a close approximation of
risk-averse behaviour in contests.
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pay auction with private values under risk-neutrality,7 the effects of risk aversion differ

systematically in these two contest formats. In the former, the risk enters solely

exogenously via the noise of the contest success function. Treich (2010) argues that

the “game is indeed much like a raffle” and shows a “systematic negative effect of

risk aversion.” The contest success function in the all-pay auction is, by contrast,

deterministic. Hence, risk enters the model endogenously. In the complete information

case, the players’ probability of winning is determined by the mixed strategies that are

employed in equilibrium. Without full information, risk arises in a similar manner even

in symmetric pure strategy equilibrium, because ad interim players are uncertain about

the realized valuations of their opponents, which determine the contest winner.

The only existing works on risk aversion for the incomplete information all-pay

auction of which we are aware are Fibich et al. (2006) and Parreiras & Rubinchik

(2010).8 In contrast to our fully analytical approach Fibich et al. (2006) show that,

usually, an analytic characterisation of equilibrium strategies cannot be obtained for

risk-averse players. For their main results, they turn to perturbation analysis to obtain

revenue rankings for the case that players are “almost” risk neutral. Esö & White

(2004) show that under special conditions on valuations, decreasingly absolute risk

averse players prefer the first-price auction to the all-pay auction. Fibich et al. (2006)

extend this ranking to the case of general risk aversion for independent valuations.

Their results are limited, however, by the fact that they cannot generally obtain analytic

forms of the equilibrium bidding strategies of risk averse players. We can overcome

this limitation at the price of focusing attention to the class of (linear) mean-variance

preferences.

Parreiras & Rubinchik (2010) analyse bidding behaviour in contests where three or

more players draw their valuations from distributions with asymmetric supports and may

have asymmetric attitudes toward risk. They find that these ex-ante asymmetries may

lead to player drop-out or, for sufficiently risk-averse players, the use of discontinuous

“all-or-nothing” strategies. Thus, both cases exhibit behaviour which is very different

from the standard ex-ante symmetric equilibrium case. Although the authors cannot

explicitly determine the equilibrium bidding functions in general, they construct a simple

check for whether or not a particular bid can be part of a player’s equilibrium strategy.

7 Fu & Lu (2012) draw a link between incomplete information models à la Lazear & Rosen (1981)
and Tullock-style rent-seeking games by designing a distribution for an additive error term which
recreates the rent-seeking structure.

8 Cingottini & Menicucci (2006) study an environment composed of ex-ante symmetric bidders
sharing the same preferences exhibiting constant absolute risk aversion. They find that it is
revenue-optimal for the seller to exclude all but two randomly chosen competitors. Their result,
which is contrary to the monotonicity of revenue in the risk neutral case, is obtained provided that
bidders are either highly risk averse or very likely to possess a particular, known valuation. We
generalize this finding in our environment.
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This test is used to establish the above participation conclusions.

The present paper deals with variance aversion which, in general, is different from

risk aversion. A recent survey and detailed discussion of the differences between

these approaches (from a more applied perspective) is presented by Markowitz (2014).

Markowitz argues that it is a mistake to assert that the application of mean-variance

analysis assumes normal (Gaussian) return distributions or quadratic utility functions.

“In particular, if you believe that rational decision making may be characterized by

axioms which imply that one should maximise expected utility using probability be-

liefs where objective probabilities are not known (as Savage (1954) persuaded many

including me), then the necessary and sufficient condition for the practical use of

mean-variance analysis is that a careful choice from a mean-variance efficient frontier

will approximately maximise expected utility for a wide variety of concave (risk-averse)

utility functions.” He presents a large body of (predominantly empirical) research from

six decades of mean-variance analysis in support of this view.

The theoretical literature concerned with contrasting and reconciling the two ap-

proaches – namely expected utility maximisation (EU) as axiomatized by von Neumann

& Morgenstern (1944) and Savage (1954) and mean-variance preferences (Markowitz,

1952) – is manifold. One of the most commonly known results is that expected utility

reduces to a function of the return’s mean and variance if the employed utility function

is quadratic. Hence, for any distributions the rankings based on EU with quadratic

utility coincide with those based on the corresponding mean-variance function (To-

bin, 1958). This feature of quadratic utility functions is indeed unique (Baron, 1977;

Chipman, 1973). The limitations of quadratic utility are however inherent, in par-

ticular all possible outcomes (not just their means) must be bounded to stay within

the range of positive marginal utility and absolute risk aversion is increasing over this

range. The assumption of quadratic utility can be avoided when the choice set, i.e.,

the class of asset distributions, can be restricted. A common assumption is that all

assets under consideration are normally distributed. In this case, Allais (1953) pro-

vides the necessary and sufficient condition that the mean-variance function V (µ, σ2)

satisfies the partial differential equation 2 ∂V
∂σ2 = ∂2V

∂µ2 under which a utility function ex-

ists that equates the EU and mean-variance approaches. Chipman (1973) shows that,

with normally distributed assets for every concave utility function that is bounded by

|u(x)|< a exp (bx2) , a, b > 0, there exists a corresponding mean-variance function.9

The assumption of normally distributed returns is problematic because this class is not

closed under probability mixing, however Baron (1977) provides support for excluding

9 Liu (2004) provides a foundation of mean-variance analysis under the assumption of normality of
asset distributions and simplified coarse utility, i.e., approximate probabilities.
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probability mixtures and restricting choices to pure strategies or portfolios. Ingersoll

(1987) claims that elliptical distributions similarly equate mean-variance analysis and

EU, but Liu (2004) points out that not all elliptical distributions have finite mean

and variance and therefore the statement can only hold for median-dispersion analysis

in its full generality. Tobin (1958) states that indifference curves between µ and σ2

would be justified under the assumption of some two-parameter family of probability

distributions. However, Rothschild & Stiglitz (1970) argue that this formulation is

confusing and cannot hold so broadly. In the same argument, Rothschild and Stiglitz

also note that “all distributions which differ only by location parameters form a two

parameter family.” Mayer (1987) shows that there exists a mean-variance function

which yields the same ranking as EU, if all distributions differ only by location and

scale parameters, and argues that this condition holds in many economic models.10

The previously discussed normal distributions are clearly a special case of this result

(Johnstone & Lindley, 2013).

In our analysis of the all-pay auction, the distributions are restricted by the rules

of the game. In particular, a player chooses from a set of two-point distributions,

which are further restricted in that the two outcomes in the support always differ by

the player’s valuation. Hence, distributions in this family are fully characterized by two

parameters.11 Nevertheless, in our application the distributions in a player’s choice set

do not only differ by parameters of location and scale.

Baron (1977) further argues that mean-variance analysis can still be consistent with

EU even when neither the utility function nor the distributions are restricted in a way

that guarantees coinciding rankings. Specifically, when only the optimal choice matters

rather than the entire ranking, it is generally possible to find a utility function whose

indifference curve is tangential to the efficient frontier in the same point as the level

curve of the mean-variance function. In our analysis, players select their best-responses

using a mean-variance function, thus full rankings matter at most off the equilibrium

path. Furthermore, Baron (1977) argues that violations of the independence axiom

(von Neumann & Morgenstern, 1944) can be avoided when probability mixtures are

excluded from the efficient frontier of the choice set. Our analysis, consistent with the

literature on all-pay auctions with private values, naturally restricts attention to pure

strategy equilibria and in this sense avoids conflicts with the independence axiom.

Similarly, Hanoch & Levy (1970) suggest to exclude all distributions that are first

10 Two cumulative distribution functions F and G are said to differ only by location and scale
parameters α and β if G(x) = F (α+ βx) for all x with β > 0.

11 Generally, two-point distributions have three degrees of freedom, but the property that for any
given valuation the winning and losing payoffs in the all-pay auction differ by the same amount
for any bid reduces the number of degrees of freedom to two.
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order stochastically dominated (f.o.s.d.) in a first step prior to a mean-variance analysis

with the result of avoiding f.o.s.d. violations under mean-variance selection. It is a

common practise in the analysis of both auctions and contests to restrict bidders’

choice sets in a first step from the feasible set of all non-negative bids to the compact

set of non-negative bids that are no higher than the bidder’s valuation of winning.

Generally, bids above a player’s valuation are dominated in the sense of f.o.s.d. by

bidding zero.

More recently, the theoretical literature has diverted attention from its previous fo-

cus on the comparison of EU and mean-variance analysis. Nakamura (1970) provides

seven preference-based axioms that are necessary and sufficient for the existence of a

mean-variance function representing a preference relation. Nakamura further derives

specific axiomatisations for the four most common additively separable mean-variance

functions including the linear specification that we employ in this paper. Qu (2017)

argues that multiple experimental studies have shown systematic violations of EU (in-

cluding the Allais paradox) that are nevertheless consistent with some mean-variance

preferences. Qu develops a mean-variance axiomatisation in an Anscombe-Aumann

setting with subjective probabilities that does not necessarily conform to EU. Making

use of constant absolute uncertainty aversion, Qu also axiomatises the linear specifica-

tion, “which is the most widely used mean-variance form” (Qu, 2017) and also applied

in this paper.

2 The model

There is a seller with one indivisible object for sale. The seller’s valuation of the item

is zero. There are n ≥ 2 potential buyers with valuations θi, i ∈ N = {1, 2, . . . , n},
respectively. The own valuation is private information of each buyer and all players’

valuations, θi, i ∈ N , are assumed to be independent draws from the same absolutely

continuous distribution F . Let f(·) = F ′(·) represent the associated probability density

function with support [0, 1].

After realising their own valuations of the object, θi, all players simultaneously

submit their bids, bi, i ∈ N . The player with the highest bid receives the object and

all players forgo their bids. Player i’s payoff is hence given by

π(bi, b−i; θi) =











θi − bi if bi > bj∀j 6= i,
1
m
θi − bi if i ∈ Q = {j ∈ N |bj = maxk∈N bk}, m = |Q|,

−bi if ∃j : bi < bj .

Therefore, for a player with valuation θ each bid b ≥ 0 corresponds to a lottery Lθ(b) ≡
{(−b; 1−P{win|b}), (θ−b;P{win|b})}, where the probability of winning P{win|b} is
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in equilibrium determined jointly by the type distribution F and the equilibrium bidding

strategies.

When buyers have mean-variance preferences, they maximise an objective function

ui(bi; θi), which is increasing in the expected payoff, µ(bi; θi) ≡ Eb
−i
(π(bi, b−i; θi)),

and decreasing in the variance of their payoff, σ2(bi; θi) ≡ Vb
−i
(π(bi, b−i; θi)). For

our analytical investigation we use the following simple linear representation of mean-

variance preferences12

(1)ui(b; θi, νi) = µ(b; θi)− νiσ
2(b; θi),

in which the parameter νi ∈ [0, 1/2] accounts for player i’s variance-aversion.
13 The case

of νi = 0 represents the standard case of risk-neutral expected payoff maximisation.

Bounding the degree of variance aversion from above guarantees the existence of a

pure strategy equilibrium.

Provided a player’s knowledge of her own type (θi, νi), her bid can be interpreted

as choosing a lottery with two possible outcomes. If the player submits the highest

bid, she will receive her valuation of the prize θi minus the cost of her bid. In all

other events, she will lose her bid. Note that the payoff difference between these two

outcomes remains fixed for any bid and is just equal to the pre-determined player’s

valuation θi. However, selecting a higher bid does not only decrease the respective

payoffs for both outcomes, but also moves probability mass from the losing to the

winning outcome.

In section 5 we discuss various ways to generalise this model. We introduce ex-

ogenous noise to the model through independent shocks on the winning and losing

outcomes. In this case, θ is merely a noisy signal of a player’s true valuation for the

prize which will only be realised after the contest. We further consider the effects of

variance seeking behaviour in contests, i.e., we consider negative values of νi in (1).

Based on these results we briefly discuss an extension of our model that accounts for

type-dependent risk preferences. That is, ex-ante symmetric players have private in-

formation about their type (θi, νi), where νi(θi) follows a common, specific functional

form known to the players.

12 A large body of empirical and theoretical work employs variants of this simple form on the basis of
both tractability and testability. Multiple axiomatisations of this form exist starting from Pollatsek
& Tversky (1970) to more recent ones by Nakamura (1970) and Qu (2017). For discussions see,
for instance, Tsiang (1972), Coyle (1992), Saha (1997) or the textbook treatment in Sargent
& Heller (1987, pp. 154–5). Recently, Chiu (2010) discusses the applicability of mean-variance
preferences to a large set of problems in finance and economics in choice theoretic terms. In the
appendix, we discuss possible generalisations of this objective function which preserve our results
qualitatively.

13 In section 5.3 we extend the range of admissible values of ν to [−1/2,+1/2].
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3 Bidding behaviour of n symmetric bidders

In this section, we consider an all-pay auction with n ex-ante symmetric players. In

particular, we assume that all players have identical degrees of variance-aversion, ν ≡
ν1 = · · · = νn. Therefore, a player’s type (θi, νi) is now fully characterised by her

valuation θi. In the first-price, all-pay auction, a type-θi bidder’s expected payoff when

issuing a bid of b is given by

(2)π(b, β; θi) =

∫ β−1(b)

0

· · ·
∫ β−1(b)

0

θif(θ1) · · ·f(θn−1)dθ1 · · · dθn−1 − b

if all other n− 1 players use an invertible bidding function β(θ).

As a benchmark, consider the risk neutral case, i.e., νi = 0 for all i ∈ N . In this

case, players simply maximise their expected payoffs and it is well known, for instance

from Milgrom (2004, p. 119), that the strategies

(3)βrn(θ) = θ(F (θ))n−1 −
∫ θ

0

(F (ϑ))n−1dϑ,

constitute the unique symmetric equilibrium.

With mean-variance preferences, symmetric players with ν ∈ [0, 1/2] choose bids

which maximise (1), taking into account their payoff variance in addition to their

expected payoff. These are given for the first-price, all-pay auction as

µ(b; θi) = θiP{win|b} − b;

σ2(b; θi) = P{win|b} (θi − b− µ(b; θi))
2 + (1− P{win|b}) (−b− µ(b; θi))

2

= P{win|b}(1− P{win|b})θ2i ,
(4)

where P{win|b} denotes the probability of the event that a player wins conditional on

bidding b.14 In this environment, we can solve for a non-decreasing bidding function

βmv(θ), which constitutes a symmetric equilibrium.

As illustrated in Figure 1, level curves of our mean-variance function (1), plot-

ted grey, are generally linear upward sloping lines (with slope ν) in (µ, σ2)-space.

Each feasible lottery Lθ(b), b ≥ 0, corresponds to a point (µ(b, θ), σ2(b, θ)) in this

(µ, σ2)-space. For a player with valuation θ the feasible set in (µ, σ2)-space is Fθ =

{(µ, σ2)|µ = µ(b, θ) ∧ σ2 = σ2(b, θ) for some b ≥ 0}. The efficient frontier Eθ ≡
Fθ \ {(µ, σ2)|∃(µ∗, σ

2
∗) ∈ Fθ, µ∗ > µ ∧ σ2

∗ ≤ σ2 or µ∗ ≥ µ ∧ σ2
∗ < σ2} is constructed

in the usual way by excluding all points (µ, σ2) from Fθ which are strictly dominated by

14 Note that, in our model, using the modified mean-variance approach due to Blavatskyy (2010)
would lead to qualitatively similar results since the mean absolute semideviation is r(b, θi) =
(F (β−1(b)))n−1(1− (F (β−1(b)))n−1)θi.
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another feasible point which has strictly greater mean and no higher variance, or strictly

lower variance and no lower mean. In particular, this means excluding all pairs (µ, σ2)

that correspond to bids b > θ, because (0, 0) ∈ Fθ and µ(b; θ) < 0, σ2(b; θ) ≥ 0 if

b > θ. Moreover, let b̂ such that P{win|b̂} = 1
2
, then by continuity of P{win|b} for

every b1 < b̂, there exists a b2 > b̂ such that P{win|b1} = 1 − P{win|b2}, hence
σ2(b1; θ) = σ2(b2; θ), but in general µ(b1, θ) 6= µ(b2, θ). By this argument, (µ, σ2) cor-

responding to low (high) bids are not contained in the efficient frontier for players with

high (low) valuations θ. For players with intermediate valuations, (µ(b1), σ
2(b1)) ∈ Eθ

for low b1 but (µ(b2), σ
2(b2)) ∈ Eθ for high b1. A player with valuation θ ∈ (0, 1)

chooses a bid b ∈ Eθ that corresponds to (µ(b; θ), σ2(b; θ) at which her efficiency fron-

tier has slope ν, i.e., is tangential to the level curve of the objective function. Baron

(1977) points out that this optimal choice coincides for all concave utility functions

whose indifference curves are tangential to the efficiency frontier in this point.
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Figure 1: Level sets in (µ, σ2)-space for uniformly distributed valuations and ν = 1/3.
The left-hand panel illustrates the sets of feasible pairs

(

µ(b; θ), σ2(b; θ)
)

in red for any bid
b ∈ [0, θi] for θi ∈ {.1, .2., 3, .4, .5, .6, .7, .8, .9, .99}. Higher types have higher “deviation”
paths. Black is the equilibrium bid for all types, intersecting the red curve at the tangency
with the indifference curves. The right-hand panel zooms in on the lower-left of the left-hand
panel to show the choice sets for low valuations {.4, .53, .7} in more detail.

Proposition 1 (Symmetric Equilibrium). If ν1 = · · · = νn = ν and players maximise

the linear mean-variance function (1) ad interim, then the set of n symmetric bidding

functions

(5)
β1
mv
(θ) = · · · = βn

mv
(θ) :=

βrn(θ)− ν(n− 1)

∫ θ

0

ϑ2(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ

11



constitutes a symmetric equilibrium.

Proof. In order to confirm that the strategies (5) are indeed a symmetric equilibrium,

we show that no profitable deviation exists. A player’s utility from any bid b is provided

in (1). Consider a player of type θ who bids βmv(z), z ∈ [0, 1] against opponents who

bid according to βmv and their true type.15 Then, by equations (1) to (5),

ui(βmv(z), θ) =θ(1− νθ)F n−1(z) + νθ2F 2n−2(z)− zF n−1(z) +

∫ z

0

F n−1(ϑ)dϑ

+ ν

∫ z

0

ϑ2(n− 1)F n−2(ϑ)f(ϑ)(1 − 2F n−1(ϑ))dϑ.

Hence, setting z = θ (i.e., bidding according to (5)) is optimal if

∂ui(βmv(z), θ)

∂z
= θ(1−νθ)(n−1)F n−2(z)f(z)+νθ22(n−1)F 2n−3(z)f(z)−F n−1(z)

− (n− 1)zF n−2(z)f(z) + F n−1(z)

+ νz2(n− 1)F n−2(z)f(z)(1 − 2F n−1(z))

= (θ − z)(n− 1)f(z)F n−2(z)(1− ν(θ + z) + 2ν(θ + z)F n−1(z))

is positive for z < θ, negative for z > θ and zero at z = θ. This is the case if the

factor (1 − ν(θ + z) + 2ν(θ + z)F n−1(z)) is non-negative for all (θ, z) ∈ [0, 1]2 and

always holds if ν ≤ 1/2. It remains to be shown that βmv is strictly monotone. When

deriving the symmetric equilibrium bidding functions βmv via the players’ optimisation

problem, the first-order differential equation

(6)β ′(θ) = θ
(

1− νθ + 2νθ(F (θ))n−1
)

(n− 1)(F (θ))n−2f(θ)

is solved together with the boundary condition β(0) = 0. Note that, (6) uniquely

determines βmv, which is indeed a strictly increasing function whenever

(7)1− νθ + 2νθ(F (θ))n−1 > 0

for all θ ∈ [0, 1]. This condition is equivalent to

(8)F (θ)n−1 >
1

2
− 1

2νθ
, ∀θ ∈ [0, 1]

and holds for any F and n if ν ∈ [0, 1/2]. This shows that our bidding function (5)

satisfies the usual monotonicity requirement.

15 Bids below βmv(0) are not feasible and any bid b > βmv(1) is strictly dominated by βmv(1) as b
yields strictly lower expected payoff µ(b, θ) < µ(βmv(1), θ) without reducing the payoff variance
as winning probabilities are identical under both strategies.

12



It is now possible to see from condition (7) in the proof of proposition 1 why we

need to restrict the variance-aversion parameter ν. Intuitively, as players become very

variance-averse, bidding zero along with the resulting certain payoff of zero becomes

more attractive for players with valuations θ ∈ (0, βmv(1)). Similarly bidding at the

upper bound of the bid distribution and winning with certainty becomes more attractive

for players with high valuations θ ∈ (βmv(1), 1). This behaviour would resemble the

“all-or-nothing” strategies discussed in Parreiras & Rubinchik (2010). Therefore, in

order to be able to solve for the desired strictly monotone bidding function, we need

to bound the variance aversion parameter. The proof requires that (1 − ν(θ + z) +

2ν(θ + z)F n−1(z)) > 0 for all z ∈ (0, 1), θ ∈ [0, 1], or equivalently

(9)F (z)n−1 >
1

2
− 1

2ν(z + 1)
.

This condition (9) generally holds if ν is sufficiently small such that θν ≤ 1/2 for

all θ in the support of the type distribution F (·), but otherwise imposes a restriction

on the distribution of types and/or the number of players.16 Conversely, for a given

distribution of valuations, inequality (9) illustrates how the distribution places an upper

bound on the degree of variance aversion which we may consider. Interpreting the

right-hand side as a c.d.f.

Hν(θ) ≡











0 if θ ≤ 1− ν)/ν,

1/2− 1/(2ν(θ + 1)) if θ ∈ ((1− ν)/ν, θ̄)

1 if θ > θ̄

for some fixed large θ̄, condition (9) states that Hν first order stochastically dominates

F n−1. As ν increases, Hν increases in the sense of first order stochastic dominance and

(9) fails as ν grows too large. Higher degrees of variance aversion may be considered

when F places sufficient mass on low types.

We would like to point out that uniqueness of the equilibrium characterised in the

above proposition can be shown following the same steps that lead to Lemma 5 of

Parreiras & Rubinchik (2010) yielding uniqueness in the ex ante symmetric setting

with concave von-Neumann-Morgenstern utility functions. In addition, we conjecture

that Lemma 6 of Parreiras & Rubinchik (2010) similarly implies that the only possible

asymmetric equilibria in this model can consist of bidding functions exhibiting an infinite

number of discontinuities.

16 The optimality condition (9) implies monotonicity of the bidding function, because

1

2
− 1

2ν(z + 1)
>

1

2
− 1

2νz
.

Hence, (9) implies (8).

13



Next, taking a closer look at the equilibrium strategies described in proposition

1, we show that low types submit lower bids under mean-variance preferences, while

high types submit higher bids under mean-variance preferences than if they were to

maximise expected payoff only.

Proposition 2 (Single-crossing). There exists a θ̂ ∈ (0, 1) such that βmv(θ) ≤ βrn(θ)

for θ ≤ θ̂, βmv(θ̂) = βrn(θ̂) and βmv(θ) > βrn(θ) for θ > θ̂.

Proof. Note that the symmetric equilibrium strategy can be written as

βmv(θ) = βrn(θ)− ν

∫ θ

0

G(ϑ)H(ϑ)dϑ,

whereG(ϑ) = ϑ2(n−1)(F (ϑ))n−2f(ϑ) andH(ϑ) = 1−2(F (ϑ))n−1. F is a cumulative

distribution function with density f , therefore G(ϑ) ≥ 0 for all ϑ ∈ [0, 1]. H(ϑ)

is a continuous and decreasing function with H(0) = 1 and H(1) = −1. Hence,
∫ θ

0
G(ϑ)H(ϑ)dϑ > 0 for sufficiently small θ > 0 and if

∫ θ̂

0
G(ϑ)H(ϑ)dϑ = 0 for any

θ̂ > 0, then
∫ θ

0
G(ϑ)H(ϑ)dϑ < 0 for all θ > θ̂. Next, we show that βmv(1) > βrn(1).

For this we only need to show that
∫ 1

0
θ2(F (θ))n−2f(θ) (1− 2(F (θ))n−1) dθ < 0.

∫ 1

0

θ2(F (θ))n−2f(θ)
(

1− 2(F (θ))n−1
)

dθ

=

∫ 1

0

θ2(F (θ))n−2f(θ)dθ − 2

∫ 1

0

θ2(F (θ))2n−3f(θ)dθ

= θ2
1

n− 1
(F (θ))n−1

∣

∣

∣

∣

1

0

−
∫ 1

0

2θ
1

n− 1
(F (θ))n−1dθ

− 2

(

θ2
1

2n− 2
(F (θ))2n−2

∣

∣

∣

∣

1

0

−
∫ 1

0

2θ
1

2n− 2
(F (θ))2n−2dθ

)

=
1

n− 1
− 2

n− 1

∫ 1

0

θ(F (θ))n−1dθ − 2

(

1

2(n− 1)
− 1

n− 1

∫ 1

0

θ(F (θ))2(n−1)dθ

)

=
2

n− 1

(
∫ 1

0

θ(F (θ))2(n−1)dθ −
∫ 1

0

θ(F (θ))n−1dθ

)

<
2

n− 1

(
∫ 1

0

θ(F (θ))n−1dθ −
∫ 1

0

θ(F (θ))n−1dθ

)

= 0.

The inequality follows because

(F (θ))2(n−1) = (F (θ))n−1 ⇔ (F (θ))n−1 = 0 ∨ (F (θ))n−1 = 1

and (F (θ))2(n−1) < (F (θ))n−1 otherwise.

This result is qualitatively in line with propositions 1 and 2 in Fibich et al. (2006).17

Hence, our proposition 2 demonstrates that variance aversion has qualitatively the same

17 Proposition 2 is not a special case of the results in Fibich et al. (2006). Although it is possible
to model particular versions of mean-variance preferences as quadratic utility functions in the
expected utility framework, this is not the case with the linear form (1).
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effect on equilibrium bidding strategies as risk aversion and thus suffices to explain

observed data showing such behaviour.18 The intuition behind this result is that low-

valuation bidders expect to lose in a symmetric equilibrium and therefore decrease

their bids in order to keep their variance low. High-valuation bidders, by contrast,

are likely to win and therefore increase their bids in line with variance compression.19

Proposition 2 implies that for any value of ν, there is only a single valuation θ̂ at which

the equilibrium bid of a player in the symmetric auction with variance-averse bidders

coincides with that in the symmetric auction with risk-neutral bidders.20. From (5) it

is evident that this type θ̂ does not depend on the variance aversion parameter ν, but

is fully characterised by the distribution of types, F , and number of players, n.

Our proposition 2 shows that variance aversion alone is sufficient to observe the

bidding behaviour found by Fibich et al. (2006) for general risk-aversion as modelled

by a utility function that is concave in payoffs. It is not obvious that the simple mean-

variance approach would yield this qualitatively identical finding to the full account

of all moments. The main advantage we obtain from knowing equilibrium bidding

functions is our ability to further investigate the impact that variance aversion has on

auction characteristics that are relevant from a designer’s perspective such as revenue

or bidder participation. While the general approach of Fibich et al. (2006) results in

the same qualitative observations regarding the bidding function, it does not allow for

such an analysis. Fibich et al. (2006) use perturbation analysis, therefore considering

only infinitesimally risk averse (i.e., almost risk neutral) players.21 Our analysis, by

contrast, allows for preferences to exhibit a significant degree of variance aversion.

Corollary 1. In the symmetric equilibrium described in proposition 1,

1. low types decrease their bids and high types increase their bids relative to the

18 Two experimental papers by Barut et al. (2002) and Noussair & Silver (2006) explicitly test
bidding behaviour in all-pay auctions with private valuations and report behaviour in line with
our results. Both studies point out that risk-aversion may be a cause for the observed aggregate
bidding strategy. A recent survey of the experimental literature on contests is Dechenaux et al.
(2015).

19 Using (4), a bidder with type θ seeks to maximise [θP{win|b}−b]−νP{win|b}(1−P{win|b})θ2,
where P{win|b} is the probability of winning with a bid of b. The term in brackets coincides
with the bidder’s objective in a standard all-pay auction with risk neutral bidders. The second
part thus explains why the bidder would want to deviate from the standard strategy. Note that
P{win|b}(1 − P{win|b}) is inversely U-shaped, with a peak at 1/2. In other words, this term
penalises the bidder for winning with a probability close to 1/2. Thus, the bidder has a preference
for extreme winning probabilities compared to the risk neutral case.

20 This distortion of bids seems to correspond to experimental evidence. Both Barut et al. (2002)
and Noussair & Silver (2006) report bidding behaviour along these lines in all-pay auctions with
private valuations. Moreover, systematic differences in competition performances across genders
could be explained on the basis of our (a)symmetric variance-aversion results (Gneezy et al., 2003;
Niederle & Vesterlund, 2007)

21 Fibich et al. (2006) also have numerical results which do not rely on this assumption.
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Figure 2: Equilibrium bidding functions for the all-pay auction under mean-variance pref-
erences for uniformly distributed valuations, ν = 1/4, and n ∈ {2, 4, 8, 16, 32, 64} players,
respectively (sorted in the colours of the rainbow from red to violet).

case with a lower number of bidders;

2. the type θ̂ who issues the same bid under mean-variance and risk-neutral von

Neumann-Morgenstern preferences shifts to the right

as the number of participating bidders n increases.

Proof. Consider the derivative of (6) with respect to n

(10)θf(θ)F (θ)n−3 [(1− θν)F (θ)(1− κ) + 2θνF (θ)n(1− 2κ)]

where κ = −(n − 1) log(F (θ)). Notice that log(F (θ)) ≤ 0 and log(F (θ)) is strictly

increasing in θ with log(F (θ)) → −∞ as θ approaches the lower bound of the support

of its distribution and log(F (θ)) → 0 as θ approaches the upper bound of the support

of its distribution. Therefore, for sufficiently small θ, (10) becomes negative. Similarly,

for θ sufficiently large, (10) is positive.

Corollary 1 shows that the comparative statics of equilibrium bidding in the number

of participants in an all-pay auction qualitatively do not differ whether bidders are risk

neutral or symmetrically variance-averse. However, as shown in the second part of the

corollary, the convergence to a distribution where only high types submit positive bids

is faster the more variance-averse the bidders are.

So far, we have shown that in the all-pay auction consideration of variance aversion

generates the commonly observed bidding behaviour, which is often attributed to risk
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aversion. Although our model suffices to predict such equilibrium bidding, it is much

more tractable, specifically by yielding explicit equilibrium strategies under fairly gen-

eral conditions on the distribution of players’ types. Nevertheless, even rather simple

distributions may yield expositionally unpleasant bidding functions (compare the “other

distributions” examples below). For this reason, we will limit our discussion to the case

of uniformly distributed player types for much of the remainder of this article. The rela-

tively common assumption of uniformly distributed types allows us to exemplarily study

a number of interesting extensions of our baseline model. Before proceeding, however,

we will discuss our previous results under this particular assumption and provide bidding

functions under different distributional assumptions for comparison.

Examples for particular distributions

We now briefly illustrate the findings of propositions 1 and 2 by means of specific

examples of commonly used value distributions. For each case, we display symmetric,

equilibrium bidding functions when players have mean-variance preferences and values

are i.i.d. according to the specified distribution.

1. Consider the case of n symmetrically variance-averse players when values are

drawn from a uniform distribution over the interval [0, 1]. In this case, the ex-

pression for the objective of a bidder with mean-variance preferences (1) simplifies

to
(11)ui(b, θi) = θi(β

−1(b))n−1(1− νθi + νθi(β
−1(b))n−1)− b

which determines the symmetric equilibrium bidding functions as

(12)b∗ = β(θi) =
n− 1

n
θni + ν

(

n− 1

n
θ2ni − n− 1

n+ 1
θn+1
i

)

.

Figure 3 compares this equilibrium bidding behaviour with that under standard

risk-neutral von Neumann-Morgenstern preferences for two players. The Figure

shows equilibrium bidding functions for the all-pay auction under risk-neutrality

(dashed, βrn(θi) = θ2i /2) and mean-variance preferences (ν = 1/2, solid). As

seen in proposition 2, the bidding behaviour of low-intermediate valuation play-

ers is more aggressive under expected payoff maximisation while high valuation

players submit higher bids under mean-variance preferences. The two bidding

functions coincide at θ̂ = 2/3 in this case.

2. For the Uniform distribution on [0, U ], U > 0, F (θ) = θ/U , the n-player bidding

function is

(13)β(θi) =
(n− 1)U (θi/U)n (ν(n + 1)U (θi/U)n − θiνn+ n + 1)

n(n+ 1)
.
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Figure 3: Equilibrium bidding functions for the two-player all-pay auction with inde-
pendently and identically uniformly distributed valuations under risk-neutrality (dashed,
βrn(θi) = θ2i /2) and mean-variance preferences (ν = 1/2, solid).

This is an example of type-supports extending beyond the unit interval (assumed

elsewhere in the paper) which can be used to illustrate the relationship of the

support of F and the largest admissible ν. From equation (9) follows that β

constitutes the symmetric equilibrium if and only if

ν <
Un−1

(θ + z)(Un−1 − 2zn−1)
, ∀θ ∈ [0, U ], z ∈ (0, U),

which is satisfied for any n if ν ≤ 1/(2U).

3. For the Power distribution on [0, 1], F (θ) = θα, α > 0, the two-player bidding

function is

β(θi) = αθα+1
i

(

νθi

(

θαi
α + 1

− 1

α + 2

)

+
1

α + 1

)

.

In this is case, optimality requires that ν < [(1 + z)(1 − 2z(n−1)α)]−1 for all

z ∈ (0, 1).

4. Types distributed according to the Beta distribution with parameters (2,2),

F (θ) =
∫ θ

0
u(1−u)du/

∫ 1

0
u(1−u)du, result in the symmetric two-player bidding

function

β(θi) =
θ3i
70

(3θi((2θi(5((7θi − 20)θi + 14)θi + 14)− 35)ν − 35) + 140) .
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Here the critical valuation at which the objective is flat arises at θ̂i = 1/16
(√

33 + 1
)

and the condition for the utility ui(b; θ̂i, ν) to be non-decreasing at this critical

type requires, approximately, that ν ≤ 1.92.

5. Finally, the Quadratic-U distribution, F (θ) = 4(θ− 1/2)
3 + 4(1/2)

3, gives rise to

the equilibrium

β(θi) =
θ2i
14

((θi(8(θi(3(7θi − 20)θi + 70)− 42)θi + 105)− 14) θiν

+ 14(3θi − 4)θi + 21) .

Here, the highest type bids below or equal to 1 for any ν but weak monotonicity

of ui(b; θi, ν) requires that ν ≤ 19/10.

4 Revenue valuation

The classical reference for revenue valuation in winner-pay auctions under risk aversion

is Holt (1980) who discusses a procurement setup. Revenue equivalence between

the standard auction formats breaks down with risk averse bidders. While second-

price bidders maintain their dominant strategies of bidding their values, first-price

competitors increase their bids with respect to the standard, risk-neutral case. This

is due to the fact that raising one’s bid in a first-price auction can be seen as partial

insurance against losing. From a risk averse seller’s point of view, the first-price auction

is preferable to a second-price format because it exposes the seller to less revenue risk.22

Our objective in this section lies in the derivation of a series of concrete revenue

ranking results based on two measures, expected revenue and revenue variance. We

consider both a risk-neutral (i.e. expected revenue maximizing) seller and a seller who

is variance averse.

Assumption. Valuations are independently and identically distributed with c.d.f.

F (θi) =











0 if θi ≤ 0,

θi if θi ∈ (0, 1),

1 if θi > 1.

That is, valuations are uniformly distributed over [0, 1], θi ∼ U [0, 1].

First notice that the seller’s expected revenue R depends on the bidder’s preferences.

In the case of risk-neutral bidders, the seller expects to earn

(14)E[Rrn] = n

∫ 1

0

n− 1

n
θn dθ =

n− 1

n+ 1
.

22 For references, see Milgrom (2004, p. 123).
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If the bidders instead maximise a mean-variance function (1) with ν ∈ (0, 1/2], then

the seller can expect revenue

(15)
E[Rmv] = n

∫ 1

0

n− 1

n
θn + ν

(

n− 1

n
θ2n − n− 1

n + 1
θn+1

)

dθ

=
n− 1

n+ 1
+ ν

(

n− 1

2n+ 1
− n(n− 1)

(n+ 1)(n+ 2)

)

.

The revenue limit for n → ∞ is 1− ν/2.

Holding the number of players fixed, expected revenue is strictly increasing in ν for

the two-players case and strictly decreasing in ν for all n > 2. This is illustrated in

figure 4 and summarised in corollary 2.

Corollary 2. Consider symmetric equilibrium (5) of the n-player all-pay auction with

mean-variance preferences. E[Rmv] is strictly increasing in ν if n = 2 and strictly

decreasing in ν if n ≥ 3.

A consequence of this corollary is that the auctioneer’s revenue in the (first-price)

all-pay auction dominates that of the second-price auction for two bidders but is strictly

lower for all other numbers of auction participants. The reason is that the dominant-

strategy equilibrium revenue of a second-price auction is invariant with respect to the

bidders’ variance aversion ν and, hence, second-price revenue is given by (14). To

see this more formally, consider a bidder’s mean-variance optimisation problem in the

second-price auction

(16)

max
b

∫ β−1(b)

0

(θi − β(θj)) dθj

− ν

(

∫ β−1(b)

0

((θi − β(θj))− µ)2 dθj +

∫ 1

β−1(b)

(0− µ)2 dθj

)

.

Supplying the candidate β(θi) = θi and β−1(b) = b gives the first-order condition

(17)(b− θi)
(

ν2(b(b− 2θi − 1) + θi)− 1
)

= 0

in which the first term is solved by the equilibrium β(θi) = b = θi. (The second term

only gives solutions outside of [0,1].)

If the seller himself also considers the revenue variance in addition to the revenue’s

mean, then his preference may be reversed. In the case of risk-neutral bidding, the

seller’s revenue variance is

(18)V[Rrn] = n

∫ 1

0

(

βrn(θ)−
E[Rrn]

n

)2

dθ =
n(n− 1)2

(2n+ 1)(n+ 1)2
.
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Figure 4: Revenue for ν ∈ {−1
2 ,−1

3 ,−1
4 , 0,

1
4 ,

1
3 ,

1
2} players, respectively (sorted in the colours

of the rainbow from red to violet) and ν = 0 in black for n ∈ [2, 64]. The analysis of variance
seeking behaviour (i.e., negative ν) is presented in section 5.3.

If bidders maximise the mean-variance function (1), the resulting revenue variance is

(19)

V[Rmv] = n

∫ 1

0

(

βmv(θ)−
E[Rmv]

n

)2

dθ

= V[Rrn] +
n(n− 1)2

(2n+ 1)2

(

ν
7 + n(21− 4n(n− 3))

(1 + n)2(2 + n)(1 + 3n)

+ ν2 74 + n(151 + 8n(n− 3)(n− 1))

(2 + n)2(3 + 2n)(2 + 3n)(1 + 4n)

)

.

The ratio of V[Rmv]/V[Rrn] is given by

(20)1 +
(7 + (7− 2n)n)ν

(2 + n)(1 + 3n)
+

(1 + n)2(74 + n(151 + 8(n− 3)(n− 1)n))ν2

(2 + n)2(1 + 2n)(3 + 2n)(2 + 3n)(1 + 4n)
.

Figure 5 shows for different values of ν how this ratio reacts to a change in the number

of bidders n. With variance-averse bidders, (20) is greater than one and increasing in

ν for n = 2, 3, 4. For n ≥ 5 the variance ratio is decreasing in ν and below one. With

variance-seeking players (ν < 0, compare section 5.3) these observations are reversed.

All intersections shown in figure 5 are between 4 and 5 players. These results are

summarised in the following corollary.

Corollary 3.

n = 2 n = 3, 4 n ≥ 5

∂ E[Rmv]

∂ν
> 0 < 0 < 0

∂V[Rmv]

∂ν
> 0 > 0 < 0
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Figure 5: Seller’s variance of revenue ratio for risk neutral bidders over variance averse bidders
(20) for ν ∈ {−1

2 ,−1
3 ,−1

4 , 0,
1
4 ,

1
3 ,

1
2}, sorted in the colours of the rainbow from red to violet

and ν = 0 in black for n ∈ [2, 64].

Therefore, for n = 3, 4, both the expected revenue maximising and the variance-

averse sellers prefer to attract less variance-averse bidders. In all other cases, a

variance-averse seller may prefer bidders with mean-variance preferences, where the

exact ranking depends on the degree of the seller’s variance aversion.

5 Generalisations

Starting out from our baseline model presented in section 2, we use this section to

introduce and discuss a number of extensions that we consider particularly interesting.

Our main motivation in this section is to illustrate that the introduction of mean-

variance considerations into the standard auction analysis allows for simple analytical

predictions even in relatively complex environments in which solutions based on full

von Neumann-Morgenstern preferences seem entirely out of reach.

5.1 Two asymmetric bidders

In this article, we study the effects of variance aversion on bidding behaviour in all-

pay auctions. The standard analysis considers bidders who coincide in their objective,

i.e., expected payoff maximisation. Our model, on the other hand, puts the players’

objective in the focus of analysis, therefore it appears natural to study bidders whose

objective functions differ in the extend to which payoff variance is taken into account.

Our simple one-parameter model allows us to perform this exercise. This section
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presents our results on all-pay auctions between bidders who are asymmetric in terms

of their risk preferences.

Consider the following two-players setup featuring asymmetric degrees of variance

aversion νi where player i ∈ {1, 2} maximises

(21)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− νiσ

2(b, θi).

We consider the particular case of ν1 = 0 and ν2 = ν ∈ (0, 1/2), i.e., bidder 1 is risk-

neutral while bidder 2 is variance-averse. Correspondingly, player 1’s and 2’s objective

functions are

(22)
u1(b1; θ1) = β−1

2 (b1)θ1 − b1, and

u2(b2; θ2) = β−1
1 (b2)θ2 − ν

(

θ22β
−1
1 (b2)(1− β−1

1 (b2))
)

− b2,

respectively.

From an argument similar to the one used in a standard (risk-neutral) all-pay

auction follows that the two bidding functions β1(·) and β2(·) must share the same

support. Intuitively, in equilibrium, no player’s type can submit a strictly higher bid

than the other player’s highest type as such a bid does not affect the payoff variance

(the player wins with certainty), but strictly lowers the expected payoff. Maximising

(22) together with the boundary conditions β1(0) = β2(0) = 0 and β1(1) = β2(1)

yield the asymmetric equilibrium bidding strategies.

Proposition 3. The equilibrium of an asymmetric two-player all-pay auction with

uniformly distributed types and player-specific variance-aversion parameters ν1 = 0

and ν2 = ν ∈ (0, 1/2] is

β1(θ) =
log(1− θ2ν + θν)

2ν
− θ2

θν(θ − 1)− 1

+
1

2
√

ν(4 + ν)

(

log
(

1−
√

4+ν
ν

)

− log

(√
4+ν

ν
+θ

(

4+θ
(

ν+
√

ν(4+ν)
))

−1

θν(θ−1)−1

))

,

β2(θ) =
1

2ν

[

θν − 1 +
√

1− 2θν + θ2ν(4 + ν) +
√

ν
4+ν

log
(√

4+ν
ν

− 1
)

− log
(

1
2

(

1− θν +
√

1− 2θν + θ2ν(4 + ν)
))

− √

ν
4+ν

log

(

θ(4 + ν)− 1 +
√

(4+ν)(1−2θν+θ2ν(4+ν))
ν

)]

.

(23)
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Proof. The objective functions (22) yield the pair of first-order conditions

∂u1(θ1, b1)

∂b1
=

1

β ′
2(β

−1
2 (b1))

θ1 − 1 = 0

⇔ β ′
2(β

−1
2 (b1)) = θ1, (24)

∂u2(θ2, b2)

∂b2
=

1

β ′
1(β

−1
1 (b2))

(

θ2 − νθ22(1− 2β−1
1 (b2))

)

− 1 = 0

⇔ β ′
1(β

−1
1 (b2))− 2νθ22β

−1
1 (b2) = θ2 − νθ22. (25)

In equilibrium, b1 = β1(θ1) and b2 = β2(θ2). Thus, we substitute β−1
1 (b1) = θ1 into

(24) to obtain
(26)β ′

2(β
−1
2 (b)) = β−1

1 (b).

Taking the derivative of β−1
1 (b) and applying (24) gives

(27)β ′
1(β

−1
1 (b)) =

β ′
2(β

−1
2 (b))

β2
′′(β−1

2 (b))

where we use b as variable from the joint support of β1(·) and β2(·).23 Substituting

(27) and (26) into (25) yields the following second-order differential equation in β2

(28)
β ′
2(β

−1
2 (b))

β2
′′(β−1

2 (b))
− 2νθ2β ′

2(β
−1
2 (b)) = θ − νθ2.

This differential equation can be solved using the boundary condition β2(0) = 0 to

obtain

β2(θ2) =
1

2
√
1 + 4cν

[√
1 + 4c

(

−1 + θν +
√

1 + θν(−2 + θν + 4cθν) + log(2)
)

+ log
(

1−
√
1 + 4c

)

−
√
1 + 4c log

(

1− θν +
√

1 + θν(−2 + θν + 4cθν)
)

− log
(

1− ν
(

θ + 4cθ +
√
1 + 4c

√

1
ν2

+ θ
ν
(−2 + θν + 4cθν)

))]

for yet undetermined constant of integration c. In order to solve for the first player’s

bidding function, we solve (26) for

(29)β1(θ) = β2

(

(β ′
2)

−1(θ)
)

where

(30)(β ′
2)

−1(θ) =
θ

ν(θ − θ2 + c)
.

Setting β1(1) = β2(1) implies that the only possible value for the constant of integra-

tion is c = 1/ν. Substituting this constant into β2(θ2), we obtain the pair of bidding

functions (23). Monotonicity and global optimality can be verified numerically.
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Figure 6: Comparison of asymmetric and symmetric bidding under mean-variance preferences
for ν = 1/2.

Figure 6 illustrates the equilibrium bidding functions in comparison to the equilibria

of the corresponding symmetric two-player auctions.

As the figure shows, each positive risk-neutral player type bids less than the cor-

responding type of her variance-averse opponent. While the ν-variance-averse, asym-

metric bidder with bidding function β2(·) always bids more than symmetric risk-neutral

bidders βsym
rn , the asymmetric risk-neutral bidder with bidding function β1(·) (competing

with a variance-averse player) bids up to a cutoff-type c2 below the symmetric risk-

neutral bidders and, for types higher than c2, she bids above. Similarly, the asymmetric

variance-averse bidder (competing with a risk-neutral bidder) bids up to a cutoff-type c1

above the symmetric ν-variance-averse bidders (βsym
mv ) and bids below for types higher

than c1. Both properties are qualitatively similar to the single-crossing property with

cutoff θ̂ = c0 from proposition 2. The generally high bids of the variance-averse bidder

cause low types of the risk-neutral bidder to bid less in comparison to their strategy

when faced with risk-neutral opponents. High types of the risk-neutral bidder, on the

other hand, increase their bid in reaction to their variance-averse opponent’s strategy.

5.2 Exogenous shocks

For the purpose of analysing the effect of the precision of signals, we extend the

basic model analysed in section 3 with exogenous noise governed by the two elliptical

distributions W and L, i.e., distributions which are completely determined by their

23 The standard argument applies that in the two-player, all-pay auction the supports of both players’
bidding functions coincide.
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mean and variance.24 In a similar fashion to Esö & White (2004) we consider the

possibility that the final value of the object may further be influenced by an exogenous

shock, ε ∼ W (0, ε̂2), which is distributed over some compact interval with mean zero

and variance ε̂2. Similarly, a player’s valuation of the state in which she does not

win the object may be subject to another independently distributed exogenous shock

δ ∼ L(0, δ̂2).

After realising their own (expected) valuations of the object, θi, all players simulta-

neously submit their bids, bi, i ∈ N . The player with the highest bid receives the object

and all players forgo their bids. Consider winning valuations distributed θ̃i ∼ W [θi, ε̂
2],

ε̂2 ∈ [0, 1]. Similarly, we allow for the case that a player’s valuation, if she does not

win the object, is subject to another exogenous shock δ ∼ L(0, δ̂2). The exogenous

shocks realise after the auction stage has ended and player i’s payoff πi(bi, b−i; θi) is

given by











θi + ε− bi if bi > bj∀j 6= i,
1
m
(θi + ε) + m−1

m
δ − bi if i ∈ Q = {j ∈ N |bj = maxk∈N bk}, m = |Q|,

δ − bi if ∃j : bi < bj .

Notice that neither of these exogenous noise variables have any effects on equilib-

rium bidding behaviour in the standard model of buyers with risk-neutral von Neumann-

Morgenstern utility, who simply maximise expected payoffs. In the following we discuss

how bidding strategies of buyers with mean-variance preferences are affected by noisy

signals. The player’s objective changes from (1) into

(31)
ui(µ(b, θi), σ

2(b, θi)) = µ(b, θi)− ν
(

σ2(b, θi) + ε̂2F (β−1(b))n−1

+ δ̂2(1− F (β−1(b))n−1)
)

for ν ∈ [0, 1
2
].

Inserting back the expressions for the mean and variance (4), and maximisation of

the resulting objective yields the symmetric equilibrium.

Proposition 4. A symmetric equilibrium in the environment with exogenous noise

consists of the bidding functions

(32)β̂mv(θi) =

{

0 if θi ≤ θ0

βmv(θi)− (F (θi))
n−1ν(ε̂2 − δ̂2) if θi > θ0

24 Elliptical distributions are a generalisation of the normal family containing, among others, the
uniform, Student-t, Logistic, Laplace, symmetric stable, and Normal distributions. A detailed
presentation of these distributions is available in Fang et al. (1987). Alternatively, if distributions
are employed that are characterised by the first n moments, n > 2, the higher moments are
assumed to be irrelevant to bidders endowed with mean-variance preferences.
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where βmv(θi) is defined in (5) and the “cutoff type” θ0 is implicitly defined as the

solution to25

(33)
θ0(F (θ0))

n−1 −
∫ θ0

0

(F (ϑ))n−1dϑ

−ν

∫ θ0

0

ϑ2(n− 1)(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ− (F (θ0))
n−1ν(ε̂2 − δ̂2) = 0.

Proof. Inserting the expressions for the mean and variance (4) into the players’ objec-

tive yields

(34)ui(b, θi) = (F (β−1(b)))n−1
[

θi
(

1− νθi + νθi(F (β−1(b)))n−1)− νε̂2
)]

+ (1− (F (β−1(b))))n−1δ̂2

− b.

The first-order condition for maximisation of this expression with respect to b is

(35)

[

θi
(

1− νθi + 2νθi(F (β−1(b)))n−1
)

− ν(ε̂2 − δ̂2)
]

×

(n− 1)(F (β−1(b)))n−2f(β−1(b))
∂β−1(b)

∂b
= 1.

In the symmetric equilibrium b = β(θi) for all i ∈ N , this yields the first-order differ-

ential equation

(36)β ′(θi) = θi
(

1− νθi + 2νθi(F (θi))
n−1
)

(n− 1)(F (θi))
n−2f(θi)

− (n− 1)(F (θi))
n−2f(θi)ν(ε̂

2 − δ̂2).

This differential equation is solved by the bidding function. As we restrict bids to be

non-negative, the resulting bidding function is still invertible over the relevant region.

Optimality requires the usual restriction of ν.

Note that the bidding function (32) constitutes an equilibrium in both cases,

whether a zero bid is interpreted as abstaining from the contest and hence results

in a winning probability of zero, or the winner is determined through efficient tie-

breaking (i.e., ties are broken in favour of the player with the highest valuation for

the prize) in the event that all players bid zero, which happens with strictly positive

probability if ε̂2 − δ̂2 > 0 and F has full support [0, 1]. Which of these cases is more

appropriate depends on the exact environment to be modelled.

Similarly to the common practice of normalising the valuation of the outside option

to zero, (32) shows that there is a degree of freedom to normalise the variance of one

of the two possible outcomes. In the remainder we therefore normalise δ̂2 ≡ 0 for

simplicity.

25 A closed form solution for the ’cutoff type’ is generally unavailable.
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Corollary 4. Introducing exogenous noise ε̂2 > 0 on the prize rotates the optimal

bidding schedule down, causing low-type bidders to abstain from participating in the

auction.

Consequently, it lies in the interest of an effort maximising contest designer to

minimise ε̂2− δ̂2, i.e., make signals about the prize as precise as feasible, while possibly

keeping the loser’s payoff uncertain.

Example

We conclude this section with our usual two-bidders example with uniformly distributed

valuations. Consider the equilibrium bidding function

(37)b∗ = β̂(θi) =
θ2i
2

− ν

(

θ3i
3

− θ4i
2

+ θiε̂
2

)

.

The bidding behaviour this suggests for the case of a stochastic prize parametrised by

ε̂2 = 1/4, is shown as dotted line in figure 7. Consider now a case in which we auction

two objects valued θ1 > θ2 with exogenous prize variance ε̂1 > ε̂2. If (full demand)

bidders submit separate bidding functions for each object, then our model is able to

predict cases where the bid for the high-value/high-risk object is below that of the

low-value/low-risk object as exhibited by the dashed pair of bidding functions relative

to their solid counterparts in figure 7. In the context of allocation of resources amongst

objects in a portfolio of research projects, this observation shows that a variance-averse

manager may allocate fewer resources to a project with a relatively high expected return

if the prediction of its value in case of a success is very noisy.

5.3 Variance seeking

Up to this point of our analysis we have focused on players who aim to avoid variance in

their payoffs. Although risk aversion is a much more common assumption in economic

studies, empirical studies have found risk seeking behaviour in multiple environments

including investment games and inventive activities (see e.g., Åstebro, 2003; Jindapon

& Yang, 2017). The topic of setting the right incentives for the alignment of managerial

risk taking and investors’ interests spans an entire literature. Agranov et al. (2014),

for instance, show that subjects typically invest in a more risky manner when acting as

managers in comparison to situations where individuals’ personal funds are allocated.

Therefore, it appears logical to consider variance seeking behaviour in the context of

R&D races between firms if managers do not hold significant shares of the companies

involved. For an analysis of how risk-taking influences a competition between fund
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Figure 7: Equilibrium bidding functions for the all-pay auction with two players and uniformly
distributed valuations under risk-neutrality (dashed, β(θi) = θ2i /2) and mean-variance prefer-
ences (ν = 1/2, solid). The dotted bidding function results under mean-variance preferences
if the prize itself is risky ε̂− δ̂ = 1/4.

managers whose compensation depends on how well they perform relative to each

other, see Strack (2016).

In this section, we point out that the approach using mean-variance preferences is

equally applicable when players are variance seeking and briefly discuss the effects of

such preferences on our results in section 3. Variance seeking preferences are captured

by a negative parameter, ν ∈ (−1/2, 0), in our basic model (1). Following the same

analytical steps as before, we find that (5) still describes the symmetric equilibrium

bidding functions when n players have symmetric mean-variance preferences with vari-

ance seeking parameter ν ∈ (−1/2, 0). Proposition 5 shows that in the equilibrium

of the symmetric all-pay auction with variance seeking players low types bid more and

high types bid less than their counterparts in the symmetric all-pay auction with risk

neutral players.

Proposition 5 (Single-crossing II). In an all-pay auction with n symmetric players,

who each maximise (1) with ν ∈ (−1/2, 0), (i) the strategies

(38)βmv(θi) = βrn − ν

∫ θi

0

ϑ2(n− 1)(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ

constitute a symmetric equilibrium, and (ii) there exists a θ̂ in the support of F such

that βmv(θ) ≥ βrn(θ) for θ ≤ θ̂, βmv(θ̂) = βrn(θ̂) and βmv(θ) < βrn(θ) for θ > θ̂.

Proof. The proof is the same as in section 3.
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Figure 8 illustrates this observation graphically. It further shows that from a contest

designer’s point of view it is strongly beneficial to introduce even a small amount of

exogenous noise when players have variance seeking preferences. In our model this

effect can be achieved both by a higher degree of uncertainty about the value of the

prize and by less uncertainty in the event of losing the contest.
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Figure 8: Equilibrium bidding functions for the all-pay auction under risk-neutrality (solid
black, βrn) and risk-seeking behaviour (ν ∈ {−1/4,−1/2}, solid, red and blue, resp.). The
dotted bidding functions exhibit risky prizes ε̂− δ̂ = 1/10.

Monotonicity of the bidding function (38) requires that

(39)β ′
mv(θi) = θi(n− 1)F (θi)

n−3 (F (θi) + 2θiνF (θi)
n − θiνF (θi)) f(θi) ≥ 0.

As previously discussed in section 3, this is equivalent to

F (θ)n−1 >
1

2
− 1

2νθ
, ∀θ ∈ [0, 1].

For negative ν this condition holds for any numbers of bidders n and distribution of

values F (·) if ν ≥ −1. However, equal to the case of variance aversion, we need to

further restrict ν in order to guarantee that the identified strategy is a global maximizer.

The condition

F (z)n−1 >
1

2
− 1

2ν(θ + z)
, ∀z ∈ (0, 1)

holds for any numbers of bidders n and distribution of values F (·) if ν ∈ [−1/2, 0].
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5.4 Type-dependent variance preferences

In this section we further generalise our model to account for systematic differences

in risk preferences. In section 5.1 we analyse bidding behaviour of two players who

ex-ante differ in their risk attitudes. We take these variance aversion parameters as

exogenously determined and assume that prize values are independently drawn from

the same distribution. This model accurately captures bidding strategies when the

mean-variance preference parameters are fixed. Contrary to this classical understanding

of preferences, empirical and experimental studies suggest that the same player may

indeed show different risk attitudes when facing different tasks and in particular when

operating in different payoff intervals. In the spirit of Post & Levy (2005), who test a

model of locally risk-seeking agents whose risk attitudes differ in bear and bull markets,

we generalise our model such that risk preferences systematically differ with a player’s

valuation of the prize. In order to study this case, we change the simple objective (1)

to
(40)ui(µ(b, θi), σ

2(b, θi); ν, λ, t) = µ(b, θi)− ν(θi − t)λσ2(b, θi),

for λ ∈ {2n+ 1|n ∈ N} ∪ {0} and reference point t ∈ (0, 1). Note that setting λ = 0

takes us back to the case of type-independent mean-variance preferences as displayed

in (1); in all other cases, for ν ∈ (0, 1/2], types θ < t are variance-seeking while types

θ > t are variance-averse. Type θ = t is risk neutral. A higher parameter λ represents

more pronounced differences in variance preference towards the extremes, while a lower

parameter λ corresponds to more uniformly increasing variance aversion. For the case

where ν ∈ [−1/2, 0), this interpretation is reversed.

Proposition 6. If players maximise (40), the symmetric equilibrium bidding strategy

is

βν,θ(θi; ν, λ, t) =
n− 1

n
θni − ν(n− 1)tn+1(−t)λ

∫

θi

t

0

xn(1− x)λ
(

1− 2tn−1xn−1
)

dx.

(41)

Proof. Taking the derivative of (40) with respect to player i’s bid b, we obtain

(42)
∂ui(b, θi)

∂b
=
(

2θ2i ν(n− 1)β−1(b)2n(θi − t)λ − β−1(b)3β ′
(

β−1(b)
)

− θi(n− 1)β−1(b)n+1
(

θiν(θi − t)λ − 1
))

/
(

β−1(b)3β ′
(

β−1(b)
))

in which we assume that the unknown function β(θi) is invertible. Setting zero and

supplying the symmetric equilibrium condition b = β(θi), this simplifies to

(43)β ′(θi) = (n− 1)θn−1
i

(

1 + (θi − t)λθiν
(

2θn−1
i − 1

))

.
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A type-zero player still optimally bids zero. The first-order differential equation (43) is

then solved for boundary condition β(0) = 0 by (41).

This formulation allows for changes of variance-preferences based on endogenous,

type-dependent considerations. Figure 9 shows representative bidding functions for

positive and negatively type-related variance aversion in comparison to risk-neutral

bidding.
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Figure 9: Two-player equilibrium bidding functions with type dependent variance aversion:
βν,θ(θ; 0, 0, 1/2) (blue), βν,θ(θ; 1/2, 1, 1/2) (red), βν,θ(θ;−1/2, 1, 1/2) (gold). The shown
bidding functions do not intersect for θ > 0.

6 Concluding remarks

We present first results for the study of all-pay auctions if buyers and/or sellers are

endowed with mean-variance preferences. We fully characterise the symmetric equi-

librium bidding function of the all-pay auction with n identical bidders when bidders

maximise an additively separable function of their expected payoff and payoff variance.

Our first proposition shows that consideration of mean-variance preferences suffices

to derive the qualitative properties of the bidding function which Fibich et al. (2006)

obtain in their analysis of a similar environment but considering any von Neumann-

Morgenstern utility function which entails risk aversion. These qualitative properties

seem to correspond well to experimental data. As such, all our results based on this

bidding function appear relevant even when payoff distributions are not fully charac-

terised by their first two moments. Eisenhuth & Grunewald (2017) observe similar
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effects on equilibrium bidding behaviour in their analysis of loss-averse players. Most

standard models of loss-aversion are equivalent to our model of (linear) mean-variance

preferences because the wedge between the winning and losing payoff is exogenously

determined by a player’s type in the all-pay auction.

In our model of mean-variance preferences, players choose a strategy that maximises

the difference between their expected payoff and the payoff variance, which is weighted

by a parameter, ν, representing the players’ degree of variance consideration. One

major advantage of this approach is that we obtain closed form solutions for the bidding

functions with just a single parameter representing variance aversion. This enables us

to perform comparative statics. Furthermore, the specifically chosen functional form

allows us to relax the standard assumption of identical preferences. We exemplary solve

for the bidding functions in an all-pay auction with one expected payoff maximiser and

one bidder with mean-variance preferences. In contrast to the symmetric equilibrium,

we find that the mean-variance bidder of a given type always bids more than her

risk neutral opponent of the same type. Although the analysis is only provided for

the case of two bidders, the result would look similar if more general sets of n1 risk

neutral and n2 mean-variance bidders were competing. Similarly, we conjecture that

the qualitative findings from our benchmark case would carry over if the first bidder

type was not risk neutral, but just less variance-averse than her opponent. Our first

results and analysis of a contest with players who differ in their risk preferences open

the door for further interesting studies. In particular, a model in which bidders have

private information about their own risk preference appears interesting. The analysis

of such a model, however, seems complex and is therefore outside the scope of this

first investigation. Although we consider incomplete information about the opponents’

degree of variance consideration in section 5.4, we reduce the dimension of private

information by assuming a (known) particular function relating prize value and variance

aversion parameter, νi = f(θi) = ν · (θi − t)λ.

Another crucial result of this article is the importance of bidders’ risk preferences

from the seller’s perspective. Having obtained the (symmetric) equilibrium bidding

function we consider effects of the number of bidders and their degree of variance

aversion on revenue. Corollary 2 shows that the influence of variance aversion on

expected revenue depends on the number of players. In particular, we find that consid-

ering n ≥ 3 reverses the ranking found for the two-player case. This finding suggests

that under risk-aversion the generalisation from the two-player case to the general case

may not always be as intuitive as it is often the case under risk neutrality. The par-

ticular contest under consideration determines which fundamental parameters can be

influenced by the organiser. Moreover, we show that the seller’s own preference plays
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a crucial role when choosing the right number of participants with the preferential de-

gree of variance consideration. This result is particularly important when the contest

organiser is very influential. For example, a government whose main objective is to fos-

ter innovations – often measured by the number of registered patents – will optimally

impact the innovative environment differently from one which is mainly interested in

high value innovations. If start-ups are generally more risk-averse than large established

companies, then different innovation related preferences will lead authorities to prefer

different competitive structures.

With the exception of the analysis of bidding behaviour of n ex-ante identical

players, much of our analysis focuses on the case of valuations that are i.i.d. draws

from the uniform distribution over [0, 1]. The resulting simplification of otherwise

lengthy expressions and the possibility to analytically obtain solutions has caused us to

make this assumption. However, qualitatively similar results can be obtained for other

standard distributions.

Appendix

Throughout the paper we use simple preferences of the form

(44)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− νiσ

2(b, θi), with νi ∈ [−1/2,+
1/2].

Consider now a more general symmetric utility formulation u(µ(b, θi), σ
2(b, θi))

with standard uniform valuations. Taking the derivative with respect to b and making

the usual simplifications gives the first-order condition

(45)
(β ′(θ)− θ) u(1,0) (µ(b, θi), σ

2(b, θi)) + (2θ − 1)θ2u(0,1) (µ(b, θi), σ
2(b, θi))

β ′(θ)
= 0.

Denoting by ρ the ratio of marginal valuations of variance over mean and assuming

this ratio to be constant, the first-order condition simplifies to26

(46)β ′(θ) = θ + ρ(1− 2θ)θ2 in which ρ =
u(0,1)(µ(b), σ(b))

u(1,0)(µ(b), σ(b))
.

This differential equation is solved by the bidding function

(47)β(θ) =
1

2
θ2 + ρ

2− 3θ

6
θ3.

Standard arguments imply that u(1,0) > 0 and our interpretation of variance-aversion is

that u(0,1) < 0. Since (2θ−3θ2)/6 ≥ 0 if θ ≤ 2/3, this allows us to determine precisely

26 In case of utility function (44) we have that u(1,0) = 1 and u(0,1) = νi, i.e., the marginal valuations
ratio is ρ = νi.
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which types of variance averse bidders bid in excess of their risk neutral counterparts.

The equivalent to (47) for general symmetric distribution F and n ≥ 2 bidders is

(48)β(θ) = (n− 1)

∫ θ

0

F (x)n−2
(

ρx
(

1− 2F (x)n−1
)

+ 1
)

xf(x) dx.

This illustrates that, although we choose a particularly simple form of preferences for

presentational purposes, using more involved functional preference representations will

leave many of our results qualitatively unaffected.
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