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1 Introduction

In the early 20th century, Sir R. A. Fisher and others set in motion what is known
today as the classical parametric approach to statistical estimation of a finite number
of population parameters using sample data. Thus began the practice of statistical in-
ference within the framework of estimation and hypothesis testing of univariate and
multivariate probability distributions. The extensive study of conditional probability
distributions followed, and hence the estimation and testing in the conditional mean
(regression) and conditional variance (volatility) models became a norm in econo-
metrics and statistics. The estimation of parameters of regression and other models
gave rise to the development of statistical properties of econometric estimators of
such models like their bias, mean squared error (MSE), and distributions.Within this
and in related contexts Barry Arnold has made many fundamental and innovative
contributions in different areas of statistics and econometrics, including estimation
and testing, distribution theory and characterization of distributions, income distri-
bution theory and Lorenz curves, among others. See, for example, Arnold (1983,
1987, 2012, 2015), Arnold and Sarabia (2018), Coelho and Arnold (2014), Marques,
Coelho, and Arnold (2011), and Villaseñor and Arnold (1984, 1989). All of these
have made significant impact on the profession and have been been instrumental in
advancing statistics and econometrics.

The large sample limiting distribution theory was well developed but there were
challenges to develop needed analytical finite sample distributional results. In gen-
eral, the large sample properties did not necessarily imply the small sample proper-
ties, and if they were used in small or moderately large sample cases they may give
misleading policy implications. This problem was posed since most of econometric
estimators were nonlinear functions of multivariate random variables and it was not
easy to develop their exact distributional properties. Nagar (1959) developed finite
sample approximate bias and MSE of the two stage least least squares (2SLS) es-
timator of the parameters in a structural model. This was followed by an extensive
work of many other econometrians and statisticians on the exact bias and MSE, and
some on the exact distribution, of the 2SLS estimator. This literature is summarized
in Ullah (2004), also see Anderson and Sawa (1973), Phillips (1980, 1986), and Bao,
Ullah, and Wang (2017). However, the exact distribution of many other econometric
and statistical estimators are not yet developed.

In view of this in this paper we develop a unified procedure to analyze the exact
distribution by observing that many econometric and statistical estimators can be
written as ratios of quadratic forms. Their distributions can then be straightforwardly
developed by using Imhof’s (1961) result on the distribution of an indefinite quadratic
form. We show the applications of this procedure to develop the distribution of some
statistics used in applied work. These include squared coefficient of variation for
measuring income inequality, squared Sharpe ratio commonly used in financial
management, Durbin-Watson test statistic for serial correlation routinely used in
practice,Moran’s test statistic for spatial correlation, and goodness of fit in regression
models. The exact results developed here will be helpful for practitioners to conduct
appropriate inference for any given size of the sample data.
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The paper is organized as follows. In Sect. 2 we present the exact distributional
results. Then in Sect. 3 we provide a numerical analysis of the exact distribution of
a goodness of fit measure. Finally the conclusion is given in Sect. 4. Throughout,
O = O= is the =×= identitymatrix, * = *= is an =×1 vector of ones, andS0 = O−=−1**′.

2 The Exact Distribution

Let us consider the ratio of quadratic forms as

@ =
y′T1y

y′T2y
, (1)

where y is an = × 1 normal random vector with E(y) = - and Var(y) = � being
positive definite, T1 and T2 are = × = nonstochastic symmetric matrices, and T2 is
a positive semi-definite.1 The cumulative distribution function (CDF) of this ratio is

� (@0) = Pr(@ ≤ @0) = Pr(y′Ty ≤ 0),

where T = T1 − @0T2. Note that y′Ty = y′�−1/2WW ′�1/2T�1/2WW ′�−1/2y ≡
z′�z, where z = W ′�−1/2y ∼ N(-I , O), -I = W ′�−1/2-, � is a diagonal matrix
of eigenvalues of �1/2T�1/2, and W is an orthogonal matrix of eigenvectors of
�1/2T�1/2 such thatW ′�1/2T�1/2W = �. So the distribution of the ratio of quadratic
forms translates to that of a linear combination of independent non-central chi-
squared random variables. Without loss of generality, let _ 9 , 9 = 1, · · · , A ≤ =,
denote non-zero distinct elements of �, = 9 be the corresponding mutiplicities, X 9 =∑
8→ 9 `

2
I8
, where

∑
8→ 9 denotes summing over 8 such that the 8-th element of �

equals _ 9 . Then z′�z =
∑A
9=1 _ 9 Z

2
9
, where Z2

9
∼ j2

= 9
(X 9 ) and they are independent

of each other. For a linear combination (with weights _ 9 ) of independent noncentral
chi-squared variables Z2

9
(with noncentrality parameter X 9 and degrees of freedom

= 9 ), Imhof (1961) showed that

Pr(
A∑
9=1
_ 9 Z

2
9 ≤ @∗0) =

1
2
− 1
c

∫ ∞

0

sin \ (E)
Ed(E) dE, (2)

where

1 If they are not symmetric, we can simply replace T 1 and T 2 by (T 1 +T ′1)/2 and (T 2 +T ′2)/2
, respectively.
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\ (E) = −
@∗0E

2
+

A∑
9=1

[
= 9

2
tan−1 (_ 9E) +

_ 9X 9E

2(1 + _2
9
E2)

]
,

d(E) =
A∏
9=1
(1 + _2

9E
2)= 9/4 exp

[
_2
9
E2X 9

2(1 + _2
9
E2)

]
.

Setting @∗0 = 0, we have � (@0) = Pr(y′Ty ≤ 0) = Pr(y′T1y/y′T2y ≤ @0).

2.1 Goodness of Fit Statistic X2

For the linear regression model y = ^# + u, where y = (H1, · · · , H=) ′ is an = × 1
vector of observations on the dependent variable, ^ = (x1, · · · , x=) ′ is an = × :
nonstochastic matrix of covariates (including a constant term) with coefficient vector
#, and u = (D1, · · · , D=) ′ collects normally distributed error terms, a goodness of fit
statistic is

'2 =

∑=
8=1 (H8 − H̄) ( Ĥ8 − H̄)∑=

8=1 (H8 − H̄)2
=

y′S0Vy

y′S0y
, (3)

where H̄ = =−1 ∑=
8=1 H8 , Ĥ8 = x′

8
#̂, and V = ^ (^ ′^)−1^ ′. We can thus evaluate the

distribution of '2 with T1 = S0V and T2 = S0 by applying (2).
DenoteS = O−V and V0 = =−1**′. Then we can put T = S0V−0S0 = S0 ((1−

0)V − 0S) = V + (0 − 1)V0 − 0O. Note that V is idempotent with eigenvalues 1 (of
multiplicity :) and 0 (ofmultiplicity =−:) and V0 is also idempotentwith eigenvalues
1 (of multiplicity 1) and 0 (of multiplicity = − 1). Since V0v = (V0V)v = V0 (Vv)
for any conformable vector v, we see that if v is an eigenvector of V associated
with eigenvalue 0, then it must also be an eigenvector of V0 corresponding to its
eigenvalue 0. There are = − : linearly independent such vectors. Denote them by v8 ,
8 = 1, · · · , =− : . Further, Tv8 = [V + (0−1)V0 − 0O]v8 = [0+ (0−1) · 0− 0 · 1]v8 =
−0 · v8 , implying that T has eigenvalue −0 with corresponding eigenvectors v8 .
Similarly, if w is an eigenvector of V0 associated with eigenvalue 1, so is it an
eigenvector of V corresponding to its eigenvalue 1, and Tw = [V + (0 − 1)V0 −
0O]w = [1 + (0 − 1) · 1 − 0 · 1]w = 0 · w, implying that T has eigenvalue 0 with
a corresponding eigenvector w. Further, v8 and w are linearly independent. Since
T, V, and V0 are all symmetric matrices, their eigenvectors span R= (see page
179, Exercise 7.48 of Abadir and Magnus (2005)). Thus there must exist : − 1
linearly independent vectors z 9 ∈ R=, 9 = 1, · · · , : − 1 (also linearly independent
of v8 and w) to be eigenvectors of T, V, and V0. Eigenvectors z 9 correspond to
eigenvalue 1 of V since z 9 and v8 are linearly independent. Eigenvectors z 9 also
correspond to eigenvalue 0 of V0 since z 9 and w are linearly independent. As such,
Tz 9 = [V + (0 − 1)V0 − 0O]z 9 = [1 + (0 − 1) · 0 − 0 · 1]z 9 = (1 − 0) · z 9 , implying
that T has eigenvalue 1 − 0 with corresponding eigenvectors z 9 .

Given that T = S0 ((1 − 0)V − 0S) has two non-zero eigenvalues, 1 − 0 and
−0, with corresponding mutiplicities : − 1 and = − : , respectively, it is convenient
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for us to rewrite
'2 =

y′S0Vy

y′S0Vy + y′Sy
. (4)

If the error terms are independent and identically distributed (i.i.d) with variance
f2
D , then y′S0Vy/f2

D ∼ j2
:−1 (#

′^ ′S0^#), y′Sy/f2
D ∼ j2

=−: (0), and they are
independent of each other. As such, '2 follows a singly noncentral beta distribution
(see Koerts and Abrahamse (1969)) and its distribution takes on the following form:

Pr('2 ≤ A0) =
∞∑
9=0

1
9!

(
#′^ ′S0^#

2f2
D

) 9
exp

(
− #
′^ ′S0^#

2f2
D

)
�

(
A0 |

: − 1
2
+ 9 , = − :

2

)
, (5)

where � (G |0, 1) =
∫ G

0 I0−1 (1 − I)1−1dI is the incomplete beta function with param-
eters 0 and 1. Alternatively, the distribution function can be calculated by (2) with
_1 = 1 − 0, _2 = −0, =1 = : − 1, =2 = = − : , X1 = #′^ ′S0^#/f2

D , and X2 = 0.2

2.2 Squared Sharpe Ratio

In financial portfolio management, a routine task is to assess a portfolio’s perfor-
mance. The most widely used metric may be the Sharpe ratio, introduced by Sharpe
(1966). Recently, Barillas and Shanken (2017) discussed how to compare asset pric-
ing models under the classic Sharpe metric and showed that the quadratic form in
the investment alphas is equivalent to the improvement in the squared Sharpe ratio
when investment in other assets is permitted in addition to the given model’s factors.

The squared Sharpe ratio of an asset is defined as B = `2/f2, where ` is the
is mean of the asset’s excess return and f2 is its variance. Given a sample y =

(H1, · · · , H=) ′ of excess returns, the sample squared Sharpe ratio is

B̂ =

(
ˆ̀
f̂

)2
=

y′**′y/=2

y′S0y/(= − 1) =
y′

(
**′

=2

)
y

y′
(
S0
=−1

)
y

(6)

and (2) can be sued to evaluate its exact finite sample distribution with T1 = **′/=2

and T2 = S0/(= − 1).
When the excess return series is i.i.d. normal, the sample Sharpe ratio b̂ = ˆ̀/f̂,

when scaled by
√
=, is equivalent to a non-central C random variable with degrees

of freedom = − 1 and non-centrality parameter
√
=b.3 As such, the sample squared

2 The linkage between Imhof’s formula and the non-central � (see the next subsections) and beta
distribution functions was discussed in Ennis and Johnson (1993).
3 The connection of the Sharpe ratio to the C-distribution seems to originate in Miller and Gehr’s
(1978) note on the bias of the Sharpe ratio.
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Sharpe ratio (scaled by =) follows a singly non-central � distribution, �1,=−1 (=B, 0).4
So we have

Pr( B̂ ≤ B0) =
∞∑
9=0

(
( =B2 )

9

9!
exp(−=B

2
)
)
�

(
=B0

= − 1 + =B0

���� 1
2
+ 9 , = − 1

2

)
. (7)

2.3 Squared Coefficient of Variation

The coefficient of variation (CV) has long been used in the literature as one of
income inequality indexes across regions or over time. It is defined as the ratio of the
standard deviation of the variable of interest (e.g., household income) to its mean
value, namely, f/`. A closely related measure is the squared CV, usually called the
coefficient of variation squared (CV2), denoted by U = f2/`2. When the mean value
of the variable of interest is positive, CV and CV2 are monotonic transformation of
each other. As neither the population mean nor the standard deviation is known, in
practice we usually use their sample analogues to calculate CV and CV2.

Specifically, the sample CV2 is defined as

Û =
f̂2

ˆ̀2 =
y′S0y/(= − 1)

y′**′y/=2 =

y′
(
S0
=−1

)
y

y′
(
**′

=2

)
y
. (8)

Obviously, we can set T1 = S0/(= − 1) and T2 = **′/=2 in (2) to evaluate the exact
distribution Pr(Û ≤ 0).

If we further assume that the data is i.i.d., then from the discussion in the previous
subsection, it is obvious that the distribution of Û (scaled by =−1) is �=−1,1 (0, =B),
where B = 1/U. This is a special case of double non-central �-distribution and since
it is the reciprocal of �1,=−1 (=B, 0), we have

Pr(Û ≤ U0) = 1 − Pr(Û ≥ U0)

= 1 − Pr( 1
Û
≤ 1
U0
)

= 1 −
∞∑
9=0

(
( =2U )

9

9!
exp(− =

2U
)
)
�

(
=
U0

= − 1 + =
U0

����� 1
2
+ 9 , = − 1

2

)
. (9)

4 This notation is from the double non-central � -distribution with non-centrality parameters X1
and X2 and corresponding degrees of freedom 31 and 32, denoted by �31 ,32 (X1, X2).
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2.4 The Durbin-Watson Statistic and Moran’s O

For testing the first-order autocorrelation in the error term in the classical linear
regression model, the Durbin-Watson statistic for testing �0 : d = 0 against �1 :
d ≠ 0 in D8 = dD8−1 + 48 , where 48 is an i.i.d. innovation term, is calculated as

3 =

∑=
8=2 (D̂8 − D̂8−1)2∑=

8=1 D̂
2
8

=
û′Gû

û′û
=

y′SGSy

y′Sy
, (10)

where û = (D̂1, · · · , D̂=) ′, D̂8 = H8 − Ĥ8 , is the residual vector, and G is a tri-diagonal
matrix with −1 on the super- and sub-diagonal positions, 011 = 0== = 1, and 088 = 2,
8 = 2, · · · , =. So setting T1 = SGS and T2 = S in (2), we can evaluate the exact
distribution of the Durbin-Watson statistic. Srivastava (1987) derived the asymptotic
distribution of Durbin-Watson statistic under the null hypothesis D8 ∼ N(0, f2

D O) as
[(= − :)3 − tr(GS)]/

√
2tr(GS)2 → N(0, 1).

For spatial data, Moran’s � statistic is to test for possible correlation across space.
It is calculated as

� =
=

1′]1
y′S0]S0y

y′S0y
, (11)

where] is the so-called spatial weights matrix with zeros on the diagonal.5 Again,
its exact distribution can be straightforwardly evaluated by (2).

3 Illustration

In this section,we illustrate the performance of the exact result via (2) in comparison
with the asymptotic distributional results. We focus on the statistic '2. As discussed
in Xu (2014), in the statistical and public health communities, reliable inference on
'2 has attracted a lot of attention. The literature on statistical inference of '2 has
been scarce, however. Xu (2014) developed the asymptotic distribution of '2 in linear
regression models with possibly nonnormal errors and discussed the � distribution
approximation with degrees of freedom adjustment. In Xu’s (2014) set-up, the data
is demeaned such that H̄ = 0. Here we relax this restriction. We begin with the
general case when the error distribution may be nonnormal. In what follows, let W1
and W2 denote the skewness and excess kurtosis coefficients of the error distribution.
Obviously, when the error is normal, W1 = W2 = 0.

Recall that we have written '2 = y′S0Vy/(y′S0Vy+ y′Sy). Below we present
the asymptotic distributions of '2 and two monotonic transformations of it.

Theorem 1 For the linear regression model y = ^# + u, where ^ is nonstochastic
and u consists of i.i.d. errors, '2, '2/(1 − '2), and log('2/(1 − '2)) have the
following asymptotic distributions:

5 If we are interested instead in testing whether the spatial correlation arises from the unobservable
error term in a linear regression model, Moran’s � can be calculated with S replacing S0 in (11).
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√
=

(
'2 − V′^ ′S0^V

V′^ ′S0^V + =f2
D

)
3→ N

©­­«0,
4#′�#
f2
D
+ (2 + W2)

(
#′�#
f2
D

)2(
#′�#
/f2

D
+ 1

)4

ª®®¬ , (12)

√
=

(
'2

1 − '2 −
#′^ ′S0^#

=f2
D

)
3→ N

(
0,

4#′�#
f2
D

+ (2 + W2) (#′�#)2

f4
D

)
, (13)

√
=

(
log

(
'2

1 − '2

)
− log

(
#′^ ′S0^#

=f2
D

))
3→ N

(
0,

4f2
D

#′�#
+ 2 + W2

)
. (14)

Proof By substitution, y′S0Vy = (^# + u) ′S0V(^# + u) = #′^ ′S0^# +
u′S0Vu + 2u′S0^#. Using results on the moments of quadratic forms in
nonnormal random vectors (see, for example, Bao and Ullah (2010)), we have
E(u′S0Vu) = f2

D tr(S0V) = :f2
D−=−11′V1 and Var(u′S0Vu) = f4

D [W2tr(S0V�
S0V) + 2tr(S0VS0V)], where � denotes the Hadamard product operator. Since
the idempotent matrix V has elements of order$ (=−1) and S0 is uniformly bounded
in row and column sums, we can write Var(u′S0Vu) = 2f4

D tr(S0VS0V) + >(1) =
2f4

D [tr(V) − 2=−11′VV1 + =−2 (1′V1)2] + >(1) = $ (1). Thus we can claim
=−1/2u′S0Vu = >% (1). Using the central limit theorem on linear and quadratic
forms in randomvectors (seeKelĳian and Prucha (2001)), we have =−1/2u′S0^#

3→
N(0, f2

D#
′�#), where� = lim=→∞ =−1^ ′S0^. So =−1/2 (y′S0Vy−#′^ ′S0^#) =

2=−1/2u′S0^# + >% (1)
3→ N(0, 4f2

D#
′�#). Similarly, =−1/2u′Su = =−1/2u′u +

>% (1)
3→ N(f2

D , f
4
D (2 + W2)). Further, Cov(u′S0^#, u′u) = E(#′^ ′S0uu

′u) =
W1#

′^ ′S0* = 0. Following Kelĳian and Prucha (2001) again, we can show that any
linear combination of =−1/2u′S0^# and =−1/2u′u − f2

D (say, ;1=−1/2u′S0^# +
;2 (=−1/2u′u −f2

D), where ;1 and ;2 are non-zero constants) is asymptotically normal
(N(0, ;21f

2
D#
′�# + ;22f

4
D (2 + W2))). Therefore,

√
=

(
=−1y′S0Vy − =−1#′^ ′S0^#

=−1u′Su − f2
D

)
3→ N

((
0
0

)
,

(
4f2

D#
′�# 0

0 f4
D (2 + W2)

))
.

The asymptotic distributions of '2 = y′S0Vy/(y′S0Vy + u′Su), '2/(1 − '2) =
y′S0Vy/u′Su and log('2/(1 − '2)) = log(y′S0Vy/u′Su) then follow imme-
diately from the delta method. �

Note that '2, '2/(1 − '2), and log('2/(1 − '2)) are monotonic transformations of
each other. Thus

Pr('2 ≤ A0) = Pr
(

'2

1 − '2 ≤
A0

1 − A0

)
= Pr

[
log

(
'2

1 − '2

)
≤ log

(
A0

1 − A0

)]
. (15)

When the error is normally distributed, by using (2) and setting T1 = S0V and
T2 = S0, we can calculate the exact distribution of '2, and equivalently, that of
'2/(1− '2) or log('2/(1− '2)), in light of the above relationship. The asymptotic
distribution, however, crucially depends on which statistic we are using. From (13)–
(14), we see that when the signal to noise ratio, measured by #′�#/f2

D , increases,
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the asymptotic distribution of '2/(1 − '2) becomes more dispersed, whereas the
asymptotic distribution of log('2/(1 − '2)) becomes more concentrated. Its effect
on the asymptotic distribution of '2 is ambiguous and it depends on the strength
of the signal to noise ratio.6 An interesting case is the extreme case when # = 0.
In this case, while '2 and '2/(1 − '2) have well-defied asymptotic distributions,
log('2/(1 − '2)) does not have a properly defined asymptotic distribution.7 The
exact distribution is free of this kind of pitfall and can be calculated regardless of the
strength of the signal to noise ratio.
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Fig. 1 CDF Plots of '2,'2/(1 − '2) , and log('2/(1 − '2)) , = = 10

6 More specifically, when #′�#/f2
D < 1, as #′�#/f2

D goes up, the asymptotic distribution of '2

gets more dispersed. But when #′�#/f2
D > 1, as #′�#/f2

D goes up, the asymptotic distribution
of '2 gets more concentrated.
7 Recall that the null distribution of the � statistic for testing overall significance of a linear
regression, which is proportional to '2/(1 − '2) , has a well defined distribution.
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Fig. 4 CDF Plots of '2,'2/(1 − '2) , and log('2/(1 − '2)) , = = 100
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Figures 1–4 plot the cumulative distribution functions of the three statistics
by comparing the true, exact, and asymptotic distributions for samples sizes
10, 20, 50, 100, based on averages across 100,000 simulations.8 The data gener-
ating process is H = V0 + V1G1 + V2G2 + D, where G1 and G2 are generated from
two independent i.i.d. N(0, 4) random variables and the error term is simulated as
i.i.d. N(0, f2

D). We fix # = (V0, V1, V2) ′ = (1, 0.3, 0.5) ′ and set fD = 0.1, 1, 5, 10,
corresponding to scenarios from high to low signal to noise ratios. We observe that
regardless of the sample size and the signal to noise ratio, the exact distribution
matches precisely the true distribution. The asymptotic distributions fare reasonably
well in small samples with = = 10 when f = 0.1, corresponding to the situation
of high signal to noise ratio. When f = 10, the asymptotic distributions can be
quite off the exact distribution in small samples. Xu (2014) recommended using
log('2/(1 − '2)) by arguing that its asymptotic distribution is more stable. We see
here clearly that this is not necessarily the case, as it depends on the signal to noise
ratio.

4 Concluding Remarks

In this paper we have presented a unified development of the exact distributions of
many econometric statistics. These results can be easily implemented by numerical
integration. In the context of the the exact distribution of a goodness of fit measure we
numerically demonstrate that the asymptotic distribution may not carry forward in
the small sample case. The exact distributional results developed in the paper could
be easily extended to a class of some other econometric and statistical estimators
used in practice which can be written as ratios of quadratic forms.

Acknowledgements We are grateful to an anonymous referee for very helpful comments.
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