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1 Introduction

Distinguishing among different forms of nonstationarity has been a topic of long-standing

interest in time series analysis; e.g., distinguishing a deterministic trend from a unit root

process (I(1), a stochastic trend) and infrequent shifts in trend versus unit root (Perron,

1989). Also, tests for changes in the deterministic trend are sensitive to the nature of the

stochastic component, stationary [I(0)] or I(1) (Harvey et al., 2009, Perron and Yabu, 2009).

An important related problem concerns inference about the conditional mean in the presence

of nonstationarity in variance. Structural changes in variance have been extensively docu-

mented for macroeconomic and financial time series; e.g., Sensier and van Dijk (2004), Perron

and Yamamoto (2020). The non-robustness of unit root tests to nonstationary volatility was

established by Cavaliere (2005) and Cavaliere and Taylor (2007, 2008a, 2009). A smaller

literature addressed the problem of discriminating between changes in the conditional mean

and nonstationary volatility. Hansen (2000) shows that standard structural change tests

do not have the correct size with nonstationary variance. Pitarakis (2004), Perron and Ya-

mamoto (2019) and Xu (2015) document the extent of size distortions and power losses for

various tests. Perron, Yamamoto and Zhou (2020) develop likelihood ratio tests of the joint

hypothesis of changes in coeffi cients and error variance in a linear regression model.

Given the importance of allowing for nonstationary volatility, this paper deals with the

problem of testing for structural changes in the persistence of a time series in this context; i.e.,

changes involving switches between unit root I(1) and stationary I(0) processes and changes

that preserve the I(0) properties across regimes. Most procedures available are based on a

global homoskedasticity assumption; e.g., Kim (2000), Busetti and Taylor (2004), Harvey

et al. (2006) for a single break and Bai and Perron (1998, BP henceforth), Leybourne et

al. (2007), Kejriwal et al. (2013, KPZ henceforth) for multiple breaks as well as Kejriwal

(2019) for procedures to determine the number of breaks. Cavaliere and Taylor (2008b, CT

henceforth) develop bootstrap tests robust to nonstationary volatility based on the ratio of

partial sums of demeaned (or detrended) residuals. Their procedure assumes that the process

is I(0) under the null hypothesis of stability, a single break under the alternative with either

a I(1)-I(0) or I(0)-I(1) shift but not an I(0)-I(0) shift and a stable trend function.

We provide a comprehensive treatment of issues related to testing for changes in per-

sistence with heteroskedastic errors. Our approach is general and allows: (1) an I(1) or

I(0) null hypothesis; (2) multiple changes with unknown number and timing; (3) changes of

the form I(1)-I(0), I(0)-I(1) and I(0)-I(0), without prior knowledge of the specific form;
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(4) disentangling persistence shifts from shifts in the trend function. The assumed volatil-

ity process is general and accommodates breaks, smooth transitions and trending volatility.

We develop sup-Wald tests based on a wild bootstrap scheme that have accurate size and

satisfactory power in finite samples. We also propose a sequential method to estimate the

number of persistence breaks. Extensive simulation experiments are provided to assess the

finite sample properties of the methods suggested, including comparisons with existing tests.

Our proposed methods can be applied to study a wide range of important empirical

issues. We comment here on three potential applications, one explored in detail later. The

first concerns the issue of inflation persistence that plays a key role in the formulation and

evaluation of quantitative macroeconomic models (see, e.g., Korenok et al., 2010). The Lucas

Critique suggests that the parameters of reduced form specifications depend implicitly on

agents’expectations of the policy process and are unlikely to remain stable as policymakers

change their behavior, if agents are forward looking. An empirical finding of high and stable

persistence in such a context can potentially be interpreted either in terms of the presence

of a strong backward looking component in the dynamics of inflation induced through, say

indexation or rule-of-thumb behavior on the part of the price setters, or in terms of historical

policy shifts being of relatively modest magnitude. Our approach enables a robust treatment

of inflation dynamics that allows disentangling breaks in mean and persistence allowing for

changing volatility and thereby provides reliable guidance on whether changes in persistence

is a feature that a reasonable macroeconomic model should be able to replicate; see Section

8 for the analysis, references and further discussions.

A second application concerns climate change. The anthropogenic theory of climate

change postulates that human activity increases emissions of radiatively active gases relative

to natural sources and sinks. It can do so in a way that changes global biogeochemical cycles

thereby increasing the persistence of radiative forcing and surface temperature. Using data

over 1500-2011, Dergiades et al. (2016) find evidence supporting persistence change [I(0) to

I(1)] for both series based on the single break tests of Busetti and Taylor (2004) and Harvey

et al. (2006). The long time span, however, covers the three Industrial Revolutions (the

steam engine, electricity and mass production, and digital technology) suggesting that the

single break assumption may be unduly restrictive. Further, they assume homoskedasticity in

contrast to evidence favoring heteroskedasticity in both series (see Cavaliere et al., 2018, for

global CO2 emissions and Chang et al., 2020, for temperature). Our approach offers methods

to comprehensively evaluate this hypothesis owing to its ability to accommodate multiple

persistence breaks, non-stationary volatility, and broken trends (Estrada and Perron, 2017).
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A third possible application is to predictive regression. Predicting a low persistence

I(0) variable like stock returns using a highly persistent predictor, say the dividend-price

ratio (D/P), involves a (nearly) unbalanced regression that can potentially explain its spo-

radic predictive power in practice. Lettau and Nieuwerburgh (2008) argue that D/P is well

represented by a regime-wise stationary process and use demeaned residuals obtained from

the BP procedure to construct a new predictor that is shown to deliver superior predictive

performance (see Verdickt et al., 2019, for a more recent related contribution). In contrast,

Park (2010) argues, based on single break homoskedasticity-based persistence change tests

(Harvey et al., 2006), that D/P is better approximated by a process that switches between

I(1) and I(0) regimes and consequently has strong predictive power in the I(0) regime but

not in the I(1) regime due to the unbalanced regression problem. Given that neither of

these studies allow for nonstationary volatility in D/P or returns (Johannes et al., 2014),

their estimation and inference results can be potentially misleading. The generality afforded

by our approach can be fruitfully employed in this context to distinguish between the mean

shift and persistence change alternatives for the D/P process, demarcate the I(1) and I(0)

regimes, and assess regime-wise predictability accordingly.

The paper is organized as follows. Section 2 describes the models and the assumptions

and Section 3 the testing procedures. The large sample effects of nonstationary volatility

on these persistence change tests are studied in Section 4. The proposed bootstrap tests

are presented in Section 5. Section 6 discusses extensions of the procedures to deal with

deterministic trends as well as disentangling shifts in persistence from shifts in the trend

function. Section 7 provides a summary of the Monte Carlo evidence, Section 8 presents an

application to OECD inflation rates and Section 9 concludes. An online supplement contains

all proofs, detailed simulation results and additional empirical results.

2 The Persistence Change Model

We start with a univariate time series yt generated by the following AR(p) model:

yt = µi + ut; ut = uT 0i−1 + ht (t = T 0
i−1 + 1, ..., T 0

i ; i = 1, ...,m+ 1) (1)

ht = αiht−1 +
∑p−1

j=1 πij∆ht−j + et (hT 0i−1 = ... = hT 0i−1−p+1 = 0)

with the convention T 0
0 = 0 and T 0

m+1 = T , where T is the sample size. The process is

therefore subject to m breaks or m + 1 regimes with break dates (T 0
1 , ..., T

0
m). Both the

break dates and the number of breaks are assumed unknown. The autoregressive order p is
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assumed to be finite. This Data Generating Process (DGP) was considered by Leybourne et

al. (2007) and Kejriwal (2019) and is designed to ensure that adjacent I(1) and I(0) regimes

join up at the breakpoints thereby avoiding the problem of spurious jumps to zero in ut.

While we assume a common lag length p across regimes, regime-specific lag lengths can be

accommodated interpreting p as the maximum lag length across the (m + 1) regimes. Our

analysis is based on the following assumptions:

Assumption A: 1) T 0
i =

⌊
Tλ0

i

⌋
, where 0 < λ0

1 < ... < λ0
m < 1 and b.c denotes the integer

part of its argument; 2) All roots of the polynomial πi(L) = 1−πi1L−πi2L2−...−πi,p−1L
p−1 lie

outside the unit circle; 3) et = σtεt, where {εt} is an i.i.d. sequence with zero mean and
unit variance and {σt} is a strictly positive non-stochastic sequence, also suptE(ε4+β

t ) <

∞ for some β > 0; 4) For some strictly positive deterministic sequence {aT}, {σt} satisfies
a−1
T σbTsc = g(s), s ∈ [0, 1], where g(.) is a strictly positive, non-stochastic function with a

finite number of discontinuities satisfying a uniform first-order Lipschitz condition except at

the points of discontinuity.

Assumption A1 is standard and dictates the asymptotic framework adopted so that each

segment increases proportionately with T . A2 specifies at most one unit root in each regime

and precludes explosive regimes. A3 specifies that the stochastic process for {et} is deter-
mined by the time-varying volatilities {σt} (e.g., Xu, 2008). In contrast to CT who make
a mixing-type assumption on the errors thereby allowing for moving average processes and

conditional heteroskedasticity, our analysis is based on the stronger assumption of a finite

order autoregressive process with i.i.d. innovations. We do, however, demonstrate the ro-

bustness of our procedures to moving average errors through simulations (see Supplement B).

A4 is the key assumption, which allows {yt} to be generated by a wide class of nonstationary
heteroskedastic errors; e.g., single or multiple volatility breaks, linearly trending volatility,

piece-wise linear trends in variance and smooth transition shifts satisfy A4 with aT = 1 for a

particular choice of g(.). Models with explosive deterministic volatility are allowed specifying

aT appropriately; see Cavaliere and Taylor (2008a, 2009). The function g(.) is assumed to be

non-stochastic to enable simplification of the theoretical analysis. Hence, A4 rules out non-

stationary autoregressive stochastic volatility (SV) models (Hansen,1995), SV models with

jumps (Georgiev, 2008, Perron and Qu, 2010), “nonstationary nonlinear heteroskedastic”

models with stochastically trending volatility, and near-integrated GARCH models. This

assumption can be weakened to allow sequences {σt} and {εt} that are stochastically inde-
pendent and interpreting the results as holding conditional on a given realization of g(.).

In order to accommodate I(0) preserving persistence changes as in the framework of Bai
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and Perron (1998), we also consider the following data generating process for yt:

yt = µi + ut; ut = αiut−1 +
∑p−1

j=1 πij∆ut−j + et (2)

for t = T 0
i−1 + 1, , ..., T 0

i ; i = 1, ...,m + 1, with u0 = ... = u−p+1 = 0. The conditions in

Assumption A are assumed to hold for (2) as well.

3 Testing Procedures

This section describes the testing procedures which form the basis of our proposed bootstrap

tests. These procedures are not new and were developed in KPZ and BP. We first consider

the KPZ tests that specify the null hypothesis of an I(1) process throughout the sample (no

change), H(1)
0 : αi = 1, versus the alternative that the process switches between being I(1)

and I(0). The following two models are considered depending on whether the initial regime

contains a unit root or not: Model 1a: αi = 1 in odd regimes and |αi| < 1 in even regimes;

Model 1b: αi = 1 in even regimes and |αi| < 1 in odd regimes. We next review the test

statistics designed to detect a specified number of breaks and outline the procedures when

the number of breaks is not specified.

Tests for a Specified Number of Breaks. To test the null hypothesis H(1)
0 : αi = 1 for

all i in (1), the regression used is

∆yt = ci + (αi − 1)yt−1 +
∑p−1

j=1 πj∆yt−j + e∗t (3)

with ci = (1 − αi)[uT 0i−1 + µi] and e
∗
t the residuals. Under H

(1)
0 , ci = 0 for all i, which is

imposed. The true lag order p is assumed known but can be estimated using standard infor-

mation criteria such as the AIC or BIC. The coeffi cients of the lagged differences in (3) are

not allowed to change since, as argued in KPZ, the goal is to direct power against changes in

the persistence parameter αi. A joint test on all parameters would not be particularly infor-

mative in this context given the diffi culty in interpreting a rejection. As shown in KPZ, the

test does not have much power against pure changes in short-run dynamics but is powerful

when there is a change in both persistence and these dynamics. In fact, the simulation ex-

periments conducted in Section 7 for assessing power with serially correlated errors consider

data generating processes that involve changes in both persistence and short-run dynamics

in their autoregressive representation.

Consider first the Wald test that applies when the alternative involves a fixed value

m = k of changes. Denote a candidate vector of break fractions by λ = (λ1, ..., λk) and the
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alternative hypotheses corresponding to Models 1a and 1b as H(1)
a,k and H

(1)
b,k , respectively.

The corresponding tests are for d = a, b:

F1d(λ, k) = (T − k − 1− ij)(SSR(1)
0 − SSR

(1)
1d,k)/[(k + 1 + ij)SSR

(1)
1d,k] (4)

where j = 1 if k is even and j = 0 if k is odd, i = −1 if d = a and i = 1 if d =

b. Here, SSR(1)
0 is the sum of squared residuals (SSR) under H(1)

0 while SSR(1)
1a,k and

SSR
(1)
1b,k denote, respectively, the SSR from estimating (3) under the restrictions imposed by

Models 1a-1b. For some small positive number ε, we define the set Λk
ε = {λ : |λi+1 − λi| ≥

ε, λ 1 ≥ ε, λ k ≤ 1 − ε}. The sup-Wald tests are then F1a(k) = supλ∈Λkε
F1a(λ, k) and

F1b(k) = supλ∈Λkε
F1b(λ, k). When the initial regime is unknown, the relevant test statistic

is W1(k) = max[F1a(k), F1b(k)]. The stable I(0) null can be tested using the BP procedure.

This amounts to testing H(0)
0 : ci = c, αi = α, for all i with |α| < 1 in (3). The relevant

alternative hypothesis is H(0)
1,k : α1 6= α2 6= ... 6= αk+1, |αi| < 1 for all i, so that the time series

is regimewise-I(0) under H(0)
1,k . The BP test for a fixed number m = k of changes is given by

G1(λ, k) = [T − 2(k + 1)](SSR
(0)
0 − SSR

(0)
1,k)/[kSSR

(0)
1,k] (5)

where SSR(0)
0 denotes the SSR under H(0)

0 and SSR(0)
1,k the unrestricted SSR. The BP test

is G1(k) = supλ∈Λkε
G1(λ, k). To control asymptotic size when the process is either I(1) or

I(0) under the null hypothesis, KPZ proposed a joint test. Let H0 = H
(1)
0 ∪H

(0)
0 . The test

for H0 is H(k, η) = min [W1(k), [cvw,k(η)/cvg,k(η)]G1(k)], where cvw,k(η) and cvg,k(η) are the

critical values of the statistics W1(k) and G1(k), respectively, for some significance level η.

Computing G1(.) and W1(.) is done using the dynamic programming algorithms of Bai and

Perron (2003) and Perron and Qu (2006), respectively.

Tests when the Number of Breaks is Unknown. With the number of breaks unknown
up to an upper bound A, KPZ proposed the following test statistic to detect processes alter-

nating between I(1) and I(0) regimes: Wmax1 = max1≤k≤AW1(k). Similarly, to detect I(0)-

preserving changes, the BP test is UDmax1 = max1≤k≤AG1(k). To achieve correct size under

H0,KPZ also suggested the testHmax1(η) = min [Wmax1, [cvw,max(η)/cvg,max(η)]UDmax1],

where, cvw,max(η) and cvg,max(η) are the critical values ofWmax1 and UDmax1, respectively.

The decision rule is to reject H0 if H max1(η) > cvw,max(η).

4 The Large Sample Effects of Nonstationary Volatility

We consider the large sample behavior of the KPZ and BP tests in the presence of nonsta-

tionary volatility as specified in A(3-4). Theorems 1 and 2 below show that the null limiting
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distributions of the tests are not pivotal and depend on the sample path of the volatility

process g(.); hence the tests do not have the correct asymptotic size unless g(.) is a constant.

As a matter of notation, for r ∈ [0, 1], let g̃(r) = (
∫ r

0
g(s)2)1/2, Bg,1(r) = g̃(1)−1

∫ r
0
g(s)dB1(s)

and Bg,2(r) = g̃(1)−1
∫ r

0
g(s)2dB2(s). The process Bg,1(s) is Gaussian with zero mean and

variance ν(s) = g̃(s)2/g̃(1)2 so that Bg,1(.) is a variance-transformed Brownian motion with

directing process ν; see Davidson (1994, Section 29.4) and Cavaliere (2005).

Theorem 1 Under Assumptions A and H(1)
0 , F1d(λ, k)

w→ F 0
1d(λ, k) defined by

1

k + 1 + ij

k+ij−i
2∑

n= 1−i
2


[{B(2n+

i+1
2 )

g,1 (λ
2n+ i+12

)}2−{B(2n+
i+1
2 )

g,1 (λ
2n+ i−12

)}2−g̃(1)−2{g̃(λ
2n+ i+12

)2−g̃(λ
2n+ i−12

)2}]2

4
∫ λ2n+ i+12
λ
2n+ i−12

[B
(2n+ i+12 )

g,1 (r)]2dr

+ 1
λ
2n+ i+12

−λ
2n+ i−12

{Bg,1(λ2n+ i+1
2

)−Bg,1(λ2n+ i−1
2

)}2


where j = 1 if k is even and j = 0 if k is odd, i = −1 if d = a and i = 1 if d = b.

Also, F1d(k)
w→ supλ∈Λkε

F 0
1d(λ, k) (d = a, b), W1(k)

w→ max[F 0
1a(k), F 0

1b(k)], Wmax1 =

max1≤k≤AW1(k)
w→ max1≤k≤A {max[F 0

1a(k), F 0
1b(k)]}.

Theorem 2 Under Assumption A and H(0)
0 , G1(λ, k)

w→ G0
1(λ, k), defined by

1

k

k∑
n=1

[
{λnBg,1(λn+1)− λn+1Bg,1(λn)}2

λnλn+1(λn+1 − λn)
+
{g̃(λn)2Bg,2(λn+1)− g̃(λn+1)2Bg,2(λn)}2

g̃(λn)2g̃(λn+1)2 {g̃(λn+1)2 − g̃(λn)2}

]

Also, G1(k)
w→ supλ∈Λkε

G0
1(λ, k) and UDmax1

w→ max1≤k≤A{supλ∈Λkε
G0

1(λ, k)}.

The non-robustness of G1(1) to shifts in the marginal distribution of the regressors was

shown in Hansen (2000). The absence of large sample invariance of the KPZ and BP tests to

unconditional heteroskedasticity continues to hold for the heteroskedasticity-robust versions

of these tests; see Georgiev et al. (2018, Remark 12). Unreported simulations did not reveal

any advantage of the robust versions in the presence of unconditional heteroskedasticity.

Hence, we focus on non-robust version for simplicity. Note also that under H(0)
0 , the KPZ

tests diverge to positive infinity while under H(1)
0 , the BP tests have incorrect asymptotic

size even when conditional homoskedasticity holds. It can be shown that these properties

continue to hold under Assumptions A. Monte Carlo evidence indicates that the extent of

size distortions in finite samples can be considerable (see Supplement B, Table B-1).
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5 The Wild Bootstrap Versions of the Tests

We now propose wild bootstrap versions of the tests and establish their asymptotic validity

under Assumption A. Unlike the standard residual bootstrap, the wild bootstrap procedure

(Liu, 1988) can mimic the pattern of heteroskedasticity in the errors. We also show that

the bootstrap KPZ and BP test statistics are consistent under the relevant alternatives.

With the direction of persistence change typically unknown, our subsequent analysis will

only consider the recommended W1(.), Wmax1, G1(.) and UDmax1 tests. Since the null

hypothesisH0 involves both I(1) and I(0) processes, the algorithm is based on generating two

kinds of bootstrap samples, one for each case, conditional on the data {yt}Tt=1. The I(1) (resp.,

I(0)) bootstrap samples are used to approximate the finite sample distribution of the KPZ

(resp., BP) tests. For reasons discussed below, our proposed bootstrap scheme is not recursive

as in Xu (2008) for the stationary autoregressive model. Denote by {vt; t = 1, ..., T} a
sequence of i.i.d. random variables with zero mean, unit variance and uniformly bounded

fourth moments (i.e., suptE(ε4+β
t ) < ∞ for some β > 0) that are independent of {yt}Tt=1.

We now describe the algorithms to generate the bootstrap samples.

I(1) Bootstrap Samples: 1) Estimate the regression ∆yt =
∑lT

j=1 πj∆yt−j + e∗t (t =

lT + 2, ..., T ) where lT is chosen using the BIC. Denote the estimates by (l̆T , π̆1, ..., π̆ l̆T )

and construct the residuals ĕt = ∆yt −
∑l̆T

j=1 π̆j∆yt−j (t = l̆T + 2, ..., T ); 2) Obtain the

bootstrap residuals e(1)
t = ĕtvt (t = l̆T + 2, ..., T ); 3) Generate the bootstrap sample as

follows: y(1)
t = y

(1)
t−1 + e

(1)
t (t = l̆T + 2, ..., T ), y(1)

t = yt (t = 1, ..., l̆T + 1); 4) Construct the

bootstrap versions of the W1(.) and Wmax1 statistics using {y(1)
t }Tt=1 based on a regression

that does not include lagged first differences of y(1)
t ; 5) Repeat steps (2)-(4) B times to

approximate the bootstrap distribution of the statistics.

I(0) Bootstrap Samples: The algorithm is the same except that in step (1) the regression
is yt = c+αyt−1 +

∑lT
j=1 πj∆yt−j+e

∗
t and the residuals are ẽt = yt− c̃−α̃yt−1−

∑l̃T
j=1 π̃j∆yt−j;

also in step (3), we generate y(0)
t = e

(0)
t = ẽtvt (t = l̃T + 2, ..., T ), y(0)

t = 0 (t = 1, ..., l̃T + 1).

For the I(1) scheme, we do not introduce first-differences in step (4) to avoid explosive

or multiple unit roots, as in Cavaliere and Taylor (2008a). The I(0) bootstrap scheme is

non-recursive since we do not “add back” the conditional mean component based on the

parameter estimates. Rather, the bootstrap samples {y(0)
t } have constant (zero) mean and

are serially independent, conditional on the data. Using a recursive scheme leads to tests

with lower power when the data contain an I(1) segment since the estimated persistence
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parameter converges to 1 at rate T so that the recursive bootstrap samples are effectively

drawn from an autoregressive process with a root close to unity. This feature contributes to

an increase in the bootstrap critical values (relative to the non-recursive bootstrap) with an

adverse effect on power; see Gulesserian and Kejriwal (2014) in the context of stationarity

testing based on the sieve bootstrap in the homoskedastic case. Simulations suggest notable

power gains from using the non-recursive form of the wild bootstrap for alternatives that

involve switches between I(1) and I(0) regimes (see Supplement C). Note that, in both cases,

step (4) constructs the bootstrap statistics from an AR(1) specification. The bootstrap

residuals are then serially independent conditional on the data; hence, no need to control for

serial correlation through lagged differences. Unreported simulations showed that an AR(1)

bootstrap specification resulted in improved finite sample properties (size and power).

Denote the bootstrap analogues of W1(k), Wmax1, G1(k) and UDmax1 by W ∗
1 (k),

Wmax∗1, G
∗
1(k) and UDmax∗1, respectively, with associated p-values p

∗
k,W1

, p∗Wmax, p
∗
k,G1

and

p∗UDmax, omitting the dependence on T for ease of notation. Similarly, for a given significance

level η, denote the bootstrap critical values by cv∗w,k(η), cv∗w,max(η), cv∗g,k(η) and cv∗g,max(η).

Our proposed statistics are the “hybrid”testsH∗(k, η) = min[W1(k), [cv∗w,k(η)/cv∗g,k(η)]G1(k)]

and Hmax∗1(η) = min[Wmax1, [cv
∗
w,max(η)/cv∗g,max(η)]UDmax1]. The following results state

that (a) the wild bootstrap versions of the tests can successfully replicate the first order

asymptotic distribution of the original tests; (b) for a given significance level η, the statistics

H∗1 (k, η) and Hmax∗1(η) have asymptotic size at most η; (c) the test statistics are consistent

when k = m changes in persistence are present.

Theorem 3 Under Assumption A with “ w→p”denoting weak convergence in probability un-

der the bootstrap measure: a) under H(1)
0 : (i) W ∗

1 (k)
w→p max[F 0

1a(k), F 0
1b(k)], Wmax∗1

w→p

max1≤k≤A {max[F 0
1a(k), F 0

1b(k)]} ; (ii) p∗k,W1

w→ U [0, 1], p∗Wmax
w→ U [0, 1], a uniform distribu-

tion. UnderH(0)
0 , (i) G∗1(k)

w→p supλ∈Λkε
G0

1(λ, k), UDmax∗1
w→p max1≤k≤A{supλ∈Λkε

G0
1(λ, k)};

(ii) p∗k,G1
w→ U [0, 1], p∗UDmax

w→ U [0, 1]; b) Under H0, limT→∞ P (H∗(k, η) > cv∗w,k(η)) ≤
η and P (Hmax∗1(η) > cv∗w,max(η)) ≤ η; c) With λ0 ∈ Λm

ε , then, under H
(1)
a,m, H

(1)
b,m and H

(0)
1,m,

we have p∗m,W1

p→ 0, p∗Wmax

p→ 0, p∗m,G1
p→ 0, p∗UDmax

p→ 0.

5.1 Estimating the Number of Breaks

A bootstrap procedure can be devised to estimate the number of breaks based on a sequential

test of l versus l+1 breaks, following Kejriwal (2019) who assumed conditional homoskedas-

ticity. Heteroskedasticity precludes using critical values obtained using the full sample when

9



testing stability in each segment. Hence, we propose a new bootstrap sequential procedure.

We first apply a sequential test of the null hypothesis of l (≥ 1) breaks against the alterna-

tive of (l + 1) breaks. We partition the sample into (l + 1) segments using the l estimated

break dates (T̂1, ..., T̂l) obtained by minimizing the unrestricted SSR. The one break KPZ

and BP statistics are then applied to all estimated (l+1) regimes with the statistics denoted

by W (i)
1 (1) and G(i)

1 (1), respectively, for i = 1, ..., l + 1. The parameter estimates in the

(l + 1) regimes are used to generate the regime-specific I(1) and I(0) bootstrap samples,

which are used to compute the bootstrap p-values of the statistics W (i)
1 (1) and G(i)

1 (1), de-

noted by p∗,(i)1,W1
and p∗,(i)1,G1

. For a given significance level η, we reject the null of l breaks in favor

of (l + 1) breaks if min1≤i≤l+1{p∗i } < ηl+1 (decision rule), where p
∗
i = max{p∗,(i)1,W1

, p
∗,(i)
1,G1
} and

ηl+1 = 1− (1− η)1/(l+1). As shown in Supplement A, this decision rule has asymptotic size

at most η under the null hypothesis of l breaks. The steps to implement the sequential pro-

cedure are the following: 1) test the null of no break (H0) against the alternative of at least

one break. For a given significance level η, reject H0 if p∗max = max{p∗Wmax, p
∗
UDmax} < η and

conclude in favor of at least one break; otherwise stop and the number of breaks selected is

0; 2) Upon a rejection, use the decision rule with l = 1 to determine if there is more than one

break. Repeat by increasing l sequentially until the test fails to reject the null hypothesis of

no additional break; 3) The estimate m̂ is obtained as the total number of rejections obtained

from steps 1 and 2. The probability of selecting the true number of breaks is then at least

(1− η) in large samples as stated in the following theorem.

Theorem 4 Under the conditions of Theorem 3, limT→∞ P (m̂ = m) ≥ 1− η.

6 Extensions

This section discusses extensions to deal with: (1) the presence of deterministic trends; (2)

distinguishing between a pure trend shifts process from one exhibiting shifts in persistence.

Deterministic Trends. We consider an extension of (1) that includes the possibility of

m breaks in the deterministic trend, so that:

yt = µ0 + β0t+
∑m

j=1 µjDUjt +
∑m

j=1 βjDTjt + ut (t = T 0
i−1 + 1, ..., T 0

i ) (6)

for i = 1, ...,m + 1, with ut as defined by (1), where DUjt = I(t > T 0
j ), DTjt = I(t >

T 0
j )(t− T 0

j ), j = 1, ...,m. We define λ0
j = T 0

j /T and for some generic break date λj = Tj/T

and Λm
ε = {(λ1, ..., λm) ; |λj+1 − λj| ≥ ε (j = 1, ...,m − 1), λ1 ≥ ε, λm ≤ 1 − ε}, for some
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small ε > 0. The DGP (and regression used) can be expressed as

yt = ci + bit+ αiyt−1 +
∑p−1

j=1 πij∆yt−j + et (7)

with ci = (1 − αi){µ0 +
∑i−1

j=1(µj − βjT 0
j ) + uT 0i−1} + (αi −

∑p−1
j=1 πij){β0 +

∑i−1
j=1 βj}, bi =

(1− αi)(β0 +
∑i−1

j=1 βj). KPZ proposed tests of the null hypothesis H̃
(1)
0 : ci = c, αi = 1 for

all i. Note that under H̃(1)
0 , bi = 0 for all i so that the process follows a stable unit root

process with possible drift. Again, two models are consider depending on whether the initial

regime is trend or difference stationary. In accordance with the notation in Section 3, the

test statistics are denoted by F2a(λ, k), F2b(λ, k), W2(k) andWmax2. The null hypothesis of

a stable trend stationary process is given H̃(0)
0 : ci = c, bi = b, αi = α for all i where |α| < 1

and the test for a fixed number of m = k changes and known break dates is G2(λ, k) =

[T − 3(k+ 1)](S̃SR
(0)

0 − SSR
(0)
2,k)/[kSSR

(0)
2,k], where S̃SR

(0)

0 denotes the SSR under H̃(0)
0 , i.e.,

obtained from OLS estimation of (7) subject to the restrictions ci = c, bi = b, αi = α for all i,

and SSR(0)
2,k denotes the unrestricted SSR. Since, in general the break dates are unknown, the

test statistic is defined asG2(k) = supλ∈Λmε
G2(λ, k). When the number of breaks is unknown,

the relevant test statistic is UDmax2 = max1≤k≤AG2(k). The limit distributions ofG2(.) and

UDmax2 under homoskedastic errors are derived in Kejriwal (2019). Under Assumption A,

the above test statistics are not asymptotically pivotal and depend on the sample path

of {σt}. We propose the following bootstrap algorithm that enables asymptotically valid

inference. As in Section 5, we generate both I(1) and I(0) bootstrap samples to ensure that

the procedure has correct asymptotic size under H̃0 = H̃
(1)
0 ∪H̃

(0)
0 . The algorithms are exactly

the same except that for the I(1) (resp., I(0)) case a constant (resp., a time trend) is added

in the autoregression in step (1). The bootstrap analogues of W2(k), Wmax2, G2(k) and

UDmax2 and the associated p-values are obtained as described in Section 5. The sequential

procedure outlined in Section 5.1 is accordingly modified. The following result states the

large sample validity of the proposed procedures.

Theorem 5 Under Assumption A, and using the tests and bootstrap procedures described
above: Theorem 3 holds with H0 replaced by H̃0.

Disentangling Trend and Persistence Shifts. An important feature is that the statis-
tics test the null hypothesis that the persistence parameters and those of the trend function

are jointly stable. Hence, they can have power against processes driven by pure trend shifts

with no change in persistence. To distinguish between trend and persistence shifts, we can

adapt the three-step approach of Kejriwal (2019) for the homoskedastic case to the present
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context. Consider first the non-trending case. The first step entails determining the number

of breaks (m̃) using the sequential procedure described in Section 5.1 and the associated

breakpoint estimates (T̂1, ..., T̂m̂) obtained from the unrestricted model that allows all pa-

rameters including those of the lagged first differences to change across regimes. Second,

using the estimated breakpoints, the Wald statistic for testing the null hypothesis of stable

I(0) persistence is constructed [i.e., constancy of αi over all i] while allowing all other para-

meters to vary across the (m̂+ 1) regimes. To account for nonstationary volatility, the Wald

statistic is computed using a heteroskedasticity-robust estimator of the variance-covariance

matrix (cf., Phillips and Xu, 2006). Third, the null hypothesis of stable I(0) persistence is

rejected if the Wald statistic is significant using the critical value from a χ2(m̂) distribution.

Otherwise, the null is not rejected and we conclude in favor of a model with pure level shifts.

The trending case is more complex since the process can be either I(1) (with a possibly

time-varying drift) or I(0) (around a broken deterministic trend). As above, we develop

tests separately for the I(1) and I(0) null and use the intersection of the critical regions

of the two tests. The three-step approach is implemented as follows. First, estimate the

number of breaks (say m̆) applying our proposed sequential procedure and breakpoints from

the unrestricted specification. Second, compute the Wald statistic (using heteroskedasticity

robust standard errors) to test the null of constant persistence allowing the parameters of

the trend and lagged differences to change at the estimated breakpoints. In the I(0) case,

the statistic has a limiting χ2(m), with m̆ used to obtain critical values. In the I(1) case,

apply a second wild bootstrap scheme based on residuals estimated under (3) allowing the

constant to change across regimes at the estimated breakpoints. The I(1) bootstrap samples

are obtained from a DGP that now includes the estimated regime-specific drift in step (3) of

the bootstrap algorithm. The bootstrap distribution and critical values of the Wald statistic

can then be approximated using simulations. Finally, the null hypothesis of stable [I(1) or

I(0)] persistence is rejected if the I(0) and I(1) Wald statistics are both significant.

7 Summary of the Simulations

This section summarizes the results of simulation experiments designed to assess the finite

sample performance of our procedures and to provide a comparison with existing approaches.

The full set of results is available in Supplements B-C. Following CT, we consider three spec-

ifications for the volatility process: (i) single discrete break; (ii) deterministically trending

volatility; (iii) near-integrated stochastic volatility. Three types of error structures are con-

sidered: i.i.d., AR(1) and MA(1). While our theory does not formally allow for moving
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average processes, we nevertheless include this case in our simulations as a robustness check.

The wild bootstrap is implemented using a two point distribution, i.e., vt ∈ {−1, 1} with
equal probability. The trimming is set at ε = .15, T ∈ {200, 400} and 1000 replications
are used. We report results for the non-trending case only (those for the trending case are

qualitatively similar). The lag length in the KPZ and BP procedures is selected using BIC

with maximal value set to five. We report the performance of the tests H∗(k, η); k = 1, 2 and

Hmax∗1(η) = max{H∗(1, η), H∗(2, η)} as well as their non-robust (homoskedasticity-based)
asymptotic counterparts H(k, η); k = 1, 2 and Hmax1(η) = max{H(1, η), H(2, η)}. The
ratio-based bootstrap tests of CT are designed to test the I(0) null hypothesis while our

tests allow the process to be either I(1) or I(0) under the null. Further, while our tests are

based on a finite order autoregressive model, the CT tests are non-parametric and based on

a mixing-type assumption for the innovations. Given that conducting a full and fair com-

parison of tests with different underlying models and null hypotheses is not possible, we did

not include the CT tests in our analysis. The main findings are summarized as follows:

Finite Sample Size. The asymptotic tests are considerably oversized indicating their lack
of robustness to nonstationary volatility, consistent with the large sample results in Section

4. In contrast, the proposed bootstrap tests are robust to I(1) or I(0) processes maintaining

empirical size close to the nominal 5% level across the different volatility specifications. The

same is generally true for the different error structures considered.

Finite Sample Power. We consider DGPs with one and two breaks involving switches
between I(1) and I(0) regimes as well as between I(0)-preserving regimes. In terms of size-

adjusted power, the bootstrap tests are broadly comparable to their asymptotic counterparts,

with neither class of tests uniformly dominating the other. The effect of underspecifying the

number of breaks can be seen by comparing the power ofH∗(1) andH∗(2) for DGPs with two

breaks, where the former is generally less powerful than the latter, though not in all cases.

The Hmax∗1 test often has power close to that of the more powerful test amongst H
∗(1) and

H∗(2), highlighting the practical advantage of using Hmax∗1 to detect the presence of at

least one break. Further, the proposed tests have substantial power against I(0)-preserving

breaks, a feature that distinguishes these tests from most existing persistence change tests

(e.g., the ratio-based tests) that are designed to detect switches between I(1) and I(0)

regimes. Finally, the proposed tests are generally more powerful with deterministic rather

than stochastic volatility.

Number of Breaks. The sequential procedure is generally reliable in selecting the number
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of breaks in the stable and single break cases. Its performance deteriorates in the two breaks

case when the probability of underestimation can be non-negligible. For instance, with an

abrupt increase in volatility, the breakpoint estimate used to partition the sample is typically

close to the second true breakpoint, so that the first segment includes an I(0) to I(1) break

while the second is I(0). Whether a second break is selected depends on the power of the

single break test in the first segment, which is relatively low. A notable improvement is

observed as the magnitude of the volatility shift decreases and/or the shift occurs near the

second persistence break in the increasing volatility case and near the first break otherwise.

Disentangling Trend and Persistence Shifts. We consider DGPs with a single break
in persistence in addition to a DGP that involves a pure mean shift and apply the procedure

proposed in Section 6 to compute the probabilities of selecting the true model for each for

these DGPs. The performance is generally satisfactory and improves as T increases.

8 Empirical Application

This section undertakes a detailed empirical examination of the nature of inflation persis-

tence for a set of OECD countries. Our analysis sheds light on whether persistent, though

stable, inflation should be regarded as a metric for evaluating macroeconomic models or

if persistence varies across monetary policy regimes depending on the relative importance

accorded to inflation in the monetary authority’s objective function. While early empirical

studies (e.g., Cogley and Sargent, 2001) on the stability of inflation persistence assumed

constant volatility, subsequent work recognized the importance of allowing for time-varying

volatility. A substantial literature uses Bayesian methods in a time-varying parameter VAR

framework with stochastic volatility to study the stability of the persistence of the inflation-

gap, defined as the deviation of inflation from its target level. These studies typically assume

that the target level of inflation evolves as a driftless random walk (see, e.g., Cogley et al.,

2010).1 Our proposed procedures complement this literature by examining the persistence

properties of inflation itself without restricting it to be I(1) a priori as well as obviating the

need to specify prior distributions. Our approach also improves upon existing frequentist

analyses on the topic that either assume homoskedasticity or restrict the nature of the null

and alternative hypotheses allowed and thereby potentially overstate/understate the aggres-

siveness of the monetary policy stance towards combating inflation. For instance, Bataa et

1An exception is Eo (2016) who considers the persistence of inflation itself within a Markov-switching
framework with the noise driven by normally distributed innovations.
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al. (2014) used the BP approach to identify breaks in the mean, dynamics and volatility of

inflation assuming it is an I(0) process under the null hypothesis of stability and regime-wise

I(0) in the presence of breaks, thereby ruling out I(1) regimes. Noriega et al. (2013) and

Kejriwal (2019) allowed for unit roots but assumed homoskedasticity.

Our empirical investigation is based on monthly CPI inflation data for nineteen OECD

countries as used in Noriega et al. (2013) and Kejriwal (2019), thereby facilitating a direct

comparison with these studies. The data span the period 1960:1-2008:6 (T = 582), except

for Germany and Korea for which the starting point is 1960:2. The inflation rates are

seasonally unadjusted and computed as it = 1200(lnPt − lnPt−1), with Pt the CPI at time

t.2 The main results are reported in Table 1. The analysis proceeds in six steps. First,

we apply the sequential algorithm to estimate the number of breaks m̂ [column (2)] with

A = 5, ε = .15 and η = .10. Second, conditional on m̂, the breakpoint estimates are obtained

by minimizing the unrestricted SSR [column (3)]. Third, to distinguish persistence shifts

from pure mean shifts, we conduct Wald tests (at the 10% level) of the null that it is subject

to m̂ mean shifts against the alternative of m̂ mean and persistence shifts [column (4)].

Here, a heteroskedasticity robust standard error estimate is used to construct the statistics

although a wild bootstrap approach could also be used (the results were nearly identical).

Fourth, based on the selected model, the largest (across regimes) estimated sum of the

autoregressive parameters is computed [column (5)] along with equal-tailed 90% confidence

intervals [column (6)] based on the procedure of Andrews and Guggenberger (2014, AG

henceforth) uniformly valid over the stationary and non-stationary regions and robust to

conditional (though not unconditional) heteroskedasticity. We use the BIC to select the

number of lags within each regime with a maximum of 12 lags. Fifth, the results of the CT

procedure are included to highlight the differences in terms of model selection [columns (7)

and (8)]. Sixth, unit root tests allowing for nonstationary volatility (Cavaliere and Taylor,

2009) are presented as a robustness check on the model selection [column (9)].

We now turn to a discussion of the results. Evidence of at least one break (m̂ > 0) is

obtained for seven countries, of which two (Austria, Korea) favor an I(0) process with a

single mean shift. The AG interval estimates are consistent with the presence of at least one

I(1) segment in fourteen countries of which three are subject to at least one persistence break.

Next, we provide a comparison between our results and those from the CT procedure. For the

latter, we first apply their test K4 (at the 10% level with 15% trimming) designed to detect

2We prefer to use seasonally unadjusted rates since commonly used adjustment procedures can have
adverse effects on the power of structural change tests (see Ghysels and Perron, 1993).
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a single persistence change [I(1)-I(0) or I(0)-I(1)]. Upon a rejection, the p-values of their

K1 and K′1 tests (designed to detect the I(0)-I(1) and I(0)-I(1) alternatives, respectively)

are computed and the direction of persistence change determined by the smaller of the

two p-values. If both p-values are (near)-zero, the evidence is not conclusive. Comparing

columns (7)-(8) shows that the procedures agree only for Luxembourg and Netherlands and

point to different models for all other countries. The CT approach is inconclusive in seven

cases. Further, for the eleven cases where the proposed approach decides in favor of a pure

I(1) process, the CT procedure suggests a break in persistence, consistent with the fact that

it is designed to test the null hypothesis of a stable I(0) process. In the two cases for which we

select a pure mean shift process, the CT approach again points to a persistence break, again

potentially explained by the non-robustness of their approach. Column (9) supplements our

analysis with unit root tests applied to the regime with the largest estimate of the sum of the

autoregressive coeffi cients based on the selected model in column (7). We report the p-values

of the wild bootstrap ADF test proposed by Cavaliere and Taylor (2009) which is robust

to nonstationary volatility. The lag length in the ADF regression was selected using the

Modified Akaike Information Criterion (MAIC) of Ng and Perron (2001) with the maximum

lag set at
⌊
12(T/100)1/4

⌋
. The findings match the model selection outcomes in column (7)

for fourteen of the nineteen countries, indicating a fair degree of consistency between the

two approaches.

Table 2 presents the regime-wise estimates for the countries that are subject to at least one

persistence break. Interestingly, for four of the five countries with persistence breaks, the first

break corresponds to an increase in persistence that occurs between the early and mid 70s, a

period often described as one of “the Great Inflation”and commonly believed to be associated

with both a high level and high degree of persistence. In contrast, for France and Germany

which experience two persistence breaks, the second break is associated with a persistence

decline occurring in the 80s and 90s. To justify the importance of allowing for nonstationary

volatility, Figure D-1 in Supplement D plots the volatility estimates obtained by fitting a

nonparametric regression to the squared residuals obtained by estimating the model selected

in column (7) of Table 1. As suggested by Xu and Phillips (2008), a Gaussian kernel is

used with the bandwidth chosen by cross validation, searching over bandwidths hi = ciT
−0.4

(i = 1, ..., 4) with {c1, ..., c4} = {.25, .4, .6, .75}. The estimates show considerable variation
over time with different patterns across countries. While a smooth trend suggests itself for

some countries (e.g., France and Norway), more irregular movements are observed for others

(e.g., Belgium, UK, USA). A similar overall picture is obtained if one plots the estimated
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variance profile (Figure D-2) as suggested by Cavaliere and Taylor (2007) indicating that the

nonstationary behavior of the sample volatility paths is a key feature of the inflation data,

which if ignored, might lead to misleading inferential results.

Finally, to evaluate the impact of nonstationary volatility on persistence change, it is

useful to compare our results with the asymptotic sequential procedure of Kejriwal (2019)

which assumes homoskedasticity. Using the same dataset, Kejriwal (2019) concludes in favor

of a persistence change model for six additional countries (Canada, Finland, Greece, Japan,

UK, USA) all of which are found to be pure I(1) processes according to our analysis that

accounts for nonstationary volatility. Interestingly, Kejriwal’s analysis for USA suggests a

shift from a high persistence I(0) regime to a low persistence I(0) regime, consistent with

the view (e.g., Sims, 2001) that the case for unstable persistence is weakened once allowance

is made for shifts in the variance of the innovations.3 Thus, evidence for persistence shifts

obtained using more restrictive methods might overstate the role of monetary policy, e.g., a

purported significant decline in persistence may be attributed to a more aggressive stance

taken by the monetary authority towards inflation.

9 Conclusion

We proposed wild bootstrap sup-Wald tests to detect persistence change in a time series

with nonstationary volatility. The set of alternative hypotheses considered include processes

exhibiting switches between I(1) and I(0) regimes or that remain I(0) in each regime. The

performance of the methods suggested was shown to be reliable in finite samples and to have

better properties than existing tests. An application to inflation rates further illustrates the

usefulness of the proposed approach in practice.

3Using the same dataset, Noriega et al. (2013) applies the doubly recursive test of Leybourne et al. (2007)
to conclude in favor of a stable I(0) process for 75% of the OECD countries analyzed here.
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Data Availability Statement The data are obtained from the IMF’s International
Financial Statistics (https://data.imf.org/) except for Germany and Korea, which were taken
from the OECD Main Economic Indicators, available at http://oecd-stats.ingenta.com.
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Supplement A: Proofs of the Theoretical Results

For a (d × 1) vector v, ‖v‖ = (
∑d

i=1 v
2
i )

1/2 denotes the standard Euclidean norm while
for a random variable v, ‖v‖q = (E(|v|q)1/q denotes the Lq (q ≥ 1) norm. For a matrix

B, ‖B‖ denotes the Frobenius norm, i.e., ‖B‖ =
√
tr(B′B) and MB = I − PB, PB =

B(B′B)−1B′. Let P ∗ denote the bootstrap probability measure and E∗ the expectation with
respect to P ∗. Define the following quantities: (i) V (r) = diag(g2(r)Ip, g(r)); (ii) DT =
diag(a−2

T T−1, a−1
T T−1/2); (iii) For i = 1, ..., k + 1, Zi = (zTi−1+1, ..., zTi)

′ where zt = (yt−1, 1)′

for t = Ti−1 + 1, ..., Ti, Z = (z1, ..., zT )′, Y−1 = (y0, ..., yT−1), ι(T×1) = (1, ..., 1)′; (iv) z̄i =

(Ti − Ti−1)−1
∑Ti

t=Ti−1+1 zt and z̄i,−1 = (Ti − Ti−1)−1
∑Ti

t=Ti−1+1 zt−1, z̄ = T−1
∑T

t=1 zt, z̄−1 =

T−1
∑T

t=1 zt−1. As a matter of notation, we will use C = C[0, 1] to denote the space of con-
tinuous functions on [0, 1] and D the space of right continuous with left limit processes on
[0, 1], ‘

p→’to denote convergence in probability, ‘w→’to denote weak convergence in the space
D endowed with the Skorohod metric, ‘w→p’to denote weak convergence in probability under
the bootstrap measure (Giné and Zinn, 1990), and b.c to denote the integer part of its argu-
ment. Further, B1(.) and B2(.) denote standard independent Brownian motions on [0, 1] and
B(.) = [B1(.), B2(.)]′. For any stochastic process Z(.) defined over [0, 1], Z(i)(.) denotes
Z(.) demeaned over [λi−1, λi], i.e., Z(i)(r) = Z(r)−(λi−λi−1)−1

∫ λi
λi−1

Z, r ∈ [λi−1, λi]. Similarly,

Z̆(i)(.) denotes Z(.) detrended over [λi−1, λi], i.e., Z̆(i)(r) = Z(i)(r) − [
∫ λi
λi−1

rZ(i)/
∫ λi
λi−1
{r −

(λi−λi−1)−1
∫ λi
λi−1

r}2]×[r−(λi−λi−1)−1
∫ λi
λi−1

r], r ∈ [λi−1, λi]. Finally, for ease of presentation,

all integrals of the form
∫ b
a
f(r)dr are expressed as

∫ b
a
f . We first state two lemmas that will

∗Corresponding Author. Krannert School of Management, Purdue University, 403 West State Street,
West Lafayette IN 47907 (mkejriwa@purdue.edu).
†Krannert School of Management, Purdue University, 403 West State Street, West Lafayette IN 47907

(yu656@purdue.edu).
‡Department of Economics, Boston University, 270 Bay State Rd., Boston MA, 02215, USA (per-

ron@bu.edu).
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be useful in developing the proofs of the main results.

Lemma A.1 [Xu, 2008] Suppose {yt} is generated by the AR(p) model

yt = µ+
∑p

j=1 θj(yt−j − µ) + et

where all roots of θ(L) = 1−
∑p

j=1 θjL
j are outside the unit circle and {et} satisfies Assump-

tions A(3-4). Let ỹt−j = yt−j − µ, y−p,t = (ỹt−1, ..., ỹt−p)
′ and xt = (y′−p,t, 1)′. Also, define

the [(p+ 1)× (p+ 1)] matrix ΥT = diag(T 1/2, ..., T 1/2, T 1/2a−1
T ). Then

(a) y−p,t =
∑∞

j=1 bjet−j with bj = (ψj−1, ..., ψj−p) if j ≥ 1, ψj = 0 if j < 0, where
θ(L)−1 =

∑∞
j=0 ψjL

j, ψ0 = 1,
∑∞

j=0 j
∣∣ψj∣∣ <∞.

(b) a−2
T Υ−1

T (
∑T

t=1 xtx
′
t)Υ

−1
T

p→ Ψ where Ψ =

 Ω
∫
g2 0(p×1)

0(1×p) 1

 and Ω =
∑∞

j=1 bjb
′
j.

(c) a−2
T Υ−1

T

∑T
t=1 xtet

w→
∫
V dBp+1, where Bp+1 = (B′p, B1)′ with Bp is a p-vector Brownian

motion with covariance matrix Ω and B1 is a standard Brownian motion independent of Bp.

Lemma A.2 Suppose {yt} is generated by the AR(p) model with α = 1:

yt = αyt−1 +
∑p−1

j=1 πj∆yt−j + et

where {πj} satisfies Assumption A(2) and {et} satisfies Assumptions A(3-4). Let e =
(e1, ..., eT )′, vt = ∆yt, wt = (∆yt−1, ...,∆yt−p+1)′, W = (w1, ..., wT )′, Wj = (wTj−1+1, ..., wTj)

′

(j = 1, ..., k + 1) and Π = (π1, ..., πp−1)′. Then

(a) a−1
T T−1/2

∑bTrc
t=1 et

w→
∫ r

0
gdB1 ≡ g̃(1)Bg,1(r);

(b) a−1
T T−1/2

∑bTrc
t=1 vt

w→ d(1)
∫ r

0
gdB1 ≡ d(1)g̃(1)Bg,1(r), if d(1) 6= 0, with vt =

∑∞
j=0 djet−j

and
∑∞

j=0 j |dj| <∞;

(c) a−2
T T−1

∑bTrc
t=1 yt−1et

w→ (1/2)d(1)[g̃(1)2B2
g,1(r)− g̃(r)2];

(d)
∥∥(a−2

T T−1W ′W )−1
∥∥ = Op(1);

(e) ‖DTZ
′
2iW2i‖ = Op(1);

(f)
∥∥a−2

T T−1/2W ′e
∥∥ = Op(1);

(g)

∥∥∥∥[a−2
T T−1W ′W − a−2

T T−1
∑k/2

i=1W
′
2iZ2i(Z

′
2iZ2i)

−1Z ′2iW2i

]−1
∥∥∥∥ = Op(1).

Proof of Lemma A.2: (a) The result follows from Lemma 1 in Cavaliere and Taylor (2009).
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(b) By Assumption A2, ∆yt = vt =
∑∞

j=0 djet−j with
∑∞

j=0 j |dj| < ∞, where d(L) =∑∞
j=0 djL

j = π(L)−1. Then, with the additional restriction d(1) 6= 0, the sequence {vt} satisfies
Assumption 1’in Cavaliere and Taylor (2009) and hence by their Theorem 3, a−1

T T−1/2
∑bTrc

t=1 vt
w→ d(1)

∫ r
0
gdB1.

(c) Note that from the Beveridge-Nelson (1981) decomposition, we have T−1
∑bTrc

t=1 yt−1et =

d(1)T−1
∑bTrc

t=2 {
∑t−1

j=1 ej}et + op(1). Next, using the fact that

T−1
∑bTrc

t=2 {
∑t−1

j=1 ej}et = (1/2)[(T−1/2
∑bTrc

t=1 et)
2 − T−1

∑bTrc
t=1 e2

t ] + op(1)

the result follows from (a) since a−2
T T−1

∑bTrc
t=1 e2

t
w→
∫ r

0
g(s)2 ≡ g̃(r)2.

(d) The entries in the matrix a−2
T T−1W ′W are of the form T−1

∑T
t=1 ∆yt−j∆yt−j′ , j, j′ ∈

{1, ..., p − 1}. When α = 1, {∆yt} is an AR(p − 1) process with all roots outside the unit
circle. Then by Lemma A.1(b), T−1

∑T
t=1 ∆yt−j∆yt−j′ = Op(1) and the result follows.

(e) We have a−1
T T−1/2ybTrc = Op(1) uniformly in r ∈ [0, 1]. For a fixed j ∈ {1, ..., p− 1},

a−1
T T−1/2

∑T2i
t=T2i−1+1 ∆yt−j = a−1

T T−1/2yT2i−j − a−1
T T−1/2yT2i−1+1−j

w→ d(1)g̃(1){Bg,1(λ2i)−Bg,1(λ2i−1)} = Op(1).

Further,

a−2
T T−1

∑T2i
t=T2i−1+1 yt−1∆yt−j =

∑T2i
t=T2i−1+1(a−1

T T−1/2yt−1)(a−1
T T−1/2∆yt−j)

w→ (1/2){d(1)2g̃(1)2[B2
g,1(λ2i)−B2

g,1(λ2i−1)]

−(λ2i − λ2i−1)ξ0}+ (λ2i − λ2i−1)
{
ξ0 + ξ1 + ...+ ξj−1

}
= Op(1)

where ξj = E(∆yt∆yt−j) = g̃(1)2
∑∞

s=0 dsds+j. Hence, all entries in the matrix DTZ
′
2iW2i are

Op(1) and the result follows.

(f) The result follows by applying Lemma A.1(c) to the sequence {∆yt}.

(g) First, observe that a−2
T T−1W ′W = Op(1) by Lemma A.1(b). Next, we have

a2
TDTZ

′
2iZ2iDT

w→

d(1)2g̃(1)2
∫ λ2i
λ2i−1

B2
g,1 d(1)g̃(1)

∫ λ2i
λ2i−1

Bg,1

d(1)g̃(1)
∫ λ2i
λ2i−1

Bg,1 λ2i − λ2i−1

 ≡ W1,i

Denote the limit of DTZ
′
2iW2i by W2,i. Thus combining the results in (e),

T−1
∑k/2

i=1 [W ′
2iZ2iDT ]

[
(a2
TDTZ

′
2iZ2iDT )−1

]
[DTZ

′
2iW2i]

w→ T−1
∑k/2

i=1W ′2,iW−1
1,iW2,i = Op(T

−1)Op(1) = op(1)
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and the result follows. N

Proof of Theorem 1: We prove the result for Model 1a and k even. The proofs for the
other tests are very similar and omitted. Let Ẽ∗i and Ê

∗
i be the vector of residuals in the i-th

regime under H(1)
0 and H(1)

a,k, respectively, for i = 1, ..., k+ 1. Denote γ̂2i = (α̂2i− 1, ĉ2i)
′, i =

1, ..., k/2, where α̂2i and ĉ2i are the OLS estimates obtained from regime 2i. Then we have

Ẽ∗i = ∆Yi −WiΠ̆,

Ê∗2i = ∆Y2i −W2iΠ̂− Z2iγ̂2i,

Ê∗2i+1 = ∆Y2i+1 −W2i+1Π̂,

for i = 1, ..., k + 1

for i = 1, ..., k/2

for i = 0, ..., k/2

(A.1)

where Π̆−Π = (W ′W )−1W ′e underH(1)
0 . Further, Π̂ and γ̂2i satisfy the first order conditions

Z ′2iÊ
∗
2i = 0, for i = 1, ..., k/2 , (A.2)∑k/2

i=1 W2iÊ
∗
2i +

∑k/2
i=0W2i+1Ê

∗
2i+1 = 0. (A.3)

Under H(1)
0 , from (A.3), we have Π̂ − Π = (W ′W )−1(W ′e −

∑k/2
i=1 W

′
2iZ2iγ̂2i). Next, from

(A.2),

a−2
T D−1

T γ̂2i = (a2
TDTZ

′
2iZ2iDT )−1

[
DTZ

′
2iW2i(Π− Π̂) +DTZ

′
2iE2i

]
(A.4)

for i = 1, ..., k/2, where E2i = (eT2i−1+1, ..., eT2i)
′. Solving for (Π̂− Π) we obtain

Π̂−Π = [W ′W −
∑k/2

i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iW2i

}
]−1[W ′e−

∑k/2
i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iE2i

}
]

(A.5)
so that using Lemma A.2, and noting that the limits of W ′

2iZ2iDT , a2
TDTZ

′
2iZ2iDT and

DTZ
′
2iE2i are Op(1) uniformly in i,

||Π̂− Π|| ≤
∥∥∥[W ′W −

∑k/2
i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iW2i

}
]−1
∥∥∥×[

‖W ′e‖+
∑k/2

i=1

{
‖W ′

2iZ2iDT‖
∥∥(DTZ

′
2iZ2iDT )−1

∥∥ ‖DTZ
′
2iE2i‖

}]
= [Op(a

−2
T T−1)][Op(a

2
TT

1/2) + (k/2){Op(1)Op(a
2
T )Op(1)}] = Op(T

−1/2)

Also,

||(DTZ
′
2iZ2iDT )−1DTZ

′
2iW2i(Π− Π̂)|| ≤ ||(DTZ

′
2iZ2iDT )−1||||DTZ

′
2iW2i||||(Π− Π̂)||

= Op(a
2
T )Op(1)Op(T

−1/2) = Op(a
2
TT
−1/2) (A.6)

Using (A.6) in (A.4), we have

a−2
T D−1

T γ̂2i = (a2
TDTZ

′
2iZ2iDT )−1DTZ

′
2iE2i + op(1). (A.7)
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Next, Π̂− Π̆ = −(W ′W )−1
∑k/2

i=1 {W ′
2iZ2iγ̂2i} so that

||Π̂− Π̆|| ≤
∥∥(W ′W )−1

∥∥∑k/2
i=1 ‖W ′

2iZ2iDT‖
∥∥D−1

T γ̂2i

∥∥
= Op(a

−2
T T−1)(k/2){Op(1)Op(a

2
T )} = Op(T

−1).

We can write, from (A.1), for i = 1, ..., k/2, Ẽ∗2i = Ê∗2i + Z2iγ̂2i + W2i(Π̂ − Π̆) and for
i = 0, ..., k/2, Ẽ∗2i+1 = Ê∗2i+1 + W2i+1(Π̂− Π̆). Thus the numerator of the F statistic can be
written as

SSR
(1)
0 − SSR

(1)
1a,k =

∑k/2
i=1{Ẽ∗′2iẼ∗2i − Ê∗′2iÊ∗2i}+

∑k/2
i=0{Ẽ∗′2i+1Ẽ

∗
2i+1 − Ê∗′2i+1Ê

∗
2i+1} (A.8)

=
∑k/2

i=1(D−1
T γ̂2i)

′(DTZ
′
2iZ2iDT )D−1

T γ̂2i

+(Π̂− Π̆)′
∑k/2

i=1(W ′
2iZ2iDT )(D−1

T γ̂2i)+(Π̂− Π̆)′(W ′W )(Π̂− Π̆)

where

||(Π̂− Π̆)′
∑k/2

i=1(W ′
2iZ2iDT )(D−1

T γ̂2i)|| ≤ ||Π̂− Π̆||
∑k/2

i=1 ‖(W ′
2iZ2iDT )‖

∥∥(D−1
T γ̂2i)

∥∥
= Op(T

−1)(k/2){Op(1)Op(a
2
T )} = Op(a

2
TT
−1)

and

||(Π̂− Π̆)′(W ′W )(Π̂− Π̆)|| ≤ ||Π̂− Π̆|| ‖W ′W‖ ||Π̂− Π̆||
= Op(T

−1)Op(a
2
TT )Op(T

−1) = Op(a
2
TT
−1)

Then, using (A.7) in (A.8), we have

a−2
T (SSR

(1)
0 − SSR

(1)
1a,k) =

∑k/2
i=1

{
E ′2iZ2iDT (a2

TDTZ
′
2iZ2iDT )−1DTZ

′
2iE2i

}
+ op(1)

=
k/2∑
i=1

[
{a−2

T T−1
∑T2i

t=T2i−1+1(yt−1 − ȳ2i,−1)et}2

a−2
T T−2

∑T2i
t=T2i−1+1(yt−1 − ȳ2i,−1)2

(A.9)

+
T

T2i − T2i−1

{a−1
T T−1/2

∑T2i
t=T2i−1+1 et}2]

Using Lemma A.2(a,c) in (A.9), we have

a−2
T (SSR

(1)
0 − SSR

(1)
1a,k)

w→ g̃(1)2
k/2∑
i=1


[{
B
(2i)
g,1 (λ2i)

}2
−
{
B
(2i)
g,1 (λ2i−1)

}2
−g̃(1)−2{g̃(λ2i)2−g̃(λ2i−1)2}

]2
4
∫ λ2i
λ2i−1

[
B
(2i)
g,1 (r)

]2
dr

+ 1
λ2i−λ2i−1 {Bg,1(λ2i)−Bg,1(λ2i−1)}2


Finally, noting that a−2

T (T − k)−1SSR
(1)
1a,k

p→
∫ 1

0
g2 ≡ g̃(1)2, the result follows.N

Proof of Theorem 2: We can write

SSR
(0)
0 − SSR

(0)
1,k = DR(1, k + 1)−

∑k+1
i=1 D

U(i, i)
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where DU(i, j) [DU(i, j), resp.,] is the sum of squared residuals from the unrestricted (re-
stricted, resp.,) regression using data from segments i to j (inclusively). Let Y(−1)1,i, Z1,i,W1,i,
and E1,i denote the vectors or matrices containing elements of Y−1, Z,W and e, respectively,
belonging to the partition from segment 1 to i (inclusively), for i = 1, ..., k + 1. Further,
define Si = Z ′1,iE1,i, Hi = Z ′1,iZ1,i, Ki = Z ′1,iW1,i, Li = W ′

1,iW1,i and Mj = W ′
1,iE1,i for

i = 1, ..., k+1. Finally, let AT = (W ′MZW )−1W ′MZe and ĀT = (W ′MZ̄W )−1W ′MZ̄e, where
Z̄ = diag(Z1, ..., Zk+1). Then, from Bai and Perron (1998, eq. (39) and (41), pg. 73-74),

SSR
(0)
0 − SSR

(0)
1,k =

∑k
i=1 FT,i +DR(1, 1)−DU(1, 1)

where

FT,i =
[
−S ′i+1H

−1
i+1Si+1 + S ′iH

−1
i Si + (Si+1 − Si)[Hi+1 −Hi]

−1(Si+1 − Si)
]

+
[
2S ′i+1H

−1
i+1Ki+1AT − 2S ′iH

−1
i KiAT − 2(Si+1 − Si)′[Hi+1 −Hi]

−1(Ki+1 −Ki)ĀT
]

+
[
2(Mi+1 −Mi)

′(ĀT − AT ) + (ĀT − AT )′(Li+1 − Li)(ĀT − AT )
]

= T1 + T2 + T3 (A.10)

We now analyze each of the terms T1-T3 in (A.10). For T1:

T1 = −S ′i+1H
−1
i+1Si+1 + S ′iH

−1
i Si + (Si+1 − Si)′[Hi+1 −Hi]

−1(Si+1 − Si)
= −λ−1

i+1[{T−1/2
∑Ti+1

t=1 et}2 + {T−1
∑Ti+1

t=1 ỹ2
t−1}−1{T−1/2

∑Ti+1
t=1 ỹt−1et}2]

+λ−1
i [{T−1/2

∑Ti
t=1 et}2 + {T−1

∑Ti
t=1 ỹ

2
t−1}−1{T−1/2

∑Ti
t=1 ỹt−1et}2]

+(λi+1 − λi)−1[{T−1/2
∑Ti+1

t=Ti+1 et}2 + {T−1
∑Ti+1

t=Ti+1 ỹ
2
t−1}−1{T−1/2

∑Ti+1
t=Ti+1 ỹt−1et}2]

+op(a
2
T )

using Lemma A.1(b) where ỹt−j = yt−j − µ. Then, from Lemma A.1, we have

a−2
T T1
w→ g̃(1)2

[
−λ−1

i+1B
2
g,1(λi+1) + λ−1

i B2
g,1(λi) + (λi+1 − λi)−1[Bg,1(λi+1)−Bg,1(λi)]

2
]

+g̃(1)2

 −{g̃2(λi+1)}−1
B2
g,2(λi+1) + {g̃2(λi)}−1B2

g,2(λi)+

{g̃2(λi+1)− g̃2(λi)}−1
[Bg,2(λi+1)−Bg,2(λi)]

2


≡ g̃(1)2

[
{λiBg,1(λi+1)− λi+1Bg,1(λi)}2

λiλi+1(λi+1 − λi)
+
{g̃(λi)

2Bg,2(λi+1)− g̃(λi+1)2Bg,2(λi)}2

g̃(λi)2g̃(λi+1)2 {g̃(λi+1)2 − g̃(λi)2}

]
.

For T2:

T2 = 2(T−1/2Si+1)′(T−1Hi+1)−1T−1Ki+1T
1/2AT − 2(T−1/2Si)

′(T−1Hi)
−1T−1KiT

1/2AT

−2[T−1/2(Si+1 − Si)]′[T−1(Hi+1 −Hi)]
−1T−1(Ki+1 −Ki)T

1/2ĀT .
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Define Ω̃p−1 = (Ω11 − Ω12,Ω12 − Ω13, ...,Ω1(p−1) − Ω1p)
′, where Ωij is the (i, j) element of

Ω defined in Lemma A.1. Then, using Lemma A.1(a)-(c), we have

a−2
T (T−1/2Si+1)′(T−1Hi+1)−1T−1Ki+1

w→ (1/Ω11)1/2Bg,2(λi+1)Ω̃′p−1,

a−2
T (T−1/2Si)

′(T−1Hi)
−1T−1Ki

w→ (1/Ω11)1/2Bg,2(λi)Ω̃
′
p−1,

a−2
T [T−1/2(Si+1 − Si)]′[T−1(Hi+1 −Hi)]

−1T−1(Ki+1 −Ki)
w→ (1/Ω11)1/2[Bg,2(λi+1)−Bg,2(λi)]Ω̃

′
p−1.

Using Lemma A.1, it can further be shown that

T−1W ′PZW
p→ Ω−1

11 Ω̃p−1Ω̃′p−1g̃
2(1), T−1W ′PZ̄W

p→ Ω−1
11 Ω̃p−1Ω̃′p−1g̃

2(1),

T−1/2W ′PZe
w→ (1/Ω11)1/2Ω̃p−1Bg,2(1), T−1/2W ′PZ̄e

w→ (1/Ω11)1/2Ω̃p−1Bg,2(1),

so that ĀT − AT
p→ 0. Hence, a−2

T T2 = op(1). For T3:

a−2
T T3 = a−2

T [2(Mi+1 −Mi)
′(ĀT − AT ) + (ĀT − AT )′(Li+1 − Li)(ĀT − AT )]

p→ 0

since ĀT − AT
p→ 0. From (A.10), we then obtain

a−2
T FT,i

w→ g̃(1)2

[
{λiBg,1(λi+1)− λi+1Bg,1(λi)}2

λiλi+1(λi+1 − λi)
+
{g̃(λi)

2Bg,2(λi+1)− g̃(λi+1)2Bg,2(λi)}2

g̃(λi)2g̃(λi+1)2 {g̃(λi+1)2 − g̃(λi)2}

]

The result follows noting that [T − 2(k + 1)]−1a−2
T SSR

(0)
1,k

p→ g̃(1)2.N

Proof of Theorem 3(a): We will prove the theorem for the bootstrap test based on
F1a(λ, k) for k even. The bootstrap statistic is given by

F ∗1a(λ, k) = (T − k)(SSR
∗,(1)
0 − SSR∗,(1)

1a,k )/[kSSR
∗,(1)
1a,k ]

where

SSR
∗,(1)
0 =

∑T
t=1(y

(1)
t − y

(1)
t−1)2 (A.11)

SSR
∗,(1)
1a,k =

∑k/2
i=1

∑T2i
t=T2i−1+1(y

(1)
t − ȳ

(1)
2i − α̂

(1)
2i (y

(1)
t−1 − ȳ

(1)
2i,−1))2 (A.12)

+
∑k/2

i=0

∑T2i+1
t=T2i+1(y

(1)
t − y

(1)
t−1)2

In (A.12), α̂(1)
2i denotes the slope estimate from an OLS regression of y(1)

t on a constant and

y
(1)
t−1 (t = T2i−1 + 1, ..., T2i; i = 1, ..., k/2). Since y(1)

t = y
(1)
t−1 + e

(1)
t for t ≤ T, we have

a−2
T (SSR

∗,(1)
0 − SSR∗,(1)

1a,k )

=

k/2∑
i=1

[
(T2i − T2i−1)[a−1

T ē
(1)
2i ]2 +

[a−2
T T−1

∑T2i
t=T2i−1+1{(y

(1)
t−1 − ȳ

(1)
2i,−1)e

(1)
t }]2

a−2
T T−2

∑T2i
t=T2i−1+1(y

(1)
t−1 − ȳ

(1)
2i,−1)2

]
(A.13)
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Next, we establish an invariance principle for the sequence {a−1
T e

(1)
t ; t = 1, ..., T}. To this end,

let F∗t be the σ-field generated by {vs; s ≤ t}. Since e(1)
t = ĕtvt, {a−1

T e
(1)
t ,F∗t } is a martingale

difference array. Further, uniformly over r ∈ [0, 1],

a−2
T T−1

∑bTrc
t=1 [e

(1)
t ]2 − a−2

T T−1
∑bTrc

t=1 ĕ2
t

p∗→ 0

since

E∗{a−2
T T−1

∑bTrc
t=1 ([e

(1)
t ]2 − ĕ2

t )}2 = E∗{a−2
T T−1

∑bTrc
t=1

(
ĕ2
t (v

2
t − 1

)
}2

≤ CT−2
∑bTrc

t=1 (a−1
T ĕ2

t )
4 = op(1),

(where C is a positive constant), using the fact that under H(1)
0 , a−1

T ĕt = a−1
T et + a−1

T w′t(Π−
Π̆) = a−1

T et+Op(T
−1/2). Also, a−2

T T−1
∑bTrc

t=1t ĕ
2
t

p→
∫ r

0
g2 uniformly over r ∈ [0, 1] (by Lemma

2 in Cavaliere and Taylor, 2008(a)). Then, applying Theorem 2.1 in Hansen (1992) with
ST (.) = T−1/2

∑[T.]
t=1 vt, we obtain

T−1/2
∑bTrc

t=1 a−1
T e

(1)
t = a−1

T

∫ r
0
ĕbTscdST (s)

w→p

∫ r
0
g(s)dB1(s) = g̃(1)Bg,1(r). (A.14)

Using (A.14), we have

a−2
T T−2

T2i∑
t=T2i−1+1

(y
(1)
t−1 − ȳ

(1)
2i,−1)2 w→p g̃(1)2

∫ λ2i

λ2i−1

[B
(2i)
g,1 (s)]2

a−2
T T−1

T2i∑
t=T2i−1+1

{(y(1)
t−1 − ȳ

(1)
2i,−1)e

(1)
t }

w→p (1/2)g̃(1)2

 {B(2i)
g,1 (λ2i)}2 − {B(2i)

g,1 (λ2i−1)}2

−g̃(1)−2 {g̃(λ2i)
2 − g̃(λ2i−1)2}


a−1
T T 1/2ē

(1)
2i

w→p (λ2i − λ2i−1)−1g̃(1)[Bg,1(λ2i)−Bg,1(λ2i−1)] (A.15)

Substituting (A.15) in (A.13) and noting that (T − k)−1a−2
T SSR

∗,(1)
1a,k

p→ g̃(1)2, F ∗1a(λ, k)
w→p

F 0
1a(λ, k), where F 0

1a(λ, k) is the weak limit of F1a(λ, k) as stated in Theorem 1. The rest of
the proof follows from the proof of Theorem 5 in Hansen (2000). The bootstrap BP test for
k breaks is given by

G∗1(k) = [T − 2(k + 1)](SSR
∗,(0)
0 − SSR∗,(0)

1,k )/[kSSR
∗,(0)
1,k ]

where

SSR
∗,(0)
0 =

∑T
t=1(e

(0)
t − ē(0) − α̃(0)(e

(0)
t−1 − ē

(0)
−1))2 (A.16)

SSR
∗,(0)
1,k =

∑k+1
i=1

∑Ti
t=Ti−1+1(e

(0)
t − ē

(0)
i − α̂

(0)
i (e

(0)
t−1 − ē

(0)
i,−1))2 (A.17)

In (A.16) (resp., A.17), α̃(0) (resp., α̂(0)
i ) denotes the slope estimate from an OLS regression

of e(0)
t on a constant and e(0)

t−1 (t = 1, ..., T ) (resp., e(0)
t−1 (t = Ti−1 + 1, ..., Ti)). After some

algebra, we have

a−2
T (SSR

∗,(0)
0 − SSR∗,(0)

1,k ) = −T
[
a−1
T ē(0)

]2 − [a−2
T T−1/2

∑T
t=1{(e

(0)
t−1 − ē

(0)
−1)e

(0)
t }]2

a−2
T T−1

∑T
t=1(e

(0)
t−1 − ē

(0)
−1)2
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+
k+1∑
i=1

[
(Ti − Ti−1)[a−1

T ē
(0)
i ]2 +

[a−2
T T−1/2

∑Ti
t=Ti−1+1{(e

(0)
t−1 − ē

(0)
i,−1)e

(0)
t }]2

a−2
T T−1

∑Ti
t=Ti−1+1(e

(0)
t−1 − ē

(0)
i,−1)2

]
. (A.18)

Next, we establish an invariance principle for the sequence {a−1
T e

(0)
t ; t = 1, ..., T}. In partic-

ular, we will show that for r ∈ [0, 1],

T−1/2
∑bTrc

t=1 a−1
T e

(0)
t

w→p

∫ r
0
g(s)dB1(s). (A.19)

To this end, let F∗t be the σ-field generated by {vs; s ≤ t}. Since e(0)
t = ẽtvt, { a−1

T e
(0)
t ,F∗t } is

a martingale difference array. Further, uniformly over r ∈ [0, 1],

a−2
T T−1

∑bTrc
t=1 [e

(0)
t ]2 − a−2

T T−1
∑bTrc

t=1 ẽ2
t

p∗→ 0

since

E∗{a−2
T T−1

∑bTrc
t=1 ([e

(0)
t ]2 − ẽ2

t )}2 = E∗{a−2
T T−1

∑bTrc
t=1

(
ẽ2
t (v

2
t − 1

)
}2

≤ CT−2
∑bTrc

t=1 (a−1
T ẽt)

4 = op(1)

using the fact that a−1
T ẽt = a−1

T et+Op(T
−1/2) [eq. (A.7) in Xu, 2008]. Also, a−2

T T−1
∑bTrc

t=1 ẽ2
t

p→∫ r
0
g2. Then, again applying Theorem 2.1 in Hansen (1992) with ST (.) = T−1/2

∑[T.]
t=1 vt, we

have
T−1/2

∑bTrc
t=1 a−1

T e
(0)
t = a−1

T

∫ r
0
ẽbTscdST (s)

w→p

∫ r
0
g(s)dB1(s).

Noting that {a−2
T e

(0)
t e

(0)
t−1,F∗t } is a martingale difference array, we can show, using similar

arguments as above, that

T−1/2

bTrc∑
t=1

a−2
T e

(0)
t e

(0)
t−1

w→p

∫ r

0

g2(s)dB2(s) (A.20)

for r ∈ [0, 1], where B2(.) is independent of B1(.). Finally, since a−2
T T−1SSR

∗,(0)
1,k

p→ g̃(1)2,

G∗1(λ, k)
w→p G

0
1(λ, k) using (A.19) and (A.20) in (A.18), where G0

1(λ, k) is the weak limit
of G1(λ, k) as defined in Theorem 2. Hence, following the proof of Theorem 5 in Hansen
(2000), p∗k,G1

w→ U [0, 1], p∗UDmax
w→ U [0, 1].N

Proof of Theorem 3(b): The proof of this result follows directly from part (a) and is
hence omitted.

Proof of Theorem 3(c):We will prove p∗m,W1

p→ 0 and p∗m,G1
p→ 0 under H(1)

a,m with m even.

Consequently, p∗Wmax

p→ 0 and p∗UDmax
p→ 0. The proofs for the alternatives H(1)

b,m and

H
(0)
1,m can be established using similar arguments. The proof proceeds in two steps: (i) we

first show that the bootstrap counterparts F ∗1a(m), F ∗1b(m) and G∗1(m) of F1a(m), F1b(m) and
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G1(m), respectively, are each Op(1) under H(1)
a,m; (ii) F1a(m) (hence W1(m)) and G1(m) both

diverge with T . For (i), first note that for s ∈ [0, 1],

a−1
T ĕbTsc = a−1

T ebTsc + a−1
T

∑m/2
i=1 (α2i − 1)hbTsc−1I(bTsc ∈ [T 0

2i−1 + 1, T 0
2i]) +Op(T

−1/2)

so that

a−2
T T−1

∑bTrc
t=1 ĕ2

t = a−2
T T−1

∑bTrc
t=1 e2

t+a
−2
T T−1

∑bTrc
t=1

∑m/2
i=1 (α2i−1)2h2

t−1I(t ∈ [T 0
2i−1+1, T 0

2i])+op(1)

p→
∫ r

0
g2 +

∑m/2
i=1 (α2i − 1)2(Ω

(2i)
11 )
∫ r

0
g(s)2I(s ∈ [λ0

2i−1, λ
0
2i])ds ≡ V̆ (r) (A.21)

where a−2
T T−1

∑bTsc
t=T 02i−1+1

h2
t−1

p→ Ω
(2i)
11

∫ s
λ02i−1

g2 if s ∈ [λ0
2i−1, λ

0
2i] and Ω

(2i)
11 is the (1, 1) element

of Ω(2i) with Ω(2i) defined analogously to Ω in Lemma A.1 but now specific to regime 2i.
Therefore, we have for r ∈ [0, 1],

a−1
T T−1/2

∑bTrc
t=1 e

(1)
t = a−1

T

∫ r
0
ĕbTscdST (s)

w→p

∫ r
0
g1(s)dB1(s) ≡ B̆g,1(r) (A.22)

where g1(s) = g(s)[1 +
∑m/2

i=1 (α2i − 1)2(Ω
(2i)
11 )I(s ∈ [λ0

2i−1, λ
0
2i])ds]

1/2. Note that
∫ r

0
g1(s)2 =

V̆ (r). Then, the results stated in (A.15) all hold with Bg,1(.) replaced by B̆g,1(.). Further,
(T − k)−1SSR

∗,(1)
1a,k

w→p

∫ 1

0
g1(s)2 = V̆ (1). Thus, F ∗1a(m) = Op(1). Entirely analogous argu-

ments can be used to establish F ∗1b(m) = Op(1). Next, we show that G∗1(m) is stochastically
bounded under H(1)

a,m. First, note that we can write

ẽt = yt − ȳ − α̃(yt−1 − ȳ−1)− (wt − w̄)′Π̃

where T (α̃− 1) = Op(1) since H(1)
a,m involves a mix of I(1) and I(0) regimes. Further,

ȳ − α̃ȳ−1 = ȳ − ȳ−1 − (α̃− 1)ȳ−1 = T−1(yT − y0)− (α̃− 1)ȳ−1

= Op(aTT
−1/2)−Op(aTT

−1/2) = Op(aTT
−1/2).

Thus, in an I(1) regime, i.e., t ∈ [T2i + 1, ..., T2i+1], i = 0, ...,m/2, we have

a−1
T ẽt = a−1

T et + a−1
T (1− α̃)yt−1 +Op(T

−1/2) = a−1
T et +Op(T

−1)Op(T
1/2) +Op(T

−1/2)

= a−1
T et +Op(T

−1/2). (A.23)

In an I(0) regime, i.e., t ∈ [T2i−1 + 1, ..., T2i], i = 1, ...,m/2, we have

a−1
T ẽt = a−1

T et + (α2i − 1)a−1
T ht−1 +Op(T

−1/2). (A.24)

Combining (A.23) and (A.24), we have for t = 1, ..., T ,

a−1
T ẽt = a−1

T et +
∑m/2

i=1 (α2i − 1)a−1
T ht−1I(t ∈ [T 0

2i−1 + 1, ..., T 0
2i])
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so that for r ∈ [0, 1],

a−2
T T−1

∑bTrc
t=1 ẽ2

t = a−2
T T−1

∑bTrc
t=1 e2

t

+a−2
T T−1

∑bTrc
t=1

∑m/2
i=1 (α2i − 1)2h2

t−1I(t ∈ [T 0
2i−1 + 1, T 0

2i]) + op(1)
p→ V̆ (r)

where V̆ (r) is defined in (A.21). Hence, a−1
T T−1/2

∑bTrc
t=1 e

(0)
t = a−1

T

∫ r
0
ẽbTscdST (s)

w→p B̆g,1(r)

and the limits in (A.19) and (A.20) now hold with g(.) replaced by g1(.). Also, a−2
T T−1SSR

∗,(0)
1,k

p→ V̆ (1). Thus, G∗1(m) = Op(1).
To show step (ii), note that since λ0 ∈ Λm

ε and F1a(m) = supλ∈Λmε
F1a(λ,m), it is suffi cient

to show that F1a(λ
0,m) = Op(T ). Define

Π̆ = (
∑T

t=1 wtw
′
t)
−1
∑T

t=1wt∆yt

µ̃2i = µ2i + yT 02i−1 − µ2i−1, i = 1, ...,m/2.

Then, ht−1 = yt−1 − µ̃2i, t ∈ [T 0
2i−1 + 1, T 0

2i]. We have

SSR
(1)
0 =

∑T
t=1(∆yt − w′tΠ̆)2 =

∑m/2
i=0

∑T 02i+1
t=T 02i+1

{w′t(Π− Π̆) + et}2

+
∑m/2

i=1

∑T 02i
t=T 02i−1+1

{(α2i − 1)ht−1 + w′t(Π− Π̆) + et}2

=
∑T

t=1 e
2
t +

∑m/2
i=1 (α2i − 1)2(

∑T 02i
t=T 02i−1+1

h2
t−1)

+2(Π− Π̆)′
∑m/2

i=1 (α2i − 1)(
∑T 02i

t=T 02i−1+1
ht−1wt)

+(Π− Π̆)′(W ′W )(Π− Π̆) + 2(Π− Π̆)′W ′e+ 2
∑m/2

i=1 (α2i − 1)(
∑T 02i

t=T 02i−1+1
ht−1et).

Let Z̄(1) = diag(Z̃
(1)
1 , ..., Z̃

(1)
m+1), where Z̃(1)

i is the first column of Z̃i = (hT 02i−1 , ..., hT 02i−1) and

the [(m+1)×1] vector γ1 = (0, α2−1, 0, α4−1, .., 0)′. Noting that Π̆−Π = (W ′W )−1W ′e+

(W ′W )−1
∑m/2

i=1 (α2i − 1)
∑T 02i

t=T 02i−1+1
ht−1wt,

SSR
(1)
0 =

∑T
t=1 e

2
t + γ′1Z̄

(1)′MW Z̄
(1)γ1 − e′W (W ′W )−1W ′e+ 2γ′1Z̄

(1)′e. (A.25)

Using (i) e′W (W ′W )−1W ′e = a2
T [a−2

T T−1/2e′W (a−2
T T−1W ′W )−1a−2

T T−1/2W ′e] = a2
TOp(1) =

Op(a
2
T ); (ii) γ′1Z̄

(1)′e = Op(a
2
TT

1/2), we have from (A.25)

a−2
T SSR

(1)
0 = a−2

T

∑T
t=1 e

2
t + a−2

T γ′1Z̄
(1)′MW Z̄

(1)γ1 +Op(T
1/2).

Next, we have (with Π̂ denoting the estimate of Π under the alternative),

SSR
(1)
1a,m =

m/2∑
i=0

T 02i+1∑
t=T 02i+1

{w′t(Π− Π̂) + et}2 +

m/2∑
i=1

T 02i∑
t=T 02i−1+1

 (α2i − α̂2i)(yt−1 − ȳ2i,−1)

+(wt − w̄2i)
′(Π− Π̂) + et


2

.
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Then, noting that

Π̂− Π = (W ′W )−1[
∑m/2

i=1 (α2i − α̂2i)
∑T 02i

t=T 02i−1+1
wt(yt−1 − ȳ2i,−1) +W ′e]

= [Op(a
−2
T T−1)][Op(a

2
TT

1/2) +Op(a
2
TT

1/2)] = Op(T
−1/2)

we can show, after some simplifications,

a−2
T SSR

(1)
1a,m = a−2

T

∑T
t=1 e

2
t +Op(1). (A.26)

Combining (A.25) and (A.26),

a−2
T (SSR

(1)
0 − SSR

(1)
1a,m) = a−2

T γ′1Z̄
(1)′MW Z̄

(1)γ1 +Op(T
1/2). (A.27)

Now, since regime 2i (i = 1, ...,m/2) is I(0), a−2
T γ′1Z̄

(1)′MW Z̄
(1)γ1 = a−2

T Op(a
2
TT ) = Op(T ).

Since this term is positive and dominant in (A.27), F1a(λ
0,m) diverges to positive infinity

at rate T . Entirely analogous arguments can be used to show the divergence of G1(m) at
rate T . The details are omitted.N

Proof of Theorem 4: To prove this result, it is suffi cient to show that

lim
T→∞

P ( min
1≤i≤l+1

{p∗i } < ηl+1) ≤ η (A.28)

as the rest of the proof follows the same arguments as in the proof of Theorem 2 in Kejriwal
(2019). First, note that

P ( min
1≤i≤l+1

{p∗i } < ηl+1) = 1− P ( min
1≤i≤l+1

{p∗i } ≥ ηl+1)

= 1− Πl+1
i=1

[
P (p∗i ≥ ηl+1)

]
= 1− Πl+1

i=1

[
1− P ({p∗,(i)1,W1

< ηl+1} ∩ {p
∗,(i)
1,G1

< ηl+1})
]

(A.29)

where the second equality follows from the independence of the test statistics across segments
and the third from the fact that p∗i = max{p∗,(i)1,W1

, p
∗,(i)
1,G1
}. Next, from Theorem 3(a,b), it

follows that under the null hypothesis of l breaks, we have for any segment i ∈ {1, ..., l+ 1},

P ({p∗,(i)1,W1
< ηl+1} ∩ {p

∗,(i)
1,G1

< ηl+1}) ≤ P ({p∗,(i)1,W1
< ηl+1})→ ηl+1 if i is I(1),

P ({p∗,(i)1,W1
< ηl+1} ∩ {p

∗,(i)
1,G1

< ηl+1}) ≤ P ({p∗,(i)1,G1
< ηl+1})→ ηl+1 if i is I(0). (A.30)

Thus, using (A.30) in (A.29), we have limT→∞ P (min1≤i≤l+1{p∗i } < ηl+1) ≤ 1−
[
1− ηl+1

]l+1
=

η, which proves (A.28).N

Proof of Theorem 5: We prove the result for Model 2a and k even. The proofs for the
other tests follow using entirely analogous arguments. For t ∈ [T2i−1 + 1, T2i], define

y̆t = yt − ȳ2i −
∑T2i

t=T2i−1+1(yt − ȳ2i)(t− t̄2i)∑T2i
t=T2i−1+1(t− t̄2i)2

(t− t̄2i)

y̆t−1 = yt−1 − ȳ2i,−1 −
∑T2i

t=T2i−1+1(yt−1 − ȳ2i,−1)(t− t̄2i)∑T2i
t=T2i−1+1(t− t̄2i)2

(t− t̄2i)
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Following the proof of Theorem 1 and that of Theorem 1 in KPZ, it is easy to show that

S̃SR
(1)

0 − SSR
(1)
2a,k = −

(
T−1/2

T∑
t=1

et

)2

+

k/2∑
i=0

[
T

T2i+1 − T2i

(T−1/2
T2i+1∑

t=T2i+1

et)
2

]
(A.31)

+

k/2∑
i=1


{
∑T2i
t=T2i−1+1

y̆t−1et}2∑T2i
t=T2i−1+1

y̆2t−1
+ T

T2i−T2i−1 (T−1/2
T2i∑

t=T2i−1+1

et)
2

+
{
∑T2i

t=T2i−1+1
(t−t̄2i)et}2∑T2i

t=T2i−1+1
(t−t̄2i)2

+ op(1)

It then follows that

F2a(λ, k) =
(T − 2k − 1)(S̃SR

(1)

0 − SSR
(1)
2a,k)

(2k)SSR
(1)
2a,k

(A.32)

w→ 1

2k


−B2

g,1(1) +
∑k/2

i=0

[
1

λ2i+1−λ2i{Bg,1(λ2i+1)−Bg,1(λ2i)}2
]

k/2∑
i=1


{
∫ λ2i
λ2i−1

B̆
(2i)
g,1 (r)dBg,1(r)}2∫ λ2i

λ2i−1

[
B̆
(2i)
g,1 (r)

]2
dr

+ 1
λ2i−λ2i−1 {Bg,1(λ2i)−Bg,1(λ2i−1)}2

+

[∫ λ2i
λ2i−1

{r−(λ2i−λ2i−1)−1
∫ λ2i
λ2i−1

sds}dBg,1(r)
]2

∫ λ2i
λ2i−1

{r−(λ2i−λ2i−1)−1
∫ λ2i
λ2i−1

sds}2dr



 ≡ F 0
2a(λ, k)

As for the non-trending case, the limiting distribution of the KPZ test is non-pivotal, de-
pending on the unknown volatility process. We next prove that the bootstrap test statistic

F ∗2a(λ, k) = [(T − 2k − 1)(S̃SR
∗,(1)

0 − SSR∗,(1)
2a,k )]/[(2k)SSR

∗,(1)
2a,k ] follows the same distribution

as F2a(λ, k). We have

S̃SR
∗,(1)

0 − SSR∗,(1)
2a,k = −

(
T−1/2

T∑
t=1

e
(1)
t

)2

+

k/2∑
i=0

[
T

T2i+1 − T2i

(T−1/2
T2i+1∑

t=T2i+1

e
(1)
t )2

]
(A.33)

+

k/2∑
i=1


{
∑T2i
t=T2i−1+1

y̆
(1)
t−1e

(1)
t }2∑T2i

t=T2i−1+1
[y̆
(1)
t−1]2

+ T
T2i−T2i−1 (T−1/2

∑T2i
t=T2i−1+1 e

(1)
t )2

+
{
∑T2i
t=T2i−1+1

(t−t̄2i)e(1)t }2∑T2i
t=T2i−1+1

(t−t̄2i)2


Similar to the analysis in the proof of Theorem 3(a), we can establish that

a−2
T T−2

∑T2i
t=T2i−1+1[y̆

(1)
t−1]2

w→p g̃(1)2
∫ λ2i
λ2i−1

[B̆
(2i)
g,1 (s)]2ds

a−2
T T−1

∑T2i
t=T2i−1+1{y̆

(1)
t−1e

(1)
t }

w→p g̃(1)2
∫ λ2i
λ2i−1

B̆
(2i)
g,1 (s)dBg,1(s)

a−1
T T−1/2

∑T2i
t=T2i−1+1 e

(1)
t

w→p (λ2i − λ2i−1)−1g̃(1)[Bg,1(λ2i)−Bg,1(λ2i−1)]

a−1
T T−3/2

∑T2i
t=T2i−1+1(t− t̄2i)e(1)

t
w→p g̃(1)

∫ λ2i
λ2i−1
{r − (λ2i − λ2i−1)−1

∫ λ2i
λ2i−1

sds}dBg,1(r)

T−3
∑T2i

t=T2i−1+1(t− t̄2i)2 w→p

∫ λ2i
λ2i−1
{r − (λ2i − λ2i−1)−1

∫ λ2i
λ2i−1

sds}2dr (A.34)
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Substituting (A.34) in (A.33) and noting that a−2
T (T − 2k − 1)−1SSR

∗,(1)
2a,k

p→ g̃(1)2, we

have F ∗2a(λ, k)
w→p F

0
2a(λ, k). Next, for the I(0) null H̃(0)

0 , the test statistic is G2(λ, k) =

[T − 3(k+ 1)](S̃SR
(0)

0 −SSR
(0)
2,k)/[kSSR

(0)
2,k]. From the proof of Theorem 2 in Kejriwal (2019)

and that of Theorem 2 above, after some algebra, it can be shown that

S̃SR
(0)

0 − SSR
(0)
2,k = −(Y ′−1MQY−1)−1(e′MQY−1)2 − e′PQe

+
k+1∑
i=1

[
(Y ′i,−1MQiYi,−1)−1(e′iMQiYi,−1)2 + e′iPQiei

]
+ op(1)(A.35)

where, for i = 1, ..., k + 1, Qi = (qTi−1+1, ..., qTi)
′ with qt = (1, t)′ for t = Ti−1 + 1, ..., Ti,

Q = (q1, ..., qT )′. Denoting J(r) = (1, r)′ and using the following results:

a−2
T T−1Y ′−1MQY−1

p→ g̃(1)2Ω11

a−2
T T−1/2Y ′−1MQe

w→ g̃(1)2Ω
1/2
11 Bg,2(1)

a−2
T T−1Y ′i,−1MQiYi,−1

p→ g̃(λi)
2Ω11

a−2
T T−1/2Y ′i,−1MQiei

w→ g̃(λi)
2Ω

1/2
11 [Bg,2(λi)−Bg,2(λi−1)]

a−2
T e′PQe

w→ g̃(1)2(
∫ 1

0
J(r)dBg,1(r))

′
(
∫ 1

0
J(r)J(r)′dr)

−1
(
∫ 1

0
J(r)dBg,1(r))

a−2
T

∑k+1
i=1 e

′
iPQiei

w→ g̃(1)2
∑k+1

i=1 (
∫ λi
λi−1

J(r)dBg,1(r))
′
(
∫ λi
λi−1

J(r)J(r)′dr)
−1

(
∫ λi
λi−1

J(r)dBg,1(r))

a−2
T [T − 3(k + 1)]−1SSR

(0)
2,k

p→ g̃(1)2 (A.36)

we have

G2(λ, k)
w→

1

k


k∑
i=1

{g̃(λn)2Bg,2(λn+1)−g̃(λn+1)2Bg,2(λn)}2
g̃(λn)2g̃(λn+1)2{g̃(λn+1)2−g̃(λn)2}

−
(∫ 1

0
J(r)dBg,1(r)

)′(∫ 1

0
J(r)J(r)′dr

)−1(∫ 1

0
J(r)dBg,1(r)

)
+

k+1∑
i=1

(∫ λi
λi−1

J(r)dBg,1(r)
)′(∫ λi

λi−1
J(r)J(r)′dr

)−1(∫ λi
λi−1

J(r)dBg,1(r)
)
 ≡ G0

2(λ, k)

Next, note that the bootstrap statistic G∗2(λ, k) is of the same form as (A.35) with regressors
[regressand] replaced by the bootstrap data e(0)

−1 [e
(0)]. Similar to the convergence results

in (A.34), it is easy to establish that the same convergence results in (A.36) hold for the
bootstrap analogues. Thus, we have G∗2(λ, k)

w→p G0
2(λ, k). The rest of the proof uses

arguments entirely analogous to those used to prove Theorem 3(b)-(c). N
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Supplement B: Detailed Simulation Results

Supplement B presents detailed simulation results to assess the finite sample performance
of our procedures and to provide a comparison with existing approaches. Following Cavaliere
and Taylor (2008b, CT henceforth), we consider the following three specifications for the
volatility process: Model 1 (Single Volatility Break): σt = σ∗0 + (σ∗1 − σ∗0)I(t ≥ 0.5T ); Model
2 (Trending Volatility): σt = σ∗0+(σ∗1−σ∗0)(t−1)/(T−1); Model 3 (Near-Integrated Stochastic
Volatility): σt = σ∗0 exp(0.5υbt/

√
T ), bt = (1− c/T )bt−1 + kt, kt ∼ i.i.d. N(0, 1), b0 = 0. We

set σ∗0 = 1 in all cases, δ := σ∗0/σ
∗
1 ∈ {1, 1/3, 3} for Models 1 and 2, υ = 5 and c ∈ {0, 10} for

Model 3. Next, we generate an ARMA(1,1) process {zt}Tt=1 as: zt = ρzt−1 +et−θet−1, z0 = 0,
et = σtεt with εt ∼ i.i.d. N(0, 1). While our theory does not formally allow for moving
average processes, we nevertheless include this case in our simulations as a robustness check.
The wild bootstrap is implemented using a two point distribution, i.e., vt ∈ {−1, 1} with
equal probability. We also experimented with the standard normal distribution for vt but
found that our tests perform noticeably better when using the two-point distribution relative
to the normal. The level of trimming is set at ε = .15, T ∈ {200, 400} and 1000 replications
are used. We report results for the non-trending case only (those for the trending case are
qualitatively similar). The lag length in the KPZ and BP procedures is selected using BIC
with maximal value set to five.1 We report the performance of the testsH∗(k, η); k = 1, 2 and
Hmax∗1(η) = max{H∗(1, η), H∗(2, η)} as well as their non-robust (homoskedasticity-based)
asymptotic counterparts H(k, η); k = 1, 2 and Hmax1(η) = max{H(1, η), H(2, η)}. The
ratio-based bootstrap tests of CT are designed to test the I(0) null hypothesis while our
tests allow the process to be either I(1) or I(0) under the null. Further, while our tests are
based on a finite order autoregressive model, the CT tests are non-parametric and based
on a mixing-type assumption for the innovations. Given that conducting a full and fair
comparison of tests with different underlying models and null hypotheses is not possible, we
did not include the CT tests in our analysis.

Finite Sample Size. With no persistence change, {yt} is generated by DGP-0: yt =

αyt−1 + zt, y0 = 0. Table B-1 reports the empirical size of 5% asymptotic and bootstrap
tests. The asymptotic tests are considerably oversized indicating their lack of robustness to
nonstationary volatility, consistent with the large sample results in Section 4. In contrast, the
proposed bootstrap tests are robust to I(1) or I(0) processes maintaining empirical size close
to the nominal 5% level across the different volatility specifications. The same is generally
true for the different error structures considered. The H∗ tests are more accurately sized
when α ∈ {.5, 1} but less so when α = .7, since the tests are a hybrid of the KPZ and
BP tests which each have size close to 5% when α = 1 and α = .5, respectively. When

1We also experimented with larger values and found that they yielded comparable size but lower power,
especially for the multiple break and sequential tests. The BIC was computed under the null model for each
test. No qualitative differences were observed if the lag selection was implemented under the alternative
model. The modified information proposed by Cavaliere et al. (2015) yielded no improvement in our setup.

B-1



α = .7, the BP tests are mildly over-sized while the KPZ tests diverge at rate T , hence the
mild size distortions. Similar reasoning explains the slightly higher sizes for the hybrid tests
when T increases, especially when α = .7 and with MA(1) errors.

Finite Sample Power. We consider DGPs with one and two breaks. The results are
reported only for the case ρ = θ = 0 and are briefly summarized for the other cases.
The DGPs in the one break case are DGP-1: yt= αyt−1+zt if t ≤ bTλ0

1c, yt= yt−1+zt
otherwise; DGP-2: yt= yt−1+zt if t ≤ bTλ0

1c, yt−ybTλ01c= α(yt−1−ybTλ01c) + zt, otherwise;
DGP-3: yt= α1yt−1+zt if t ≤ bTλ0

1c, yt= α2yt−1+zt, otherwise. For DGP-1 and DGP-2,
α ∈ {.5, .7} and for DGP-3, α1, α2 ∈ {.2, .9}. We define α = α2 − α1. The break fraction is
λ0

1 = .5. Table B-2 reports the size-adjusted power of the tests. Several features are worth
noting. First, the bootstrap tests are broadly comparable to their asymptotic counterparts,
with neither class of tests uniformly dominating the other. Second, the proposed tests are
generally powerful against the different persistence change alternatives; an exception being
the case of an I(1) regime with high volatility (e.g., DGP-1 with δ = 1/3 and DGP-2 with
δ = 3). This occurs since the process is dominated by the I(1) regime and the tests behave
as with a stable I(1) process. In Table B-3, we show that power improves considerably if the
I(0) regime is longer and/or the volatility shift is less prominent. Third, the proposed tests
have substantial power against I(0)-preserving breaks (DGP-3), a feature that distinguishes
these tests from most existing persistence change tests (e.g., the ratio-based tests) that only
have trivial power against such breaks sinch they are designed to detect changes between
I(1) and I(0) regimes. Hence, using the KPZ tests to control size in the I(1) case causes little
power loss relative to using the BP tests in isolation. Fourth, the hybrid tests are generally
more powerful with deterministic (Models 1 and 2) rather than stochastic volatility (Model
3). With serially correlated errors, the results (Tables B-4 and B-5) are qualitatively similar
except that power is lower for all the tests relative to ρ = θ = 0. With two breaks, the DGPs
are specified as follows:

For t ≤ bTλ0
1c For bTλ0

1c+ 1 ≤ t ≤ bTλ0
2c For t ≥ bTλ0

2c+ 1

DGP-4 yt= yt−1+zt yt−ybTλ01c= α(yt−1−ybTλ01c) + zt yt= yt−1+zt

DGP-5 yt= αyt−1+zt yt= yt−1+zt yt−ybTλ02c= α(yt−1−ybTλ02c) + zt

DGP-6 yt= α1yt−1+zt yt= α2yt−1+zt yt= α1yt−1+zt

The true break fractions are (λ0
1, λ

0
2) = (.3, .8). The results reported in Table B-6 are

broadly similar to the one break case. The effect of underspecifying the number of breaks
can be seen by comparing the power of H∗(1) and H∗(2) for DGPs with two breaks, where
the former is generally less powerful than the latter, though not in all cases. Interestingly,
when the first regime has lower persistence relative to the second, H∗(1) has higher power
than H∗(2) even though the former is based on a misspecified model. However, Hmax∗1 has
adequate power in most cases, often close to that of the most powerful test amongstH∗(1) and
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H∗(2). This highlights the practical advantage of using Hmax∗1 to detect the presence of
at least one break. Tables B-7 and B-8 provide results with serial correlation showing the
results to be qualitatively similar.

Number of Breaks. We assess the adequacy of the sequential algorithm to estimate the
number of breaks with data generated by DGP 0-6. We set A = 2 and η = .10. The
results are in Table B-9, with Pc and Po denoting the probability of correct selection and
over-estimation, respectively. The procedure is generally reliable in the stable case (DGP-0)
or with a single break (DGP 1-3). Its performance deteriorates in the two breaks case when
the probability of underestimation can be non-negligible. For instance, in DGP-5 with an
abrupt increase in volatility (Model 1, δ = 1/3), the breakpoint estimate used to partition
the sample is typically close to the second true breakpoint, so that the first segment includes
an I(0) to I(1) break while the second is I(0). Whether a second break is selected depends
on the power of the single break test in the first segment, which is relatively low (Table
B-2). Similarly, with decreasing volatility, the breakpoint is estimated near the first true
date so that selecting an additional break depends on the power of the single break test
in the I(1)-I(0) case. Results reported in Table B-10 show a notable improvement as the
magnitude of the volatility shift decreases and/or the volatility shift occurs near the second
persistence break in the increasing volatility case and near the first break otherwise. Further
refinement of the algorithm is a potentially interesting topic for future research.

Disentangling Trend and Persistence Shifts. Table B-11 reports the probabilities of
selecting the true model based on the procedure proposed in Section 6 for disentangling
mean shifts and persistence breaks. In addition to DGPs 1-3, a DGP with a pure mean
shift, denoted DGP-0µ, is considered where the data are generated as: yt = (∆µ)I(t >
bTλ0

1c) +αyt−1 + et, where et = σtεt, εt ∼ i.i.d. N(0, 1) and the same three specifications for
σt (Models 1-3) are used. The findings indicate that performance is generally satisfactory
and improves as T increases.
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Notes to Tables

1. Table B-1 reports the empirical size of asymptotic and bootstrap tests with nominal
size 5%. The tests H1, H2, Hmax are the tests of Kejriwal et al. (2013) and the tests
H∗1 , H

∗
2 , H

∗
max are their bootstrap counterparts.

2. Table B-2 reports the size-adjusted power of asymptotic and bootstrap tests with nom-
inal size 5% in the single break case with breakpoint λ0

1 = .5 and serially uncorrelated
errors (ρ = θ = 0).

3. Table B-3 reports the size-adjusted power of 5% bootstrap tests under different change
points and volatility intensity in the single break case with breakpoint λ0

1 = .5 and
serially uncorrelated errors (ρ = θ = 0) with abrupt volatility change (Model 1).

4. Table B-4 reports the size-adjusted power of asymptotic and bootstrap tests with
nominal size 5% in the single break case with breakpoint λ0

1 = .5 and AR(1) errors
(ρ = .5, θ = 0).

5. Table B-5 reports the size-adjusted power of asymptotic and bootstrap tests with
nominal size 5% in the single break case with breakpoint λ0

1 = .5 and MA(1) errors
(ρ = 0, θ = .5).

6. Table B-6 reports the size-adjusted power of asymptotic and bootstrap tests with
nominal size 5% in the two breaks case with breakpoint vector (λ0

1, λ
0
2) = (.3, .8) and

serially uncorrelated errors (ρ = θ = 0).

7. Table B-7 reports the size-adjusted power of asymptotic and bootstrap tests with
nominal size 5% in the two breaks case with breakpoint vector (λ0

1, λ
0
2) = (.3, .8) and

AR(1) errors (ρ = .5, θ = 0).

8. Table B-8 reports the size-adjusted power of asymptotic and bootstrap tests with
nominal size 5% in the two breaks case with breakpoint vector (λ0

1, λ
0
2) = (.3, .8) and

MA(1) errors (ρ = 0, θ = .5).

9. Table B-9 reports the probabilities of selecting the true number of breaks from the
sequential procedure with serially uncorrelated errors (ρ = θ = 0) and level η = .10.

10. Table B-10 reports the probabilities of selecting the true number of breaks from the
sequential procedure under different abrupt volatility break points and intensities in
the two breaks case with breakpoint vector (λ0

1, λ
0
2) = (.3, .8), serially uncorrelated

errors (ρ = θ = 0) and level η = .10.

11. Table B-11 reports the probabilities of selecting the true model based on the procedure
proposed in Section 6 for disentangling mean shifts and persistence breaks.
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Table B-2: Size-adjusted power [m = 1, ρ = θ = 0, λ0
1 = 0.5, 5%]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 1 H1 .97 .03 .84 .16 .96 .08 .35 .61 .04 .51 .04 .68 .04 .08

H2 .60 .03 .17 .15 .36 .04 .08 .16 .05 .12 .05 .14 .03 .04

Hmax .93 .03 .63 .11 .89 .04 .15 .41 .04 .27 .03 .47 .03 .05

H∗1 .97 .04 .84 .28 .95 .26 .53 .61 .04 .46 .06 .65 .10 .22

H∗2 .57 .05 .21 .25 .45 .10 .22 .16 .05 .12 .07 .18 .06 .08

H∗max .91 .05 .67 .23 .89 .19 .38 .43 .04 .30 .05 .48 .08 .13

2 H1 .99 .77 .22 .96 .69 .14 .56 .85 .45 .15 .70 .29 .07 .25

H2 .69 .29 .03 .74 .12 .07 .12 .28 .17 .04 .38 .06 .05 .06

Hmax .98 .68 .06 .94 .37 .08 .28 .73 .37 .05 .66 .11 .05 .10

H∗1 1.0 .77 .30 .94 .76 .32 .71 .85 .41 .21 .62 .39 .18 .42

H∗2 .71 .35 .06 .71 .23 .16 .31 .30 .18 .05 .36 .10 .09 .16

H∗max .98 .69 .10 .93 .53 .24 .58 .74 .35 .07 .57 .17 .13 .29

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 1.0 .05 .86 .69 .99 .18 .65 1.0 .83 .33 .99 .93 .24 .75

H2 .93 .03 .19 .59 .67 .06 .15 .94 .30 .05 .90 .45 .08 .20

Hmax .99 .04 .76 .62 .98 .12 .41 1.0 .79 .11 .98 .81 .16 .53

H∗1 1.0 .06 .76 .69 .96 .31 .71 1.0 .78 .33 .95 .89 .35 .77

H∗2 .88 .04 .23 .60 .71 .15 .41 .93 .32 .06 .82 .59 .18 .46

H∗max .99 .03 .70 .67 .95 .24 .61 1.0 .72 .17 .95 .83 .28 .69

α = 0.5 α = 0.7

400 1 H1 1.0 .07 1.0 .94 1.0 .41 .84 1.0 .07 .96 .24 .99 .13 .49

H2 1.0 .03 .65 .75 .95 .12 .26 .75 .04 .44 .16 .64 .07 .12

Hmax 1.0 .03 1.0 .92 1.0 .27 .63 .99 .05 .88 .20 .97 .08 .24

H∗1 1.0 .07 1.0 .95 1.0 .51 .84 1.0 .05 .95 .33 .99 .31 .62

H∗2 .99 .05 .69 .78 .96 .32 .57 .69 .04 .45 .23 .67 .15 .28

H∗max 1.0 .06 1.0 .93 1.0 .42 .75 .99 .05 .87 .26 .98 .22 .43

2 H1 1.0 1.0 .44 1.0 .99 .45 .91 1.0 .94 .21 1.0 .74 .25 .70

H2 1.0 .74 .05 .99 .49 .14 .34 .84 .57 .04 .93 .14 .10 .17

Hmax 1.0 1.0 .13 1.0 .97 .32 .79 1.0 .90 .06 .99 .45 .17 .40

H∗1 1.0 1.0 .53 1.0 .99 .56 .92 1.0 .93 .31 .99 .78 .40 .78

H∗2 1.0 .78 .06 .99 .67 .39 .67 .83 .59 .05 .91 .24 .23 .41

H∗max 1.0 1.0 .20 1.0 .96 .48 .84 1.0 .90 .11 .99 .54 .29 .64

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 1.0 .39 1.0 1.0 1.0 .45 .95 1.0 1.0 .83 1.0 1.0 .50 .97

H2 1.0 .09 .91 .99 1.0 .20 .62 1.0 .95 .15 1.0 .98 .24 .69

Hmax 1.0 .15 1.0 1.0 1.0 .39 .87 1.0 1.0 .42 1.0 1.0 .43 .94

H∗1 1.0 .45 1.0 1.0 1.0 .54 .93 1.0 1.0 .83 1.0 1.0 .56 .95

H∗2 1.0 .17 .91 .99 1.0 .42 .82 1.0 .92 .24 1.0 .98 .44 .84

H∗max 1.0 .27 1.0 1.0 1.0 .49 .90 1.0 1.0 .57 1.0 1.0 .52 .92
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Table B-3: Size-adjusted power of bootstrap tests under different change points and volatility intensity,
[Model 1, DGP 1, m = 1, ρ = θ = 0, α = 0.5]

T λ01 Test Model 1: δ

1/5 1/3 1/2.5 1/1.5 1/1.1

200 0.2 H∗1 .05 .05 .04 .07 .28

H∗2 .04 .04 .04 .05 .09

H∗max .05 .04 .05 .06 .20

0.3 H∗1 .05 .04 .05 .15 .61

H∗2 .04 .04 .04 .08 .20

H∗max .04 .05 .04 .11 .46

0.5 H∗1 .04 .05 .06 .56 .94

H∗2 .04 .04 .04 .24 .55

H∗max .05 .04 .05 .44 .89

0.6 H∗1 .08 .17 .27 .87 .98

H∗2 .03 .04 .07 .41 .70

H∗max .04 .08 .12 .77 .95

0.7 H∗1 .33 .51 .61 .92 .96

H∗2 .19 .24 .27 .58 .77

H∗max .23 .32 .44 .86 .94

0.9 H∗1 .31 .39 .44 .58 .62

H∗2 .30 .31 .32 .43 .47

H∗max .29 .33 .37 .55 .60

400 0.2 H∗1 .06 .06 .06 .30 .88

H∗2 .05 .05 .05 .08 .38

H∗max .05 .05 .05 .16 .74

0.3 H∗1 .06 .06 .06 .73 1.0

H∗2 .05 .05 .05 .26 .73

H∗max .05 .05 .05 .55 .98

0.5 H∗1 .06 .08 .20 .99 1.0

H∗2 .05 .05 .06 .78 .99

H∗max .05 .05 .10 .97 1.0

0.6 H∗1 .58 .84 .94 1.0 1.0

H∗2 .07 .18 .31 .93 1.0

H∗max .30 .65 .83 1.0 1.0

0.7 H∗1 .96 .99 1.0 1.0 1.0

H∗2 .67 .75 .82 .98 1.0

H∗max .88 .96 .98 1.0 1.0

0.9 H∗1 .84 .88 .90 .93 .93

H∗2 .78 .79 .80 .84 .86

H∗max .80 .84 .87 .93 .93
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Table B-4: Size-adjusted power [m = 1, ρ = 0.5, θ = 0, λ0
1 = 0.5]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 1 H1 .82 .06 .56 .09 .80 .06 .20 .39 .06 .33 .06 .48 .04 .07

H2 .35 .05 .11 .10 .21 .05 .07 .11 .05 .08 .05 .11 .03 .04

Hmax .67 .06 .29 .06 .62 .05 .09 .25 .05 .15 .04 .29 .03 .05

H∗1 .82 .06 .53 .15 .75 .16 .32 .39 .05 .25 .06 .43 .06 .13

H∗2 .30 .05 .10 .17 .26 .10 .16 .10 .05 .07 .08 .11 .06 .08

H∗max .63 .06 .29 .13 .59 .12 .22 .22 .05 .12 .07 .26 .05 .09

2 H1 .95 .40 .22 .81 .50 .10 .38 .74 .26 .17 .51 .26 .06 .21

H2 .45 .16 .04 .49 .10 .07 .10 .21 .11 .05 .28 .05 .05 .06

Hmax .90 .30 .06 .75 .21 .06 .17 .55 .20 .07 .45 .09 .05 .09

H∗1 .96 .41 .24 .75 .49 .24 .53 .70 .21 .18 .43 .28 .15 .33

H∗2 .46 .14 .05 .53 .16 .14 .27 .22 .09 .04 .28 .09 .09 .14

H∗max .89 .32 .08 .75 .29 .15 .40 .53 .16 .06 .42 .13 .10 .21

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 .91 .04 .63 .29 .89 .07 .31 .99 .67 .38 .89 .81 .16 .55

H2 .44 .03 .22 .25 .31 .04 .09 .64 .34 .09 .66 .32 .08 .15

Hmax .78 .03 .53 .21 .81 .05 .15 .97 .62 .20 .88 .61 .11 .30

H∗1 .81 .03 .47 .29 .71 .16 .36 .95 .44 .40 .76 .76 .23 .57

H∗2 .34 .02 .14 .27 .27 .08 .16 .45 .17 .03 .48 .25 .13 .26

H∗max .69 .03 .38 .27 .64 .11 .23 .89 .42 .16 .75 .61 .17 .42

α = 0.5 α = 0.7

400 1 H1 1.0 .07 1.0 .64 1.0 .26 .70 .98 .08 .92 .13 .97 .09 .33

H2 .96 .04 .64 .41 .89 .10 .19 .49 .04 .37 .11 .46 .06 .10

Hmax 1.0 .05 .97 .57 1.0 .19 .42 .93 .05 .75 .11 .90 .07 .15

H∗1 1.0 .08 .99 .71 1.0 .43 .74 .96 .07 .90 .17 .96 .26 .48

H∗2 .91 .05 .63 .44 .89 .27 .45 .46 .05 .38 .15 .48 .14 .20

H∗max 1.0 .06 .97 .63 1.0 .35 .61 .89 .06 .76 .13 .92 .18 .30

2 H1 1.0 1.0 .34 1.0 .94 .34 .84 1.0 .90 .21 .98 .55 .20 .58

H2 .96 .67 .05 .98 .29 .12 .27 .64 .45 .04 .78 .12 .08 .13

Hmax 1.0 .98 .12 1.0 .80 .21 .61 .99 .81 .07 .98 .29 .12 .25

H∗1 1.0 .99 .37 1.0 .92 .50 .87 .99 .87 .25 .97 .62 .34 .68

H∗2 .96 .68 .06 .97 .41 .33 .55 .63 .39 .05 .76 .16 .19 .34

H∗max 1.0 .97 .14 1.0 .83 .41 .76 .98 .77 .09 .96 .37 .25 .52

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 1.0 .15 .99 .99 1.0 .33 .88 1.0 .98 .68 1.0 1.0 .41 .94

H2 1.0 .05 .86 .93 .99 .12 .36 1.0 .92 .17 1.0 .89 .19 .47

Hmax 1.0 .07 .99 .98 1.0 .26 .70 1.0 .98 .38 1.0 1.0 .35 .83

H∗1 1.0 .15 .97 .97 .99 .44 .84 1.0 .95 .72 1.0 1.0 .52 .92

H∗2 .99 .05 .81 .89 .98 .31 .63 .99 .81 .19 .99 .90 .36 .73

H∗max 1.0 .07 .95 .96 .99 .39 .78 1.0 .94 .47 1.0 .99 .45 .87
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Table B-5: Size-adjusted power [m = 1, ρ = 0, θ = 0.5, λ0
1 = 0.5]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 1 H1 .84 .03 .85 .12 .90 .07 .26 .53 .03 .51 .03 .63 .03 .08

H2 .35 .02 .07 .13 .14 .03 .04 .13 .03 .05 .08 .07 .01 .01

Hmax .71 .02 .56 .09 .73 .04 .10 .37 .04 .23 .03 .39 .02 .03

H∗1 .83 .04 .83 .21 .89 .24 .45 .49 .04 .45 .08 .60 .12 .22

H∗2 .34 .04 .12 .20 .31 .09 .20 .11 .04 .07 .08 .10 .05 .09

H∗max .69 .03 .65 .18 .80 .16 .31 .33 .04 .30 .06 .46 .07 .14

2 H1 .93 .75 .15 .87 .48 .08 .40 .74 .44 .14 .58 .23 .05 .21

H2 .47 .12 .02 .47 .10 .04 .06 .23 .07 .03 .25 .05 .04 .04

Hmax .85 .63 .03 .82 .27 .04 .19 .59 .33 .04 .52 .09 .04 .07

H∗1 .91 .77 .19 .86 .56 .28 .58 .66 .41 .12 .53 .29 .16 .34

H∗2 .49 .18 .05 .43 .23 .13 .26 .23 .09 .04 .20 .10 .07 .15

H∗max .84 .66 .09 .83 .41 .20 .47 .56 .33 .05 .49 .19 .10 .24

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 .95 .03 .70 .40 .95 .12 .47 .97 .64 .15 .93 .69 .13 .56

H2 .72 .01 .07 .44 .39 .04 .07 .77 .10 .01 .69 .27 .04 .08

Hmax .90 .02 .60 .35 .90 .07 .25 .94 .57 .04 .91 .48 .08 .30

H∗1 .93 .04 .48 .41 .87 .25 .58 .95 .44 .11 .82 .66 .26 .60

H∗2 .61 .01 .11 .37 .45 .09 .29 .70 .08 .03 .51 .39 .12 .34

H∗max .86 .02 .40 .40 .83 .18 .48 .91 .41 .05 .81 .58 .20 .52

α = 0.5 α = 0.7

400 1 H1 1.0 .05 1.0 .64 1.0 .37 .68 .97 .05 .97 .19 .99 .14 .39

H2 .90 .02 .51 .46 .85 .07 .14 .55 .03 .22 .16 .39 .04 .06

Hmax .99 .03 1.0 .61 1.0 .26 .45 .90 .03 .90 .17 .94 .07 .17

H∗1 1.0 .06 1.0 .69 1.0 .48 .74 .94 .05 .93 .27 .98 .31 .50

H∗2 .84 .04 .61 .54 .84 .27 .41 .44 .05 .25 .20 .47 .14 .20

H∗max .99 .03 1.0 .65 1.0 .41 .62 .88 .03 .86 .23 .94 .22 .35

2 H1 1.0 1.0 .28 1.0 .87 .38 .84 .99 .96 .16 .99 .54 .21 .56

H2 .95 .60 .04 .95 .32 .09 .19 .70 .31 .02 .73 .13 .06 .10

Hmax 1.0 1.0 .08 1.0 .70 .26 .61 .97 .90 .04 .98 .32 .13 .27

H∗1 1.0 1.0 .37 1.0 .90 .54 .85 .98 .92 .21 .98 .59 .36 .66

H∗2 .93 .66 .04 .94 .51 .34 .55 .63 .36 .04 .74 .19 .20 .33

H∗max 1.0 1.0 .13 1.0 .80 .46 .75 .95 .87 .07 .97 .40 .28 .52

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 H1 1.0 .19 .99 .95 1.0 .38 .87 1.0 .99 .49 1.0 .98 .39 .92

H2 1.0 .05 .90 .93 .98 .12 .38 1.0 .89 .06 1.0 .87 .14 .42

Hmax 1.0 .08 .99 .94 1.0 .31 .72 1.0 .99 .17 1.0 .95 .29 .79

H∗1 1.0 .23 .97 .95 1.0 .44 .86 1.0 .95 .47 1.0 .98 .49 .93

H∗2 .99 .10 .82 .92 .98 .34 .67 1.0 .78 .11 .99 .91 .36 .73

H∗max 1.0 .11 .97 .94 1.0 .41 .80 1.0 .95 .23 1.0 .96 .44 .87
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Table B-6: Size-adjusted power [m = 2, ρ = θ = 0, λ0
1 = 0.3, λ0

2 = 0.8]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 4 H1 .38 .12 .43 .14 .38 .05 .13 .27 .02 .26 .07 .24 .04 .07

H2 .96 .69 .59 .91 .81 .14 .34 .73 .24 .25 .51 .37 .06 .12

Hmax .95 .54 .56 .72 .74 .07 .31 .66 .15 .23 .24 .32 .04 .11

H∗1 .36 .11 .42 .16 .44 .13 .20 .25 .03 .25 .07 .29 .08 .12

H∗2 .95 .62 .61 .89 .83 .26 .57 .68 .22 .25 .42 .44 .11 .25

H∗max .94 .51 .58 .73 .77 .21 .51 .63 .12 .24 .22 .40 .09 .21

5 H1 .68 .64 .79 .73 .85 .13 .24 .34 .34 .38 .40 .43 .07 .11

H2 .46 .05 .06 .40 .14 .05 .04 .08 .04 .03 .11 .04 .02 .03

Hmax .53 .51 .47 .65 .63 .09 .11 .15 .23 .13 .34 .24 .05 .06

H∗1 .73 .65 .82 .72 .87 .28 .41 .34 .35 .38 .40 .45 .15 .22

H∗2 .60 .17 .10 .54 .26 .15 .26 .16 .06 .04 .18 .08 .07 .11

H∗max .65 .59 .52 .68 .68 .23 .31 .23 .28 .17 .35 .25 .11 .15

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 .83 .78 .91 .82 .92 .24 .33 .65 .46 .79 .41 .72 .13 .32

H2 .86 .25 .21 .78 .49 .03 .07 .99 .85 .79 .95 .92 .25 .60

Hmax .84 .69 .77 .79 .83 .16 .15 .98 .74 .81 .83 .88 .17 .55

H∗1 .77 .74 .88 .75 .90 .29 .44 .50 .38 .69 .34 .64 .20 .27

H∗2 .85 .40 .26 .76 .58 .20 .38 .95 .65 .62 .85 .83 .27 .64

H∗max .81 .70 .78 .74 .84 .25 .37 .91 .56 .70 .68 .75 .21 .51

α = 0.5 α = 0.7

400 4 H1 .49 .30 .60 .26 .50 .17 .19 .46 .20 .44 .22 .43 .09 .15

H2 1.0 .99 .97 1.0 1.0 .42 .80 .99 .85 .75 .97 .93 .19 .46

Hmax 1.0 .98 .97 1.0 1.0 .35 .77 .98 .75 .74 .89 .91 .13 .39

H∗1 .46 .27 .59 .28 .54 .22 .26 .44 .19 .48 .22 .46 .14 .22

H∗2 1.0 .99 .96 1.0 1.0 .56 .91 .99 .79 .73 .95 .94 .33 .69

H∗max 1.0 .99 .97 1.0 .99 .45 .85 .98 .71 .71 .87 .89 .24 .57

5 H1 1.0 .99 1.0 .99 1.0 .47 .64 .89 .86 .92 .91 .94 .22 .35

H2 .99 .28 .47 .94 .86 .07 .16 .68 .05 .11 .50 .30 .04 .04

Hmax .99 .94 .96 .99 1.0 .34 .33 .76 .64 .67 .86 .84 .14 .15

H∗1 .99 .98 1.0 .99 1.0 .66 .77 .91 .84 .92 .89 .95 .41 .51

H∗2 .98 .51 .49 .95 .82 .44 .52 .70 .13 .14 .58 .34 .22 .27

H∗max .99 .96 .97 .98 .99 .55 .61 .77 .71 .68 .86 .84 .31 .34

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 1.0 1.0 1.0 1.0 1.0 .59 .79 .90 .94 .99 .86 .97 .35 .59

H2 1.0 .82 .91 1.0 1.0 .19 .48 1.0 1.0 1.0 1.0 1.0 .54 .95

Hmax 1.0 .99 1.0 1.0 1.0 .51 .59 1.0 1.0 1.0 1.0 1.0 .47 .93

H∗1 1.0 .99 1.0 1.0 1.0 .70 .84 .79 .88 .96 .73 .91 .46 .60

H∗2 1.0 .89 .88 1.0 .99 .53 .72 1.0 1.0 .98 1.0 1.0 .61 .93

H∗max 1.0 .99 1.0 1.0 1.0 .64 .77 1.0 .98 .98 1.0 .99 .55 .87
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Table B-7: Size-adjusted power [m = 2, ρ = 0.5, θ = 0, λ0
1 = 0.3, λ0

2 = 0.8]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 4 H1 .22 .04 .31 .08 .29 .04 .08 .19 .04 .19 .06 .19 .06 .06

H2 .89 .43 .49 .74 .65 .10 .22 .58 .20 .23 .36 .32 .06 .09

Hmax .85 .31 .45 .46 .58 .07 .19 .51 .12 .21 .15 .28 .06 .08

H∗1 .21 .05 .29 .08 .28 .09 .11 .16 .03 .17 .06 .20 .06 .08

H∗2 .86 .37 .42 .74 .69 .19 .41 .48 .15 .18 .31 .32 .10 .20

H∗max .80 .30 .38 .49 .56 .13 .29 .40 .10 .15 .14 .26 .07 .14

5 H1 .51 .51 .56 .58 .67 .11 .19 .28 .30 .29 .35 .33 .07 .12

H2 .24 .08 .06 .23 .10 .05 .05 .05 .06 .06 .09 .04 .03 .04

Hmax .31 .40 .26 .51 .44 .08 .10 .10 .21 .12 .27 .16 .05 .07

H∗1 .54 .48 .56 .54 .62 .24 .30 .29 .29 .27 .30 .30 .15 .17

H∗2 .26 .12 .08 .34 .14 .15 .20 .10 .07 .05 .14 .06 .07 .10

H∗max .35 .42 .27 .54 .41 .19 .23 .15 .24 .11 .30 .16 .11 .12

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 .68 .68 .67 .71 .72 .18 .25 .36 .07 .62 .07 .51 .07 .14

H2 .45 .19 .06 .43 .18 .04 .05 .93 .47 .69 .76 .80 .15 .35

Hmax .52 .59 .33 .65 .53 .13 .12 .90 .32 .67 .46 .72 .09 .30

H∗1 .50 .52 .53 .53 .60 .21 .26 .21 .03 .45 .05 .40 .11 .11

H∗2 .41 .18 .07 .41 .23 .14 .18 .67 .26 .42 .54 .63 .17 .38

H∗max .41 .48 .34 .53 .46 .16 .18 .63 .17 .44 .33 .53 .12 .22

α = 0.5 α = 0.7

400 4 H1 .33 .14 .42 .14 .35 .12 .13 .33 .08 .36 .14 .32 .07 .10

H2 1.0 .96 .94 1.0 .99 .29 .64 .97 .62 .63 .92 .86 .13 .31

Hmax 1.0 .92 .93 .98 .99 .24 .59 .96 .51 .62 .74 .80 .11 .27

H∗1 .28 .12 .40 .15 .38 .19 .18 .29 .09 .35 .12 .34 .12 .16

H∗2 1.0 .94 .94 1.0 .99 .50 .83 .97 .53 .62 .88 .84 .27 .53

H∗max 1.0 .91 .90 .98 .97 .38 .72 .94 .45 .59 .66 .74 .21 .42

5 H1 .98 .96 .98 .97 .99 .37 .53 .75 .76 .77 .79 .84 .19 .28

H2 .93 .16 .29 .76 .68 .06 .11 .39 .06 .07 .28 .17 .05 .04

Hmax .95 .86 .89 .96 .97 .25 .28 .53 .54 .44 .74 .65 .11 .11

H∗1 .97 .94 .99 .97 1.0 .58 .68 .75 .75 .76 .79 .82 .36 .43

H∗2 .89 .26 .34 .80 .64 .38 .43 .43 .10 .10 .34 .21 .20 .23

H∗max .92 .85 .90 .95 .97 .48 .53 .54 .54 .50 .74 .65 .28 .29

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 1.0 1.0 1.0 .99 1.0 .50 .69 .59 .55 .92 .41 .81 .21 .31

H2 .99 .59 .56 .97 .87 .13 .20 1.0 .98 .99 1.0 1.0 .40 .86

Hmax .99 .98 .97 .99 1.0 .40 .42 1.0 .93 .99 .99 1.0 .33 .80

H∗1 .99 .98 .99 .98 1.0 .63 .75 .38 .43 .83 .27 .68 .31 .31

H∗2 .97 .63 .58 .92 .88 .43 .55 1.0 .92 .95 .99 .99 .52 .86

H∗max .98 .96 .96 .98 .99 .55 .62 1.0 .77 .92 .91 .95 .44 .72
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Table B-8: Size-adjusted power [m = 2, ρ = 0, θ = 0.5, λ0
1 = 0.3, λ0

2 = 0.8]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 α = 0.7

200 4 H1 .40 .15 .38 .15 .37 .05 .13 .34 .06 .23 .11 .24 .03 .08

H2 .89 .47 .36 .77 .60 .09 .24 .63 .18 .16 .46 .28 .05 .09

Hmax .86 .38 .36 .56 .54 .05 .21 .61 .13 .16 .26 .25 .03 .08

H∗1 .40 .14 .39 .18 .46 .13 .20 .27 .06 .23 .09 .27 .07 .13

H∗2 .87 .47 .46 .77 .73 .20 .48 .55 .17 .18 .36 .35 .09 .21

H∗max .86 .36 .42 .65 .69 .15 .38 .51 .11 .18 .23 .33 .06 .16

5 H1 .27 .33 .56 .33 .57 .08 .13 .15 .20 .33 .20 .29 .04 .06

H2 .26 .03 .02 .22 .07 .02 .02 .06 .02 .02 .07 .03 .02 .01

Hmax .25 .22 .28 .27 .31 .04 .05 .08 .12 .11 .15 .11 .03 .02

H∗1 .26 .35 .55 .31 .56 .17 .19 .15 .22 .31 .18 .30 .10 .13

H∗2 .34 .09 .07 .33 .16 .13 .21 .13 .05 .03 .14 .06 .07 .10

H∗max .30 .30 .34 .29 .40 .13 .16 .14 .16 .17 .16 .18 .08 .09

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 .35 .40 .71 .37 .69 .11 .13 .75 .51 .70 .50 .70 .11 .32

H2 .54 .11 .11 .46 .24 .02 .03 .95 .64 .54 .86 .76 .15 .35

Hmax .50 .31 .46 .33 .49 .07 .06 .93 .57 .56 .71 .75 .10 .32

H∗1 .25 .28 .53 .22 .56 .16 .17 .51 .37 .54 .36 .58 .17 .30

H∗2 .54 .16 .16 .40 .29 .11 .26 .80 .38 .39 .61 .53 .17 .45

H∗max .40 .25 .43 .24 .46 .13 .18 .71 .40 .46 .50 .59 .17 .39

α = 0.5 α = 0.7

400 4 H1 .52 .35 .59 .29 .53 .16 .21 .47 .24 .44 .23 .44 .08 .16

H2 1.0 .94 .85 .99 .97 .31 .63 .98 .63 .53 .91 .81 .14 .34

Hmax 1.0 .91 .86 .98 .96 .23 .59 .96 .56 .53 .80 .78 .10 .30

H∗1 .47 .34 .60 .31 .57 .26 .30 .38 .21 .40 .23 .42 .17 .23

H∗2 1.0 .92 .88 .99 .98 .51 .82 .94 .59 .53 .87 .78 .31 .58

H∗max 1.0 .89 .86 .98 .96 .42 .74 .90 .49 .46 .73 .69 .25 .47

5 H1 .77 .80 .95 .80 .95 .37 .37 .53 .57 .79 .62 .77 .20 .21

H2 .85 .09 .24 .68 .54 .04 .07 .42 .02 .05 .28 .15 .03 .03

Hmax .85 .63 .82 .77 .88 .25 .17 .43 .36 .49 .54 .55 .11 .07

H∗1 .71 .82 .93 .82 .94 .52 .46 .46 .59 .76 .58 .76 .33 .30

H∗2 .81 .25 .28 .77 .59 .38 .41 .40 .08 .07 .42 .21 .21 .25

H∗max .81 .68 .81 .80 .87 .47 .41 .42 .42 .47 .55 .59 .27 .22

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

6 H1 .89 .91 .99 .87 .98 .42 .41 .97 .96 .98 .91 .98 .33 .69

H2 .98 .50 .68 .93 .92 .09 .23 1.0 .99 .96 1.0 .99 .42 .84

Hmax .98 .82 .96 .89 .97 .33 .29 1.0 .98 .97 .99 .99 .36 .82

H∗1 .80 .88 .97 .82 .98 .49 .53 .82 .89 .94 .83 .92 .46 .64

H∗2 .98 .63 .68 .95 .93 .42 .57 1.0 .94 .90 .99 .97 .52 .87

H∗max .96 .80 .94 .87 .97 .45 .54 .99 .92 .93 .96 .96 .49 .79
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Table B-9: Break selection probabilities, [ρ = θ = 0, η = .10]

T m λ01/λ
0
1, λ

0
2 DGP α/(α1, α2) Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10

400 0 0 1 Pc .91 .91 .91 .92 .90 .90 .91

Po .09 .09 .09 .08 .10 .10 .10

0.5 Pc .86 .91 .90 .88 .89 .91 .90

Po .14 .09 .10 .12 .11 .10 .10

1 λ01 = 0.5 1 0.5 Pc .90 .07 .91 .82 .89 .39 .68

Po .10 .04 .09 .14 .11 .15 .14

2 0.5 Pc .88 .87 .21 .88 .79 .47 .73

Po .12 .12 .12 .12 .20 .14 .15

3 (0.2, 0.9) Pc .89 .42 .87 .88 .89 .46 .80

Po .11 .08 .13 .12 .11 .13 .13

(0.9, 0.2) Pc .88 .82 .62 .88 .85 .48 .81

Po .12 .18 .14 .12 .15 .13 .12

2 λ01 = 0.3, λ02 = 0.8 4 0.5 Pc .86 .70 .46 .85 .70 .27 .59

Po .10 .17 .16 .11 .13 .11 .14

5 0.5 Pc .83 .07 .08 .39 .28 .18 .36

Po .15 .08 .06 .12 .18 .09 .10

6 (0.2, 0.9) Pc .89 .08 .11 .84 .73 .24 .57

Po .12 .07 .09 .12 .16 .09 .11

(0.9, 0.2) Pc .90 .72 .62 .89 .84 .32 .75

Po .09 .23 .20 .10 .12 .12 .11

600 0 0 1 Pc .89 .88 .89 .89 .89 .88 .89

Po .11 .12 .11 .11 .11 .12 .11

0.5 Pc .87 .89 .88 .88 .88 .91 .89

Po .13 .11 .12 .12 .12 .09 .11

1 λ01 = 0.5 1 0.5 Pc .88 .11 .89 .87 .89 .49 .80

Po .12 .05 .11 .13 .11 .17 .11

2 0.5 Pc .89 .88 .37 .89 .86 .51 .79

Po .11 .12 .21 .11 .14 .17 .15

3 (0.2, 0.9) Pc .85 .71 .84 .85 .85 .56 .86

Po .15 .17 .17 .15 .15 .12 .11

(0.9, 0.2) Pc .83 .82 .75 .86 .82 .55 .85

Po .17 .18 .22 .14 .18 .14 .12

2 λ01 = 0.3, λ02 = 0.8 4 0.5 Pc .86 .76 .64 .86 .78 .34 .69

Po .11 .20 .15 .12 .12 .14 .16

5 0.5 Pc .87 .05 .08 .76 .53 .27 .51

Po .13 .07 .08 .13 .22 .10 .13

6 (0.2, 0.9) Pc .86 .33 .30 .85 .84 .33 .69

Po .14 .12 .13 .15 .16 .11 .13

(0.9, 0.2) Pc .90 .83 .78 .91 .89 .38 .81

Po .10 .17 .18 .09 .11 .14 .13
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Table B-10: Break selection probabilities [Model 1, DGP 5 and 6, m = 2, ρ = θ = 0]

T DGP α/(α1, α2) τ Model 1: δ

1/3 1/2.5 1/1.5 1/1.1 1 1.1 1.5 2.5 3

400 5 0.5 0.2 Pc .47 .54 .76 .83 .84 .84 .84 .63 .44

Po .13 .15 .17 .16 .15 .14 .14 .30 .45

0.3 Pc .11 .11 .62 .83 .84 .85 .80 .50 .35

Po .06 .07 .14 .15 .14 .14 .16 .37 .46

0.5 Pc .07 .06 .66 .84 .84 .82 .66 .08 .08

Po .08 .10 .14 .14 .15 .16 .17 .08 .06

0.8 Pc .68 .77 .87 .86 .84 .80 .61 .18 .15

Po .15 .13 .12 .13 .15 .17 .19 .08 .06

0.9 Pc .89 .88 .87 .85 .84 .83 .78 .69 .66

Po .09 .11 .12 .14 .15 .15 .17 .17 .16

6 (0.2, 0.9) 0.2 Pc .86 .85 .89 .89 .90 .90 .89 .72 .55

Po .12 .14 .11 .11 .11 .10 .11 .27 .42

0.3 Pc .18 .41 .88 .89 .89 .90 .88 .67 .50

Po .07 .09 .11 .11 .11 .10 .12 .29 .40

0.5 Pc .08 .28 .88 .88 .90 .89 .88 .31 .11

Po .07 .09 .12 .12 .10 .11 .11 .12 .09

0.8 Pc .80 .86 .88 .89 .88 .89 .86 .46 .32

Po .14 .12 .12 .11 .12 .11 .12 .12 .08

0.9 Pc .90 .90 .90 .89 .89 .88 .88 .86 .86

Po .09 .10 .10 .11 .11 .12 .12 .13 .13

600 5 0.5 0.2 Pc .78 .80 .85 .86 .87 .87 .88 .74 .58

Po .15 .16 .15 .14 .13 .13 .12 .25 .41

0.3 Pc .09 .12 .83 .86 .87 .87 .88 .71 .54

Po .05 .06 .15 .14 .13 .13 .12 .27 .40

0.5 Pc .05 .07 .86 .88 .86 .85 .83 .13 .07

Po .07 .08 .13 .12 .14 .15 .16 .10 .08

0.8 Pc .82 .86 .87 .87 .86 .86 .76 .25 .18

Po .15 .13 .13 .14 .14 .14 .21 .13 .09

0.9 Pc .88 .89 .88 .86 .87 .87 .85 .81 .81

Po .12 .11 .12 .14 .14 .14 .15 .18 .18

6 (0.2, 0.9) 0.2 Pc .84 .85 .86 .85 .86 .86 .86 .80 .67

Po .16 .15 .15 .15 .14 .14 .14 .20 .33

0.3 Pc .57 .76 .86 .86 .86 .86 .87 .79 .67

Po .12 .15 .14 .14 .14 .14 .13 .21 .32

0.5 Pc .32 .68 .85 .86 .85 .86 .88 .64 .30

Po .11 .15 .15 .14 .15 .14 .12 .14 .13

0.8 Pc .84 .85 .86 .86 .86 .87 .86 .74 .56

Po .16 .16 .14 .14 .14 .14 .14 .15 .12

0.9 Pc .86 .86 .86 .86 .85 .86 .86 .87 .85

Po .14 .14 .14 .14 .15 .14 .14 .14 .15
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Table B-11: Model selection probabilities between pure mean shift and persistence break [η = .10]

T DGP ∆µ/α/α1 , α2 Model 1: δ Model 2: δ Model 3: c

1 1/3 3 1/3 3 0 10

200 0µ ∆µ = 1 .87 .32 .83 .38 .84 .31 .63

∆µ = 3 .86 .84 .86 .88 .84 .48 .77

1 α = 0.5 .97 .05 .94 .35 .98 .33 .62

2 α = 0.5 .98 .94 .26 .99 .68 .42 .78

3 α1 = 0.2, α2 = 0.9 1.00 .12 .93 .89 .99 .47 .86

α1 = 0.9, α2 = 0.2 1.00 .93 .48 .99 .96 .51 .91

400 0µ ∆µ = 1 .87 .62 .87 .74 .89 .48 .82

∆µ = 3 .89 .86 .87 .89 .86 .63 .88

1 α = 0.5 1.00 .06 1.00 .96 1.00 .59 .87

2 α = 0.5 1.00 1.00 .54 1.00 .99 .64 .95

3 α1 = 0.2, α2 = 0.9 1.00 .65 1.00 1.00 1.00 .62 .97

α1 = 0.9, α2 = 0.2 1.00 1.00 .96 1.00 1.00 .61 .99

600 0µ ∆µ = 1 .90 .75 .88 .84 .90 .51 .87

∆µ = 3 .90 .87 .87 .87 .89 .69 .89

1 α = 0.5 1.00 .15 1.00 1.00 1.00 .64 .93

2 α = 0.5 1.00 1.00 .85 1.00 1.00 .70 .98

3 α1 = 0.2, α2 = 0.9 1.00 .99 1.00 1.00 1.00 .70 .98

α1 = 0.9, α2 = 0.2 1.00 1.00 1.00 1.00 1.00 .69 1.00
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Supplement C: Comparison with the Recursive Bootstrap

In order to highlight the advantages of employing the proposed bootstrap schemes A and
B, we now provide a comparison with the fully recursive bootstrap schemes. The recursive
counterpart of scheme A entails replacing step 3 in scheme A with the recursion

y
(1)
t = y

(1)
t−1 +

∑l̆T
j=1 π̆j∆y

(1)
t−j + u

(1)
t ; t = l̆T + 2, ..., T

y
(1)
t = yt; t = 1, ..., l̆T + 1 (C.1)

while the recursive counterpart of scheme B involves replacing step 3 in scheme B with the
recursion

y
(0)
t = c̃+ α̃y

(0)
t−1 +

∑l̃T
j=1 π̃j∆y

(0)
t−j + u

(0)
t ; t = l̆T + 2, ..., T

y
(0)
t = 0; t = 1, ..., l̃T + 1 (C.2)

Since the bootstrap data obtained from (C.1) and (C.2) are serially correlated, conditional
on the original data, the bootstrap statistics will now need to be adjusted by including lagged
first differences in the estimated regression as in the construction of the statistics based on
the original data {yt}. The lag length is again chosen using the BIC. Table C-1 reports
the empirical size and size-adjusted power (only in the single break case, for brevity) of the
recursive bootstrap tests (denoted with a superscript “r”) for ρ = θ = 0. The procedure has
accurate size in general with a tendency to under-reject in some cases. A power comparison
with Table B-2 reveals that the recursive bootstrap tests are generally less powerful than the
hybrid tests for DGP-1 and DGP-2 which contain an I(1) segment, in accordance with the
discussion in Section 5. For DGP-3, the two approaches yield comparable power. The power
gains are even more transparent if one were to a priori rule out the I(1) null hypothesis and
hence apply the BP tests in isolation (see Tables C-2 and C-3). Overall, these findings favor
the use of the proposed scheme over the recursive scheme in terms of its relative ability in
detecting persistence change.
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Table C-1: Size and size-adjusted power of bootstrap recursive tests, [ρ = θ = 0, λ0
1 = 0.5, 5%]

T DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 1 α = 0.5

200 0 Hr
1 .03 .05 .04 .05 .03 .06 .06 .04 .03 .04 .04 .03 .03 .03

Hr
2 .02 .02 .03 .02 .02 .05 .03 .03 .02 .01 .04 .02 .03 .03

Hr
max .02 .04 .02 .05 .02 .05 .04 .04 .02 .02 .04 .02 .03 .03

α = 0.5 α = 0.7

1 Hr
1 .95 .05 .74 .26 .92 .25 .51 .57 .04 .36 .06 .54 .08 .20

Hr
2 .53 .04 .18 .25 .38 .11 .21 .15 .04 .07 .06 .14 .05 .07

Hr
max .89 .04 .59 .21 .84 .17 .37 .41 .04 .22 .05 .42 .07 .11

2 Hr
1 .99 .74 .26 .92 .70 .30 .69 .79 .40 .16 .57 .28 .16 .39

Hr
2 .66 .29 .05 .65 .22 .14 .29 .26 .14 .04 .30 .09 .08 .12

Hr
max .97 .65 .10 .90 .50 .23 .57 .69 .31 .06 .53 .16 .12 .26

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 Hr
1 .99 .08 .82 .74 .97 .34 .72 1.0 .88 .33 .99 .91 .42 .82

Hr
2 .87 .05 .32 .64 .73 .19 .43 .93 .45 .06 .89 .59 .24 .51

Hr
max .99 .04 .77 .69 .97 .30 .64 1.0 .85 .17 .99 .85 .36 .73

α = 1 α = 0.5

400 0 Hr
1 .03 .04 .05 .04 .04 .05 .05 .05 .05 .04 .05 .05 .05 .06

Hr
2 .02 .03 .03 .02 .02 .04 .03 .06 .03 .03 .04 .04 .03 .04

Hr
max .02 .02 .02 .04 .02 .05 .03 .05 .04 .04 .05 .04 .05 .05

α = 0.5 α = 0.7

1 Hr
1 1.0 .07 1.0 .94 1.0 .50 .85 1.0 .06 .91 .31 .98 .31 .61

Hr
2 .99 .03 .72 .77 .95 .30 .59 .68 .03 .42 .22 .60 .14 .28

Hr
max 1.0 .04 1.0 .91 1.0 .41 .76 .98 .03 .83 .23 .96 .22 .42

2 Hr
1 1.0 1.0 .48 1.0 .99 .58 .93 1.0 .92 .25 .99 .74 .39 .78

Hr
2 .99 .77 .06 .99 .65 .39 .68 .82 .54 .05 .88 .22 .22 .40

Hr
max 1.0 1.0 .20 1.0 .96 .50 .85 1.0 .89 .10 .99 .54 .29 .63

α1 = 0.2, α2 = 0.9, α = 0.7 α1 = 0.9, α2 = 0.2, α = −0.7

3 Hr
1 1.0 .47 1.0 1.0 1.0 .55 .94 1.0 1.0 .82 1.0 1.0 .60 .97

Hr
2 1.0 .16 .96 .99 1.0 .46 .85 1.0 .96 .26 1.0 .98 .48 .87

Hr
max 1.0 .30 1.0 1.0 1.0 .52 .92 1.0 1.0 .55 1.0 1.0 .55 .93
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Table C-2: Empirical power of bootstrap recursive and non-recursive G1 tests, [m = 1, θ = 0, λ0
1 = 0.5]

T ρ DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 /α1 = 0.2, α2 = 0.9 α = 0.7/α1 = 0.9, α2 = 0.2

200 0.5 1 Gr1 .89 .20 .60 .42 .82 .37 .62 .57 .16 .31 .23 .48 .27 .37

G∗1 .98 .72 .86 .88 .97 .63 .88 .90 .66 .64 .71 .83 .52 .73

2 Gr1 .94 .50 .43 .76 .66 .44 .72 .68 .26 .35 .45 .42 .32 .51

G∗1 .99 .82 .83 .96 .92 .65 .91 .93 .61 .74 .83 .79 .55 .79

3 Gr1 .90 .14 .63 .56 .83 .37 .65 .98 .60 .59 .87 .88 .49 .82

G∗1 .97 .42 .74 .85 .92 .48 .78 .99 .77 .78 .95 .96 .56 .90

0.8 1 Gr1 .62 .20 .36 .34 .55 .31 .45 .40 .17 .17 .24 .29 .23 .29

G∗1 .94 .74 .80 .81 .90 .61 .79 .83 .70 .62 .71 .77 .53 .67

2 Gr1 .74 .28 .40 .54 .49 .37 .55 .53 .15 .36 .29 .38 .27 .40

G∗1 .96 .75 .82 .91 .86 .62 .85 .91 .55 .78 .77 .77 .54 .76

3 Gr1 .64 .10 .37 .21 .58 .26 .44 .90 .38 .72 .74 .74 .43 .72

G∗1 .87 .38 .57 .60 .82 .43 .63 .96 .65 .84 .92 .88 .56 .83

α = 0.5 /α1 = 0.2, α2 = 0.9 α = 0.7/α1 = 0.9, α2 = 0.2

400 0.5 1 Gr1 1.0 .24 .99 .86 1.0 .57 .86 .97 .16 .89 .40 .96 .42 .70

G∗1 1.0 .81 1.0 .99 1.0 .78 .97 .99 .70 .96 .91 .99 .67 .91

2 Gr1 1.0 .99 .61 1.0 .97 .68 .95 .99 .84 .47 .95 .72 .53 .82

G∗1 1.0 1.0 .95 1.0 1.0 .79 .98 1.0 .95 .87 .99 .95 .71 .94

3 Gr1 1.0 .36 .98 .99 1.0 .58 .95 1.0 .98 .85 1.0 1.0 .64 .97

G∗1 1.0 .75 .99 1.0 1.0 .63 .97 1.0 .99 .94 1.0 1.0 .67 .98

0.8 1 Gr1 .94 .20 .89 .47 .95 .45 .72 .74 .16 .62 .28 .74 .32 .50

G∗1 1.0 .75 .99 .93 1.0 .72 .92 .98 .70 .90 .80 .96 .64 .82

2 Gr1 .99 .83 .48 .96 .74 .53 .81 .90 .51 .41 .76 .53 .42 .65

G∗1 1.0 .98 .88 1.0 .97 .74 .95 .99 .87 .83 .97 .90 .65 .89

3 Gr1 .99 .11 .85 .60 .97 .44 .78 1.0 .84 .76 .98 .93 .54 .89

G∗1 1.0 .36 .93 .91 .99 .53 .85 1.0 .94 .87 .99 .98 .63 .92
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Table C-3: Empirical power of bootstrap recursive and non-recursive G1 tests, [m = 1, ρ = 0, λ0
1 = 0.5]

T θ DGP Test Model 1: δ Model 2: δ Model 3: c Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10 1 1/3 3 1/3 3 0 10

α = 0.5 /α1 = 0.2, α2 = 0.9 α = 0.7/α1 = 0.9, α2 = 0.2

200 0.5 1 Gr1 .92 .32 .84 .63 .91 .45 .75 .76 .28 .53 .44 .68 .33 .56

G∗1 .99 .74 .95 .90 .99 .64 .90 .93 .69 .74 .79 .88 .55 .82

2 Gr1 .95 .89 .46 .93 .70 .54 .82 .77 .62 .38 .72 .50 .41 .64

G∗1 .99 .96 .81 .98 .90 .66 .92 .93 .82 .72 .90 .77 .56 .80

3 Gr1 .97 .32 .79 .80 .95 .45 .80 .99 .78 .37 .96 .81 .45 .87

G∗1 .99 .51 .81 .91 .97 .49 .87 1.0 .78 .55 .97 .92 .50 .90

0.8 1 Gr1 .88 .58 .75 .75 .85 .54 .76 .82 .55 .56 .69 .77 .45 .71

G∗1 .96 .81 .75 .89 .91 .61 .86 .93 .77 .61 .83 .86 .54 .80

2 Gr1 .89 .87 .60 .90 .72 .54 .81 .83 .78 .54 .82 .61 .48 .71

G∗1 .96 .87 .78 .93 .87 .61 .87 .93 .83 .74 .88 .79 .54 .80

3 Gr1 .83 .37 .39 .69 .62 .31 .60 .80 .19 .35 .47 .66 .29 .56

G∗1 .82 .41 .37 .70 .59 .31 .60 .80 .17 .38 .46 .68 .31 .56

α = 0.5 /α1 = 0.2, α2 = 0.9 α = 0.7/α1 = 0.9, α2 = 0.2

400 0.5 1 Gr1 1.0 .34 1.0 .90 1.0 .63 .89 .97 .22 .93 .59 .97 .53 .78

G∗1 1.0 .82 1.0 .99 1.0 .78 .97 1.0 .73 .97 .94 .99 .70 .91

2 Gr1 1.0 1.0 .64 1.0 .96 .71 .97 .99 .95 .49 .99 .77 .60 .86

G∗1 1.0 1.0 .93 1.0 .99 .79 .98 1.0 .97 .85 1.0 .95 .70 .94

3 Gr1 1.0 .62 .99 .99 1.0 .61 .96 1.0 1.0 .75 1.0 .99 .62 .97

G∗1 1.0 .77 .99 1.0 1.0 .64 .97 1.0 1.0 .83 1.0 1.0 .64 .97

0.8 1 Gr1 .98 .53 .98 .83 .99 .67 .89 .94 .50 .91 .71 .96 .61 .83

G∗1 .99 .81 .97 .95 1.0 .74 .95 .98 .77 .91 .87 .98 .69 .89

2 Gr1 .99 .98 .66 1.0 .87 .70 .93 .94 .96 .60 .98 .73 .62 .86

G∗1 1.0 .98 .86 .99 .94 .75 .95 .98 .96 .80 .98 .87 .68 .90

3 Gr1 .99 .60 .82 .96 .96 .48 .85 .99 .68 .58 .95 .95 .47 .85

G∗1 .99 .65 .80 .96 .95 .48 .85 .99 .66 .65 .95 .95 .47 .84
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Supplement D: Additional Empirical Results
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Figure D-1: Nonparametric volatility estimates (% of the total) of OECD inflation rates.
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Figure D-2: Estimated variance profile of OECD inflation rates.
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