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Summary This paper develops a new approach to forecasting a highly persis-
tent time series that employs feasible generalized least squares (FGLS) estimation of
the deterministic components in conjunction with Mallows model averaging. Within a
local-to-unity asymptotic framework, we derive analytical expressions for the asymp-
totic mean squared error and one-step ahead mean squared forecast risk of the proposed
estimator and show that the optimal FGLS weights are different from their ordinary
least squares (OLS) counterparts. We also provide theoretical justification for a gen-
eralized Mallows averaging estimator that incorporates lag order uncertainty in the
construction of the forecast. Monte Carlo simulations demonstrate that the proposed
procedure yields considerably lower finite sample forecast risk relative to OLS aver-
aging. An application to US macroeconomic time series illustrates the efficacy of the
advocated method in practice and finds that both persistence and lag order uncertainty
have important implications for the accuracy of forecasts.
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1. INTRODUCTION

Over the past few decades, a variety of methods has been developed in both the statistics
and econometrics literatures for estimation and inference with highly persistent time
series. Following Chan and Wei (1987) and Phillips (1987), a highly persistent time series
is typically modeled as one with an autoregressive root local to unity (α = 1 + c/T ),
thereby permitting analysis of the stationary (|α| < 1) and the nonstationary (α =
1) cases within a unified asymptotic framework. Local-to-unity limit theory has been
fruitfully employed to develop efficient unit root tests (e.g., Elliott et al., 1996), uniformly
valid confidence intervals in autoregressive models (e.g., Hansen, 1999; Mikusheva, 2007)
and robust inferential methods in predictive regressions (e.g., Phillips, 2014; 2015). The
primary technical difficulty in this modeling framework arises from the fact that the
noncentrality parameter c cannot be consistently estimated.

While a substantial body of work has addressed issues related to estimation and in-
ference, the problem of forecasting a highly persistent time series has received relatively
less attention. The essence of the forecasting problem lies in the bias-variance tradeoff
whereby imposing a unit root reduces estimation uncertainty at the expense of potential
model misspecification while unrestricted estimation can lead to high forecast risk due to
variance inflation. Franses and Kleibergen (1996) apply the restricted and unrestricted
models to the Nelson-Plosser dataset and argue that the restricted model is preferred
in a variety of sample sizes and forecast horizons. Diebold and Kilian (2000) suggest
that unit root pretesting improves forecast accuracy relative to restricted or unrestricted
estimation. Kim (2001, 2003) and Clements and Kim (2007) investigate the impact of
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various bias correction methods on point forecasts and prediction intervals for univariate
autoregressive models and find that bias correction delivers considerable gains in forecast
accuracy for unit root or near-unit root autoregressive models.

Forecast combination, pioneered by the work of Bates and Granger (1969) and Granger
and Ramanathan (1984), provides a useful, practical approach to constructing forecasts
that can effectively capture the bias-variance tradeoff inherent in the individual fore-
casts. In the present context of forecasting a highly persistent time series, Hansen (2010)
suggests combining forecasts from the restricted and unrestricted models with weights
determined by optimizing a Mallows criterion, designed to provide an approximately
unbiased estimator of the in-sample asymptotic mean squared error. Hansen’s (2010)
results strongly caution against using the pretesting method, which exhibits high risk
over a range of persistence levels (values of c), while simulations show his Mallows model
averaging forecast performs well relative to a number of commonly employed methods
and dominates the unrestricted forecast uniformly in terms of finite sample forecast risk.

In the standard stationary framework, the classic result of Grenander and Rosenblatt
(1957) shows that generalized least squares (GLS) and ordinary least squares (OLS)
estimation of the deterministic components are asymptotically equivalent so that no
efficiency gains are available from employing the former, at least in large samples. In
a local-to-unity setup, however, the situation is different. Phillips and Lee (1996) and
Canjels and Watson (1997) document the reduction in asymptotic variance afforded by
GLS estimation while its implications for forecasting are explored in Stock (1996) and
Ng and Vogelsang (2002).

Motivated by these findings, this paper develops a new approach to forecasting a highly
persistent time series that employs feasible generalized least squares (FGLS) estimation
of the deterministic components in conjunction with Mallows model averaging.1 Within
a local-to-unity asymptotic framework, we derive analytical expressions for the in-sample
asymptotic mean squared error (AMSE) and one-step ahead mean squared forecast risk
(MSFE) of the proposed estimator and show that the optimal FGLS weights are different
from their OLS counterparts. We also provide theoretical justification for a generalized
Mallows averaging estimator that incorporates lag order uncertainty in the construction
of the forecast. Specifically, the generalized Mallows criterion follows from an asymptotic
framework where the coefficients of the lagged differences are modeled as local to zero
simultaneously with the largest autoregressive root being modeled as local to unity. Monte
Carlo simulations illustrate that the proposed procedure yields considerably lower finite
sample forecast risk relative to OLS averaging, with the improvements being particularly
pronounced when the model includes a deterministic trend. Finally, a comparative out-
of-sample forecasting exercise applied to US macroeconomic time series demonstrates
the potential of the advocated method and finds that both persistence and lag order
uncertainty have important implications for the accuracy of forecasts.

The remainder of the paper is organized as follows. Section 2 presents the model setup
and FGLS estimation procedures. Section 3 introduces our FGLS Mallows model averag-
ing estimator. Section 4 discusses general Mallow averaging strategies with both OLS and
FGLS estimation. Monte Carlo simulation results and comparisons are provided in sec-
tion 5. Section 6 presents the empirical application and section 7 concludes. The Online
Supplement includes three Appendices. Appendix A contains proofs of the theoretical

1In related work, Liu et al. (2016) propose model averaging based on feasible GLS to account for the
presence of heteroskedastic errors in a standard stationary regression framework.
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results, Appendix B contains detailed Monte Carlo results, and Appendix C contains
additional empirical results.

2. MODEL AND ESTIMATION

We consider an observed time series composed of deterministic and stochastic components
as in Hansen (2010):

yt = mt + ut

mt = β0 + β1t+ ...+ βpt
p

ut = αut−1 + α1∆ut−1 + · · ·+ αk∆ut−k + et

α = 1 +
ac

T
, a = 1− α1 − · · · − αk, c ≤ 0 (2.1)

where p ∈ {0, 1} is the order of the trend component and the stochastic component
ut follows an autoregressive process of order (k + 1) process driven by the innovations
et. The persistence parameter α is modeled as local to unity with c = 0 corresponding
to the unit root case and c < 0 to the stationary case. The true lag order k is assumed
known in this section. Lag order uncertainty will be addressed in section 4. The initial
observations are set at u0, u−1, · · · , u−k = Op(1)2. Our analysis is based on the following
assumptions:

Assumption 2.1. The sequence {et} is a martingale difference sequence with E(et|et−1,
et−2,...) = 0 and E(e2t |et−1, et−2,...) = σ2.

Assumption 2.2. All roots of A(L) = 1−
∑k
i=1 αiL

i lie outside the unit circle.

Assumptions 2.1 and 2.2 are standard and made in Hansen (2010) thereby allowing
comparison with his analysis. We denote the optimal (infeasible) mean squared error
minimizing one-step ahead forecast as yt+1|t. It is the conditional mean µt+1 given the
true parameter values, namely,

µt+1 = mt+1 + α(yt −mt) + α1(∆yt −∆mt) + · · ·+ αk(∆yt−k+1 −∆mt−k+1) (2.2)

While µt+1 is unique, its feasible counterpart is not. Estimation of the conditional
mean is associated with two important sources of uncertainty. The first emanates from
uncertainty regarding the nature of persistence given that the parameter c is unknown
and cannot be consistently estimated. Unrestricted estimation (i.e., simple OLS) avoids
omitted variable bias while restricted (c = 0) regression offers the possibility to achieve
variance reduction. The local-to-unity parameterization ensures that squared model bi-
ases and estimator variances have the same order of magnitude. In order to optimize the
bias-variance tradeoff, Hansen (2010) proposes averaging the unrestricted and restricted
estimators with weights determined according to the Mallows criterion, which is designed
to provide an approximately unbiased estimate of the in-sample AMSE. He derives ana-
lytical expressions for the AMSE and MSFE of unrestricted, restricted, pretest and the
Mallows model averaging (MMA) estimators and finds they are functions only of c, which
facilitates graphical comparisons and provides the evolving patterns of the forecast risk

2The conclusion for the subsequent analysis will not be affected as long as the initial observations are
op(T 1/2).
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of alternative methods with respect to c. His theoretical and numerical results support
the use of the MMA estimator relative to its competitors.

A second source of uncertainty results from estimating the deterministic component
with highly persistent errors. Grenander and Rosenblatt (1957) show that OLS and
GLS estimates of the trend component are asymptotically equivalent in the standard
stationary framework (|α| < 1, α fixed). In the local-to-unity framework, however, Phillips
and Lee (1996) and Canjels and Watson (1997) establish that GLS can be asymptotically
more efficient than OLS with respect to estimation of the trend parameters while Ng and
Vogelsang (2002) provide analytical and simulation evidence comparing OLS with two
different FGLS estimators, namely those based on the Cochrane-Orcutt (CO) and Prais-
Winsten (PW) transformations, and find that FGLS based on the latter transformation
generally dominates the others in terms of forecast accuracy.

Our paper aims to integrate FGLS estimation with Mallows model averaging to inves-
tigate if further improvements in forecasting performance can be achieved in the presence
of the two aforementioned sources of uncertainty. Specifically, we propose an averaging
strategy combining unrestricted and restricted FGLS estimators, whose weights are de-
termined by a Mallows criterion. In what follows, the unrestricted and restricted FGLS
estimates of µt are denoted by µ̂t and µ̃t, respectively. We first state how unrestricted
FGLS estimation works for model (2.1). For brevity, we enumerate the steps only for
p = 1, with obvious modifications in place for p = 0.

Step 1. Estimate by OLS the regression

yt = z′tβ
∗ + αyt−1 + α1∆yt−1 + · · ·+ αk∆yt−k + εt, t = k + 2, k + 3, ..., T (2.3)

where zt = (1, t)′, β∗ = (β∗0 , β
∗
1)′. Denote the estimate of α by α̇.

Step 2. Consider the Prais-Winsten (PW) transformation to quasi-difference yt and
zt: for t = 2, 3, ..., T , y+t = yt − α̇yt−1, z+t = zt − α̇zt−1, with y+1 = y1 and z+1 = z1.

Step 3. Regress quasi-differenced data y+ on z+ to get trend estimates: β̈ = (z+
′
z+)−1(z+

′
y+).

Step 4. Construct detrended data ût = yt− z′tβ̈, regress detrended data on its lags:

ût = αût−1 + α1∆ût−1 + · · ·+ αk∆ût−k + ξt, t = k + 2, ..., T (2.4)

Obtain autoregressive parameter estimates α̈, α̈1, · · · , α̈k.
Step 5. Construct the feasible one-step ahead forecast ŷT+1|T = µ̂T+1 = z′T+1β̈ +

α̈(yT − z′T β̈) + α̈1(∆yT −∆z′T β̈) + · · ·+ α̈k(∆yT−k+1 −∆z′T−k+1β̈).

To obtain the restricted FGLS estimate µ̃t, the procedure is same as that outlined above
except that we impose α = 1 in each step.3 For p = 0, the restricted FGLS estimate is
identical to the restricted OLS estimate in Hansen (2010) while the two are asymptotically
equivalent for p = 1. The difference in finite samples for the latter case arises from the
difference between one-step estimation (Hansen, 2010) and two-step estimation (detrend
first and then estimate the lag parameters separately). The large sample analysis for the
restricted FGLS estimate thus directly follows from Hansen (2010) and is not repeated
here to save space.

To evaluate the quality of the unrestricted FGLS estimator, we derive expressions for
the in-sample AMSE and one-step ahead MSFE as in Hansen (2010). To this end, define

3The procedures were also implemented using the Roy and Fuller (2001) bias correction. The results
were found to be qualitatively similar and hence not reported. They are available upon request.
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c̈ = limT→∞ T (α̈− 1)/a with c̈0 and c̈1 denoting the limits in the p = 0 and p = 1 cases,
respectively. Next, define the stochastic process

Up(c, a, r) =

{
(c̈0 − c)Jc(r)

γ1(1− cr) + (c̈1 − c)P (r)
for p = 0
for p = 1

where γ1[P (.)] is a random variable [stochastic process] depending on a and c. Explicit
expressions for these quantities are provided in Appendix A. We then have the following
result:

Theorem 2.1. Under Assumptions 2.1 and 2.2,

(a) (AMSE) m1(c, a, p, k) = limT→∞
1
σ2

∑T
t=1E(µ̂t−µt)2 = E

[∫ 1

0
Up(c, a, r)

2dr
]

+ k ≡
m1(c, a, p) + k.
(b) limc→−∞m1(c, a, p, k) = 1 + p+ k.
(c) (MSFE) f1(c, a, p, k) = limT→∞

T
σ2E(µ̂T+1 − µT+1)2 = E

[
Up(c, a, 1)2

]
+ k.

Remark 2.1. Hansen (2010, Theorem 1) shows that the in-sample AMSE of the uncon-
strained OLS estimate is 2 + p + k, while our result shows that in the FGLS case, the
in-sample AMSE is only 1 + p+ k. This reduction reflects the fact that FGLS effectively
eliminates the uncertainty about the unknown mean. This result thus directly quantifies
the improvement from FGLS forecasting in local-to-unity models. Moreover, Theorem 2.1
extends Ng and Vogelsang’s (2002) asymptotic analysis to models with more than one
autoregressive lag.

Remark 2.2. The random process Up(c, a, .) not only depends on c but also on a (for p =
1). This is different from the OLS case, where the in-sample AMSE of the deterministic
component and the AR(1) component are independent of the short-run dynamics. Thus
m1(c, a, p) depends on a for fixed c but becomes independent of a as c→ −∞.

With the restricted and unrestricted FGLS estimators in place, the GLS averaging
estimator for a given weight vector [w, 1− w], w ∈ [0, 1] is defined as

µ̂t(w) = wµ̂t + (1− w)µ̃t

Define the stochastic process Vp(c, .) as

Vp(c, r) =

{
−cJc(r)

−cJ̄c(r) +W (1)
for p = 0
for p = 1

with the associated quantitiesm0(c, p) = E
[∫ 1

0
Vp(c, r)

2dr
]
, m01(c, a, p) = E

[∫ 1

0
Up(c, a, r)Vp(c, r)dr

]
,

f1(c, a, p) = E[Up(c, a, 1)
2
], f0(c, p) = E[Vp(c, 1)2], f01(c, a, p) = E[Up(c, a, 1)Vp(c, 1)].

The in-sample AMSE and MSFE of the averaging estimator are given in the following
corollary:

Corollary 2.1. (a) mw(c, a, p, k) = limT→∞
1
σ2

∑T
t=1E[µ̂t(w)−µt]2 = w2m1(c, a, p)+

(1− w)2m0(c, p) + 2w(1− w)m01(c, a, p) + k.
(b) fw(c, a, p, k) = limT→∞

T
σ2E(µ̂T+1(w) − µT+1)2 = w2f1(c, a, p) + (1 − w)2f0(c, p) +

2w(1− w)f01(c, a, p) + k.
(c) limc→0m01(c, a, p) = p.
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As an alternative strategy, one can perform a pretest to choose between the restricted
and unrestricted forecasts. Stock (1996) and Diebold and Kilian (2000) show that pretest-
ing is useful for selection of forecasting models while Hansen’s (2010) analysis cautions
against pretesting due to high finite sample forecast risk for an intermediate range of the
parameter (c) space. In the GLS framework, we adopt the Dickey-Fuller GLS (DFGLS)
t-test proposed by Elliott et al. (1996) with the lag length selected using the modified
Akaike Information Criterion (MAIC) proposed by Ng and Perron (2001). We denote
the pretest estimator µ̂ptt = µ̂t1(DFGLS ≤ cvp) + µ̃t1(DFGLS > cvp). The critical values
cvp for p = 0, 1 are -1.98 and -2.91, respectively. Elliott et al. (1996) show that

DFGLS →

{
DFGLS0 = 1

2 (Jc(1)2 − 1)/(
∫ 1

0
Jc(r)

2dr)1/2

DFGLS1 = 1
2 (Vc(1, c̄)

2 − 1)/(
∫ 1

0
Vc(r, c̄)

2dr)1/2
if p = 0
if p = 1

where

Vc(r, c̄) = Jc(r)− r[λJc(1) + 3(1− λ)

∫ 1

0

sJc(s)ds]

λ = (1− c̄)/(1− c̄+ c̄2/3), c̄ = −7[1(p = 0)]− 13.5[1(p = 1)]

The in-sample AMSE and one-step MSFE of the DFGLS pretest estimator is summarized
in the following corollary:

Corollary 2.2. (a) mpt(c, a, p, k) = limT→∞
1
σ2

∑T
t=1E(µ̂ptt −µt)2 = E

[∫ 1

0
Up(c, a, r)

2drI(DFGLSp ≤ cvp)
]

+E
[∫ 1

0
Vp(c, r)

2drI(DFGLSp > cvp)
]

+ k.

(b) fpt(c, a, p, k) = limT→∞
T
σ2E(µ̂ptT+1 − µT+1)2 = E

[
Up(c, a, 1)2I(DFGLSp ≤ cvp)

]
+

E
[
Vp(c, 1)2I(DFGLSp > cvp)

]
+ k.

Figure 1 presents the in-sample AMSE and MSFE of various OLS/GLS estimators
for p = 1.4 These include the FGLS pretest estimator (Pretest-GLS), unrestricted FGLS
estimator (Unres-GLS), FGLS Mallows averaging estimator (GLS-Ave) and GLS optimal
(infeasible) averaging estimator (GLS-Ave-Opt), as well as their OLS counterparts with
corresponding labeling. It is clear that for each type of estimator (unrestricted, pretest,
averaging), FGLS performs better than its OLS counterpart in terms of both in-sample
AMSE and MSFE, except for the pretest estimator at values of c close to 0, where OLS
and FGLS are comparable to each other. The relative performance among different FGLS
estimators is similar to that of the OLS estimators as analysed in Hansen (2010). Further,
while pretesting continues to incur high risk even when employing the more efficient unit
root test, FGLS averaging leads to uniformly lower risk compared to OLS averaging.
Finally, the ranking of the estimators is invariant to whether evaluation is according to
AMSE or MSFE. Similar results were obtained for p = 0 although the improvements
from using FGLS are more discernible for p = 1.

4These plots are computed on a grid of 101 evenly-spaced points from −20 to 0 for an AR(1) model
(a = 1). We approximate the limiting distributions by simulating the random variables/processes using
T = 1000. The number of replications is 500,000.
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Figure 1: In-sample AMSE/MSFE of OLS and GLS estimators, p = 1

3. FGLS MALLOWS AVERAGING

The Mallows (1973) criterion was originally designed as an information criterion for the
purpose of model selection which provides an unbiased estimate of the in-sample AMSE.
The seminal work of Hansen (2007, 2008) has spawned a vast literature that employs
Mallows model averaging for estimation and forecasting. The Mallows criteria for the
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unrestricted and restricted models based on the FGLS estimates are as follows:

M0(c, a, p, k) = T σ̃2 + 2σ̂2(m01(c, a, p) + k) (3.1)

M1(c, a, p, k) = T σ̂2 + 2σ̂2(m1(c, a, p) + k) (3.2)

where σ̂2 and σ̃2 are, respectively, the estimates of σ2 from the unrestricted and re-
stricted models, i.e., σ̂2 = T−1

∑T
t=1(yt − µ̂t)2, σ̃2 = T−1

∑T
t=1(yt − µ̃t)2.

As in Hansen (2010), the dependence of M0 and M1 on the unknown parameter c make
them infeasible in practice. Moreover, unlike OLS, the expressions in the FGLS case are
now complicated by dependence on the short-run dynamics through the parameter a.
We suggest obtaining feasible rules by taking limits of these expressions. In particular,
we have

M0 = T σ̃2 + 2σ̂2(lim
c→0

m01(c, a, p) + k)

M1 = T σ̂2 + 2σ̂2( lim
c→−∞

m1(c, a, p) + k).

Fortunately, from Theorem 2.1 and Corollary 2.1, we can obtain specific values for
these criteria that are independent of a. Specifically, using limc→0m01(c, a, p) = p and
limc→−∞m1(c, a, p) = 1 + p, we have

M0 = T σ̃2 + 2σ̂2(p+ k) (3.3)

M1 = T σ̂2 + 2σ̂2(1 + p+ k) (3.4)

A Mallows selection estimator is then easily obtained as the rule of picking the unre-

stricted model when FT = T ( σ̃
2−σ̂2

σ̂2 ) ≥ 2. The following result shows that the criteria
M0(c, a, p, k) and M1(c, a, p, k) are asymptotically unbiased estimates of the AMSE after
normalization and evaluating the quantities at the limits of c.

Theorem 3.1. Under Assumptions 2.1 and 2.2,

lim
c→0

lim
T→∞

EM0(c, a, p, k)

σ2
− T = lim

c→0
m0(c, p) + k

lim
c→−∞

lim
T→∞

EM1(c, a, p, k)

σ2
− T = lim

c→−∞
m1(c, a, p) + k

For a given weight vector [w, 1−w], we construct the Mallows criterion for the averaging
estimator as

Mw(c) = T σ̂2(w) + 2σ̂2[w{m1(c, a, p) + k}+ (1− w){m01(c, a, p) + k}]

, where σ̂2(w) = T−1
∑T
t=1[yt − µ̂t(w)]2. The feasible version of this criterion, using the

previous results, is

Mw = T σ̂2(w) + 2σ̂2(w + p+ k) (3.5)

The Mallows selected weight ŵ is derived from minimizing (3.5) over w ∈ [0, 1]. The
solution is

ŵ =

{
1− 1/FT

0
if FT > 1
otherwise

The Mallows averaging estimator is then defined as



Generalised Forecast Averaging 9

µ̂at = ŵµ̂t + (1− ŵ)µ̃t =

{
µ̃t

(1− 1
FT

)µ̂t + 1
FT
µ̃t

if FT ≤ 1
otherwise

(3.6)

4. GENERAL MALLOWS AVERAGING [GMA]

The foregoing analysis assumes that the true lag order k is known. In practice, lag
order uncertainty needs to be addressed since omitting relevant lags will contribute to
misspecification bias while including too many lags would lead to variance inflation.
The traditional approach has been to employ model selection rules such as standard
information criteria to choose the number of lags. Hansen (2010) proposes an alternative
approach that averages over different lag orders in addition to averaging over the unit root
restriction. In section 4.1, we first provide theoretical justification for Hansen’s general
Mallows averaging (GMA) criterion that incorporates both lag order uncertainty and
persistence uncertainty. The analysis is subsequently extended to the FGLS setting in
section 4.2.

4.1. GMA for OLS

To obtain Hansen’s (2010) GMA criterion, we adopt a local asymptotic framework which
models the coefficients of the short-run dynamics in a O(T−1/2)-neighborhood around
zero in addition to the O(T−1) local-to-unity parameterization for the persistence pa-
rameter α, i.e., αi = δi√

T
for i = 1, ..., k where δ = (δ1, ..., δk)

′
is fixed and independent

of T . This particular rate ensures that the squared bias from omitting relevant lags is of
the same order as the variance from estimating additional lags. In contrast, a fixed spec-
ification for the lagged coefficients would imply that the misspecification bias diverges
to infinity with the sample size. The use of local asymptotic analysis in the frequentist
model averaging literature was pioneered by Hjort and Claeskens (2003).

We consider restricted regression (setting c = 0) and unrestricted regression, each
with l lags. We include sub-models with l ∈ {0, 1, ...,K}, K ≥ k, with the corresponding
unrestricted and restricted estimates denoted by µ̆t(l) and µ̃t(l), respectively.5 This gives
a total of 2(K + 1) sub-models. We first analyse the unrestricted regression with l lags:

yt = z′tβ
∗ + αyt−1 + α1∆yt−1 + · · ·+ αl∆yt−l + εt, t = l + 2, ..., T (4.1)

The feasible forecast is µ̆t(l) = z′tβ̆
∗ + ᾰyt−1 + ᾰ1∆yt−1 + · · · + ᾰl∆yt−l. Define the

quantities

mols
0K(c, δ, p, l) = lim

T→∞

1

σ2

T∑
t=1

E(µ̃t(l)− µt)(µ̆t(K)− µt)

mols
1K(c, δ, p, l) = lim

T→∞

1

σ2

T∑
t=1

E(µ̆t(l)− µt)(µ̆t(K)− µt)

The Mallows criteria for restricted and unrestricted OLS estimators are constructed

5We use the notation µ̃t to denote both restricted OLS and restricted FGLS estimation, although it
must be borne in mind that they are equivalent in finite samples only for p = 0, while the equivalence
holds asymptotically for p = 1.
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as

Mols
0 (c, δ, p, l) = T σ̃2

l + 2σ̆2
Km

ols
0K(c, δ, p, l)

Mols
1 (c, δ, p, l) = T σ̆2

l + 2σ̆2
Km

ols
1K(c, δ, p, l)

where σ̆2
j = T−1

T∑
t=1

(yt − µ̆t(j))2, j = l,K and σ̃2
l = T−1

T∑
t=1

(yt − µ̃t(l))2. The follow-

ing theorem establishes that the criteria Mols
0 and Mols

1 are asymptotically unbiased
estimates of the AMSE after normalization:

Theorem 4.1. Let mols
0 (c, δ, p, l) = lim

T→∞
1
σ2

T∑
t=1

E(µ̃t(l)−µt)2, mols
1 (c, δ, p, l) = lim

T→∞
1
σ2

T∑
t=1

E(µ̆t(l)−

µt)
2. Then we have, under Assumptions 2.1 and 2.2,

EMols
0 (c, δ, p, l)

σ2
− T →mols

0 (c, δ, p, l)

EMols
1 (c, δ, p, l)

σ2
− T →mols

1 (c, δ, p, l)

As shown in the proof of Theorem 4.1, the quantities mols
0K and mols

1K are infeasible as
they depend on c. To obtain their feasible versions, we evaluate them at the limits of c
which gives us the following result:

Theorem 4.2. Under Assumptions 2.1 and 2.2,

lim
c→0

mols
0K(c, δ, p, l) = p+ l

lim
c→−∞

mols
1K(c, δ, p, l) = 2 + p+ l

The feasible Mallows criteria are then obtained as

Mols
0 (p, l) = T σ̃2

l + 2σ̆2
K(p+ l)

Mols
1 (p, l) = T σ̆2

l + 2σ̆2
K(2 + p+ l)

Now, the averaging estimator over all 2(K + 1) sub-models can be constructed as

µ̆at (w) =

K∑
l=0

(w0lµ̆t(l) + w1lµ̃t(l)) (4.2)

where the weights are non-negative and sum to one: w1l ≥ 0, w0l ≥ 0,
∑K
l=0(w0l +w1l) =

1. Hence the feasible Mallows averaging criterion is obtained as

Mols
w (p,K) = T σ̆2(w) + 2σ̆2

K(

K∑
l=0

[w0ll + w1l(2 + l)] + p)

where σ̆2(w) = T−1
∑T
t=1(yt − µ̆at (w))2.

4.2. GMA for FGLS

We now develop the asymptotics of GMA for FGLS. Let the unrestricted FGLS estimate
from the sub-model with l lags be denoted µ̂t(l), l ∈ {0, 1, ...,K}. Our goal is to combine
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the estimates µ̃t(l) with µ̂t(l) for each l and average over all the sub-models. The proce-
dure for unrestricted FGLS estimation with l lags is exactly the same as that outlined
in section 2. Analogous to the OLS case, define the quantities

mgls
0K(c, a, δ, p, l) = lim

T→∞

1

σ2

T∑
t=1

E(µ̃t(l)− µt)(µ̂t(K)− µt)

mgls
1K(c, a, δ, p, l) = lim

T→∞

1

σ2

T∑
t=1

E(µ̂t(l)− µt)(µ̂t(K)− µt)

The Mallows criteria based on FGLS estimation are constructed as

Mgls
0 (c, a, δ, p, l) = T σ̃2

l + 2σ̂2
Km

gls
0K(c, a, δ, p, l)

Mgls
1 (c, a, δ, p, l) = T σ̂2

l + 2σ̂2
Km

gls
1K(c, a, δ, p, l)

where σ̂2
j = T−1

T∑
t=1

(yt − µ̂t(j))2, j = l,K. The asymptotic unbiasedness of Mgls
0 and

Mgls
1 for the AMSE are established in the following result:

Theorem 4.3. Let mgls
0 (c, a, δ, p, l) = lim

T→∞
1
σ2

T∑
t=1

E(µ̃t(l)−µt)2 = mols
0 (c, δ, p, l), mgls

1 (c, a, δ, p, l) =

lim
T→∞

1
σ2

T∑
t=1

E(µ̂t(l)− µt)2. Then we have, under Assumptions 2.1 and 2.2,

lim
c→0

lim
T→∞

EMgls
0 (c, a, δ, p, l)

σ2
− T = lim

c→0
mgls

0 (c, a, δ, p, l)

lim
c→−∞

lim
T→∞

EMgls
1 (c, a, δ, p, l)

σ2
− T = lim

c→−∞
mgls

1 (c, a, δ, p, l)

The feasible versions of mgls
0K and mgls

1K are obtained from their respective limits:

Theorem 4.4. Under Assumptions 2.1 and 2.2,

lim
c→0

mgls
0K(c, a, δ, p, l) = p+ l

lim
c→−∞

mgls
1K(c, a, δ, p, l) = 1 + p+ l

The feasible Mallows criteria are then obtained as

Mgls
0 (p, l) = T σ̃2

l + 2σ̂2
K(p+ l)

Mgls
1 (p, l) = T σ̂2

l + 2σ̂2
K(1 + p+ l)

The averaging estimator µ̂at (w) over all 2(K + 1) sub-models is constructed in the same
way as in (4.2) except that µ̂(l) replaces µ̆(l). Hence the feasible Mallows averaging
criterion is obtained as

Mgls
w (p,K) = T σ̂2(w) + 2σ̂2

K(

K∑
l=0

[w0ll + w1l(1 + l)] + p)

where σ̂2(w) = T−1
∑T
t=1(yt − µ̂at (w))2.
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5. MONTE CARLO SIMULATIONS

This section reports the results of a set of Monte Carlo experiments to assess the adequacy
of the asymptotic approximations in finite samples and evaluate the effectiveness of the
proposed approach relative to existing methods. To facilitate a direct comparison, we
adopt the same design as Hansen (2010). In particular, the sample size T ∈ {50, 200},
the innovations et

i.i.d∼ N(0, 1), the trend parameters are set at β0 = β1 = 0 and the
true lag order k ∈ {0, 4, 8}. Two data generating processes (DGPs) are considered. The
first DGP sets α1 = · · · = αk = 0 in (2.1) while the second DGP sets αj = −(−θ)j for
j = 1, ..., k and θ = 0.6. Results are obtained for p ∈ {0, 1}. To save space, we present the
results only for the second DGP and for p = 1. Qualitatively similar results were found
for the first DGP and for p = 0, although the improvements offered by the proposed
procedure are more pronounced for p = 1 than p = 0. The full set of results is available
in Online Appendix B.

5.1. Forecast Risk with Known Lag Order

We first assume knowledge of the true order k which enables us to delineate the effect
of persistence uncertainty on the forecasts. The parameter c varies from -20 to 0, which
implies a range for α of [0.6, 1] for T = 50 and a range of [0.9, 1] for T = 200. For each
parameter configuration, the finite sample forecast risk TE[(µ̂T+1−µT+1)2] is calculated
for six estimators: unrestricted FGLS estimator, DFGLS pretest estimator and FGLS
Mallows averaging estimator together with their three OLS counterparts. The risk is
calculated using 500,000 Monte Carlo replications.

Figure 2 presents the results for p = 1. It is clear that FGLS incurs lower risk than
OLS for all three types of estimators: unrestricted, pretest and averaging. This suggests
that the efficiency gain of using FGLS not only lies in the unrestricted case, but is more
broadly applicable to the pretesting and averaging schemes. Moreover, as in the OLS case
illustrated by Hansen (2010), the FGLS pretest estimator exhibits high risk and the FGLS
Mallows averaging estimator uniformly dominates the unrestricted FGLS estimator. In
terms of comparison with OLS model averaging, the risk of the proposed estimator is
uniformly smaller.6 Overall, our FGLS Mallows averaging estimator performs well and
displays lowest risk among all estimators for c < −3 when p = 1.

5.2. Forecast Risk with Unknown Lag Order

We next consider the situation where the number of autoregressive lags k is unknown.
Three types of estimators are compared: (1) the Mallows selection estimator (denoted
S-OLS/FGLS), which selects unrestricted models from AR(1) through AR(K + 1), i.e.,
µ̂t(0) through µ̂t(K); (2) the Mallows averaging estimator (denoted PA-OLS/FGLS, PA
abbreviating partial averaging) that averages over this set of unrestricted models; (3) the
general averaging estimator (denoted GA-OLS/FGLS) which combines all models from
{µ̂t(l)} and {µ̃t(l)} for l ∈ {0, 1, ...,K}.

Figure 3 present the results for the six forecast methods when p = 1. All three types
of FGLS estimators uniformly dominate their OLS counterparts. The risk reduction is

6However, this is only observed in simulations; to have a concrete judgment, one might follow Zhang, Ul-
lah and Zhao (2016) to derive sufficient conditions which involves sample size, the number of parameters
and possibly the persistence parameter.
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Figure 2: Forecast risk of OLS averaging and GLS averaging, p = 1

substantial. Overall, FGLS general averaging achieves uniformly lowest risk among all
averaging/selection strategies when p = 1. The results are very similar across all K and
T . Finally, a comparison of figures 1 and 2 indicates that the payoff from using FGLS
averaging relative to unrestricted FGLS is more prominent when the lag length is treated
as unknown.
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Figure 3: Forecast risk of General OLS averaging and General GLS averaging, p = 1

6. EMPIRICAL APPLICATION

This section undertakes a pseudo out-of-sample forecasting exercise using a set of US
macroeconomic time series to (i) evaluate the performance of the proposed approach
relative to OLS-based methods; (ii) assess the relative contribution of persistence uncer-
tainty and lag order uncertainty in determining the accuracy of forecasts. We employ
the FRED-MD dataset compiled by McCracken and Ng (2016) and maintained/updated
at the Federal Reserve Bank of St. Louis. Our analysis is based on 123 monthly time
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series over the period 1960:02-2018:12.7 McCracken and Ng (2016) provide a set of seven
codes in order to transform the series to stationarity: (1) no transformation; (2) ∆yt; (3)
∆2yt; (4) log(yt); (5) ∆log(yt); (6) ∆2log(yt); (7) ∆(yt/yt−1−1). In order to ensure that
the series fit our framework that allows for highly persistent time series with/without
deterministic trends, we adopt the following modified codes: (1’) no transformation; (2’)
yt; (3’) ∆yt; (4’) log(yt); (5’) log(yt); (6’) ∆log(yt); (7’) (yt/yt−1 − 1). For codes (1’)
and (4’), we use the forecasts from the model with no deterministic trend (p = 0) while
for the remainder, we use the forecasts that allow for a deterministic trend (p = 1). In
addition to analyzing the full set of time series, we also report results for eight core series
as in Stock and Watson (2002a).

The out-of sample results are based on a rolling window scheme with an initial esti-
mation period 1960:02-1969:12 (119 observations) so that the forecast evaluation period
is 1970:01-2018:12 (588 observations). We compare eight different methods in terms of
MSFE: (1) S-GLS: unconstrained FGLS with lag selection using the Mallows criterion;
(2) PA-GLS: partial FGLS Mallows averaging over the number of lags only; (3) GA-GLS:
general FGLS Mallows averaging over the unit root restriction and the number of lags;
(4) PT-GLS: the pretest GLS estimator based on the Dickey-Fuller GLS t-statistic with
lag selection using the MAIC criterion of Ng and Perron (2001); (5)-(8): S-OLS, PA-OLS,
GA-OLS, PT-OLS: the OLS counterparts of methods (1)-(4). The maximum number of
allowable lags in each method is set at K = 12.

Table 1 reports the percentage wins and losses based on MSFE for the 123 series, both
pairwise and overall. In particular, it shows the percentage of the 123 series for which a
method listed in a row outperforms a method listed in a column, as well as all methods
(last column).8 The results clearly illustrate the overall superior performance of the GLS-
based methods which dominate their OLS versions in about 74% of the series. The GA-
GLS estimator delivers the most accurate forecasts for the majority (about 53%) of the
series, consistent with our theoretical and simulation results. The pairwise comparisons
reveal some interesting patterns. First, comparing GA-GLS with PA-GLS (or GA-OLS
with PA-OLS) indicates that accounting for persistence uncertainty by averaging over
the unit root restriction results in considerable forecasting gains compared to using the
unconstrained FGLS estimator. Second, comparing PA-GLS to S-GLS (or PA-OLS with
S-OLS) shows that accounting for lag order uncertainty by averaging over the number
of lags in contrast to lag selection using an information criterion delivers more accurate
forecasts in more than 95% of the series. Third, comparing GA-GLS with GA-OLS (or
PA-GLS with PA-OLS) suggests that trend estimation by FGLS relative to OLS offers
a substantial improvement in forecasting performance. Fourth, in more than 90% of the
series, the best forecasting method involves some kind of averaging, whether over the
unit root restriction or the number of lags or both.

To further understand the performance of the different methods for various types of
series, Figures 4 and 5 plot the MSFE according to the eight groups defined in McCracken

7As of 2018:12, the dataset consisted of 128 raw series of which 5 series had at least 30 observations
missing and were dropped from the analysis. These are: (1) VXOCLSx (CBOE S&P 100 Volatility
Index); (2) ACOGNOx (Real Value of Manufacturers’ New Orders Consumer Goods Industries deflated
by Core PCE); (3) ANDENOx (Real Value of Manufacturers’ New Orders for Capital Goods: Nondefense
Capital Goods Industries deflated by Core PCE); (4) UMCSENTx (University of Michigan: Consumer
Sentiment); (5) TWEXMMTH (Trade Weighted U.S. Dollar Index: Major Currencies).
8The results for a large number of series can be succinctly summarized in this way as in Boot and

Nibbering (2019).
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Table 1: Percentage wins/losses of different forecasting methods

Method S-GLS PA-GLS GA-GLS PT-GLS S-OLS PA-OLS GA-OLS PT-OLS ALL
S-GLS 3.25 4.88 45.53 80.49 27.64 18.70 43.90 2.44
PA-GLS 96.75 21.14 83.74 95.12 85.37 52.03 81.30 13.01
GA-GLS 95.12 78.86 93.50 100.00 92.68 73.98 93.50 53.66
PT-GLS 54.47 16.26 6.50 77.24 42.28 21.95 50.41 4.88
S-OLS 19.51 4.88 0.00 22.76 4.88 0.81 23.58 0.00
PA-OLS 72.36 14.63 7.32 57.72 95.12 6.50 59.35 0.81
GA-OLS 81.30 47.97 26.02 78.05 99.19 93.50 78.05 23.58
PT-OLS 56.10 18.70 6.50 49.59 76.42 40.65 21.95 1.63

Note: this table shows the percentage of the 123 series for which a method listed in a row outperforms
a method in a column, include the other all in the last column.

and Ng (2016): (1) output and income; (2) labor market; (3) housing; (4) consumption,
orders, and inventories; (5) money and credits; (6) interest and exchange rates; (7) prices;
(8) stock market. Figure 4 shows that most of the improvements offered by FGLS relative
to OLS are concentrated in groups 2,4,6,7. The top panel of Figure 5 compares GA-GLS
to PA-GLS to identify those groups most sensitive to the unit root restriction. The plot
indicates that the advantage of the former over the latter is discernible primarily for the
series in groups 1,2,7,8. The bottom panel of Figure 5 compares PA-GLS with S-GLS
in an attempt to uncover the types of series most susceptible to lag order uncertainty.
Averaging over the number of lags as opposed to lag selection is found to be the dominant
approach mainly for all series in group 8, 85% of the series in group 7 and 57% of the series
in group 4 with improvements in at least some series in each of the other groups. Our
analysis therefore suggests that addressing both sources of uncertainty through model
averaging can be helpful in generating reliable forecasts.

Finally, we consider the relative predictive ability of the methods with respect to the
eight core series analysed in Stock and Watson (2002a): four real variables (industrial
production, real personal income less transfers, real manufacturing and trade sales, num-
ber of employees on nonagricultural payrolls) and four price indices (the consumer price
index, the personal consumption expenditure implicit price deflator, the consumer price
index less food and energy, the producer price index for finished goods). Table 2 reports
the MSFE of the eight different methods relative to that of the OLS estimator using
twelve autoregressive lags of the first differences of the variable. Hence, a number less
than one indicates a lower MSFE relative to the OLS benchmark and vice-versa. The
best method for a given series is highlighted in bold. The GA-GLS estimator turns out
to be the best method in seven out of the eight series, the exception being nonagricul-
tural employment for which S-GLS dominates the other methods. These results further
confirm the effectiveness of the proposed approach when forecasting US macroeconomic
time series.

Two additional sets of empirical results are reported in Supplemental Appendix C.
First, we provide results for multi-step forecasts constructed iteratively from the simple
recursion in Step 5 of Algorithm 1. Second, we present results for both one-step and
multi-step forecasts based on transforming the data to stationarity as suggested by Mc-
Cracken and Ng (2016). This set of results includes forecasts obtained by selecting the
number of lags using AIC. Both sets of results show that our preferred approach based
on FGLS averaging continues to dominate its competitors, although in the second case,
the marginal gains from averaging over the unit root restriction are smaller, as expected.
Further details are provided in Appendix C.
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Table 2: Relative MSFE of eight core macroeconomic time series

Industrial Personal Mfg & trade Nonag. CPI Consumption CPI PPI
production income sales employment deflator exc. food

S-GLS .962∗∗ .989 .981 .915∗∗∗ .973 .995 .976 .983
PA-GLS .961∗∗ .958∗ .967∗∗ .919∗∗∗ .958 .957∗∗ .958∗ .942∗∗

GA-GLS .960∗∗ .950∗∗ .963∗∗ .921∗∗∗ .952∗ .951∗∗ .955∗∗ .936∗∗

PT-GLS .961∗∗ .983 .965∗∗ .921∗∗∗ 1.000 .974∗ .981 .991
S-OLS .981 .995 .999 .946∗∗∗ .979 1.005 .990 1.009
PA-OLS .972∗∗ .960 .983 .954∗∗∗ .964 .961∗∗ .961∗ .948∗∗

GA-OLS .965∗∗ .954∗ .968∗∗ .946∗∗∗ .955∗ .955∗∗ .957∗∗ .942∗∗

PT-OLS .960∗∗ .983 .965∗∗ .931∗∗∗ .980 .993 .985 1.007

Note: ∗denotes 10%, ∗∗denotes 5%, and ∗∗∗denotes 1% significance level for a two-sided Diebold and
Mariano (1995) test. The benchmark is an unrestricted OLS estimation method with 12 lags.
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Figure 4: FRED-MD: forecast accuracy comparison between FGLS and OLS.

7. CONCLUSION

This paper is concerned with developing a new forecast combination approach for highly
persistent univariate autoregressions which entails a feasible generalised least squares
Mallows averaging estimator that combines the unrestricted and restricted estimators.
Our contributions are three-fold. First, we derive analytical results for the in-sample
AMSE and MSFE of the proposed estimator and show that the optimal averaging weights
are different from the OLS weights studied in Hansen (2010). Second, our analysis fills a
gap in the literature in terms of providing a theoretical basis for the generalised mallows
averaging estimator by modeling the coefficients of the short-run dynamics as local to
zero. Third, our simulation and empirical results indicate that the proposed approach
yields considerable improvement over existing univariate methods in terms of finite sam-
ple forecast risk which should be appealing to practitioners. The new procedure can also
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Figure 5: FRED-MD: forecast accuracy comparison between alternative methods of
FGLS.

potentially serve as a useful univariate benchmark for evaluating forecasts based on ex-
ploiting information in large datasets (e.g., the diffusion index methodology of Stock and
Watson, 2002a,b).

At least two possible extensions of our paper are worth noting. First, our analysis
assumes homoskedastic innovations so an interesting extension would be to the het-
eroskedastic case which could potentially be achieved by adapting the jackknife method
of Hansen and Racine (2012) to the present context. Second, our framework does not
allow for the possibility of structural breaks, an important source of misspecification
in practice. Hansen (2009) develops a Mallows averaging estimator that averages over
the no-break and break estimators within an asymptotic framework that models the
break magnitude as local to zero, but does not address the issue of persistence or lag
uncertainty. A general, unified framework that addresses structural break uncertainty
in addition to persistence and lag uncertainty appears highly desirable from a practi-
cal standpoint. Such an analysis is likely to be complicated by the multiplicity of local
parameters arising from the different sources of uncertainty that cannot be consistently
estimated.
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APPENDIX A: PROOFS OF RESULTS

Let W (.) denote a standard Brownian motion on [0, 1] and define the diffusion process:
dJc(r) = cJc(r)+dW (r). Define the demeaned and detrended versions of Jc(.) as follows:

J̄c(r) = Jc(r) −
∫ 1

0
Jc(s)ds, J̃c(r) = Jc(r) − (4 − 6r)

∫ 1

0
Jc(s)ds − (12r − 6)

∫ 1

0
sJc(s)ds.

Let β = (β0, β1)
′
, zt = (1, t)

′
. For brevity, all proofs are provided only for the case p = 1.

The proofs for p = 0 follow analogous arguments. We first state two lemmas that will be
useful in developing the proofs of the results.

Lemma A.1. Let ˙ and ¨denote the first stage and the second stage estimates of param-
eters in the unrestricted FGLS procedure. Under Assumptions 2.1 and 2.2, as T → ∞,
we have

(a) T (α̇− α)
d→

 a
∫ 1
0
J̃cdW (r)∫ 1
0
J̃c

2
dr

for p = 1

a
∫ 1
0
J̄cdW (r)∫ 1
0
J̄c

2dr
for p = 0

(b)

{
T

1
2

σ (β̈1 − β1)
d→ a−1γ1 for p = 1

T−
1
2

σ (β̈0 − β0)
d→ 0 for p = 0, 1

where γ1 = (1− aċ+ 1
3 (aċ)2)−1

∫ 1

0
(1− aċs)dẆ (s), dẆ (s) = dW (s)− (aċ− c)Jc(s)ds.

(c) T−
1
2

σ û[Tr]
d→
{

a−1P (r) for p = 1
a−1Jc(r) for p = 0

where P (r) = Jc(r)− γ1r.

(d) T (α̈− α)
d→

 a
∫ 1
0
P (r)dW (r)+γ1

∫ 1
0

(cr−1)P (r)dr∫ 1
0
P (r)2dr

for p = 1

a
∫ 1
0
JcdW (r)∫ 1
0
J2
c dr

for p = 0

(e) T
1
2

σ (α̈1−α1, · · · , α̈k−αk)
′ d→ R ∼ N(0, Q−1). Q = E(LtL

′

t). Lt = (∆ut−1, · · · ,∆ut−k)
′
.

Lemma A.2. Under Assumptions 2.1 and 2.2, as c→ −∞, we have

(a) limc→−∞E[
∫ 1

0
crJc(r)dr]

2 = 1
3

(b) limc→−∞E[
∫ 1

0
crJc(r)dr

∫ 1

0
rdW (r)] = − 1

3

(c) limc→−∞E[γ2
1

∫ 1

0
(cr − 1)2dr] = 1

(d) limc→−∞E[(c̈− c)2
∫ 1

0
P (r)2dr] = 1

(e) limc→−∞E[γ1(c̈− c)
∫ 1

0
(cr − 1)P (r)dr] = 0
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Proof of Lemma A.1: (a) From Lemma 1 of Hansen (1995), we have
u[Tr]

σ
√
T

d→ a−1Jc(r).

Denoting ỹt as the residual from regressing yt on zt, it follows that
ỹ[Tr]

σ
√
T

d→ a−1J̃c(r).

By Frisch-Waugh-Lovell theorem and the independence of the estimates between the
nonstationary and stationary components, we have

T (α̇− α) =

∑T
t=1 ỹtet/T∑T
t=1 ỹ

2
t−1/T

2
+ op(1)

d→
σ2a−1

∫ 1

0
J̃cdW (r)

σ2a−2
∫ 1

0
J̃2
c dr

= a

∫ 1

0
J̃cdW (r)∫ 1

0
J̃c

2
dr

(A.1)

(b) Denote the quasi-differenced error v̂t = ut − α̇ut−1, we have v̂t = ut − α̇ut−1 =

(ut − αut−1)− (α̇ − α)ut−1. We first derive the limit of 1
σ
√
T

∑[rT ]
t=1 v̂t. Denoting g(L) =

α1L+ ...+ αkL
k, we have

ut − αut−1 = g(L)(ut − ut−1) + et = g(L)(ut − αut−1 + αut−1 − ut−1) + et

= (1− g(L))−1g(L)(α− 1)ut−1 + (1− g(L))−1et

By the Beveridge-Nelson decomposition,

1

σ
√
T

[rT ]∑
t=1

v̂t =
1

σ
√
T

[rT ]∑
t=1

[ut − αut−1 − (α̇− α)ut−1]

=
1

σ
√
T
{(1− g(1))−1g(1)(α− 1)

[rT ]∑
t=1

ut−1 + (1− g(1))−1

[rT ]∑
t=1

et − (α̇− α)

[rT ]∑
t=1

ut−1}+ op(1)

d→ a−1 × (1− a)× ac× a−1

∫ r

0

Jc(s)ds+ a−1W (r)− (ċ− c)
∫ r

0

Jc(s)ds

= a−1[W (r)− (aċ− c)
∫ r

0

Jc(s)ds] := a−1Ẇ (r) (A.2)

From Theorem 5(b) in Canjels and Watson (1997),

√
T

σ
(β̈1 − β1) =

T−1/2
∑T
t=1 v̂t(1− aċ

t
T )

σ(1− ac̈+ 1
3 (aċ)2)

+ op(1)

d→ (1− aċ+
1

3
(aċ)2)−1

∫ 1

0

(1− aċs)dẆ (s) := a−1γ1 (A.3)

where γ1 = (1 − aċ + 1
3 (aċ)2)−1

∫ 1

0
(1 − aċs)dẆ (s), dẆ (s) = dW (s) − (aċ − c)Jc(s)ds.

The second result in (b) can be shown by a simple algebraic exercise using results from
Canjels and Watson (1997) and is hence omitted.

(c) We have

1

σ
√
T
û[rT ] =

1

σ
√
T

(y[rT ] − β̈0 − β̈1[rT ])

=
1

σ
√
T
u[rT ] −

1

σ
√
T

(β̈0 − β0)−
√
T

σ
(β̈1 − β1)

[rT ]

T
d→ a−1Jc(r)− 0− a−1γ1r = a−1(Jc(r)− γ1r) := a−1P (r) (A.4)

(d) Note that ût = ut − (β̈0 − β0) − (β̈1 − β1)t, ∆ût = ∆ut − (β̈1 − β1). Defining
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β̈ = (β̈0, β̈1)′, the effective error is

ξt = et − (ut − ût) + α(ut−1 − ût−1) + α1(∆ut−1 −∆ût−1) + · · ·+ αk(∆ut−k −∆ût−k)

= et − z′t(β̈ − β) + (1 +
ac

T
)z′t−1(β̈ − β) + α1(β̈1 − β1) + · · ·+ αk(β̈1 − β1)

= et +
ac

T
(β̈0 − β0) + (

t− 1

T
c− 1)a(β̈1 − β1) (A.5)

which gives

T (α̈− α) =

∑T
t=1 ûtξt/T∑T
t=1 û

2
t−1/T

2
+ op(1)

=

∑T
t=1 ûtet/T +

∑T
t=1 ût

ac
T (β̈0 − β0)/T +

∑T
t=1 ût(

t−1
T c− 1)a(β̈1 − β1)/T∑T

t=1 û
2
t−1/T

2

d→
σ2a−1

∫ 1

0
P (r)dW (r) + 0 + σ2a−1γ1

∫ 1

0
(cr − 1)P (r)dr

σ2a−2
∫ 1

0
P (r)2dr

= a

∫ 1

0
P (r)dW (r) + γ1

∫ 1

0
(cr − 1)P (r)dr∫ 1

0
P (r)2dr

(A.6)

thereby proving (d).

(e) From (d), ∆ût = ∆ut + Op(T
−1/2) so that L̂t = Lt + Op(T

−1/2). Recalling the
independence of the estimates between the nonstationary and stationary components,
we have

T
1
2

σ
(α̈1 − α1, · · · , α̈k − αk)

′
= (

1

T

T∑
t=1

L̂tL̂
′

t)
−1(

1

σ
√
T

T∑
t=1

L̂tet) + op(1)

= (
1

T

T∑
t=1

LtL
′

t)
−1(

1

σ
√
T

T∑
t=1

Ltet) + op(1)

d→ R ∼ N(0, Q−1). (A.7)

where Q = E(LtL
′

t). N

Proof of Lemma A.2: (a) We have Jc(r) =
∫ r

0
ec(r−s)dW (s). It follows that

lim
c→−∞

E[

∫ 1

0

crJc(r)dr]
2 = lim

c→−∞
E[

∫ 1

0

cr

∫ r

0

ec(r−s)dW (s)dr]2

= lim
c→−∞

E[

∫ 1

0

∫ 1

s

crec(r−s)drdW (s)]2 = lim
c→−∞

E[

∫ 1

0

((1− 1

c
)ec(1−s) − s+

1

c
)dW (s)]2

= lim
c→−∞

[(1− 1

c
)2 e

2c − 1

2c
+

1

3
+

1

c2
+ 2(1− 1

c
)
1

c
− 1

c
] =

1

3
(A.8)
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(b) Similar to (a), we have

lim
c→−∞

E[

∫ 1

0

crJc(r)dr

∫ 1

0

rdW (r)] = lim
c→−∞

E[

∫ 1

0

cr

∫ r

0

ec(r−s)dW (s)dr

∫ 1

0

rdW (r)]

= lim
c→−∞

E[

∫ 1

0

((1− 1

c
)ec(1−s) − s+

1

c
)dW (s)

∫ 1

0

rdW (r)] = lim
c→−∞

∫ 1

0

((1− 1

c
)ec(1−s) − s+

1

c
)sds

= lim
c→−∞

[(1− 1

c
)
1

c
(1− ec − 1

c
)− 1

3
− 1

2c
] = −1

3
(A.9)

(c) From lemma A.1 (a) we know ċ− c =
∫ 1
0
J̃cdW (r)∫ 1
0
J̃c

2
dr

. As c→ −∞, Phillips (1987) shows(∫ 1

0
Jc

2
)−1 ∫ 1

0
JcdW (r) = Op(|c|1/2). Using techniques of Phillips (2014), we can easily

verify this result also applies for the trend case, i.e., ċ − c =
(∫ 1

0
J̃2
c

)−1 ∫ 1

0
J̃cdW (r) =

Op(|c|1/2), which implies ċ/c = 1 +Op(|c|−1/2). Then it follows that

lim
c→−∞

E[γ2
1

∫ 1

0

(cr − 1)2dr] = lim
c→−∞

(
1

3
c2 − c+ 1)E[(1− aċ+

1

3
(aċ)2)−1

∫ 1

0

(1− aċs)dẆ (s)]2

= lim
c→−∞

(
1

3
c2 − c+ 1)E[(1− aċ+

1

3
(aċ)2)−1

∫ 1

0

(1− aċs)dW (s)−
∫ 1

0

(1− aċs)(aċ− c)Jc(s)ds]2

= lim
c→−∞

1

3
c232c−4E[a2c2(

∫ 1

0

sdW (s) +

∫ 1

0

(1− a)cJc(s)ds)]
2 +O(|c|−1/2)

= lim
c→−∞

3a−2E[(

∫ 1

0

sdW (s) +

∫ 1

0

(1− a)cJc(s)ds)]
2 (A.10)

With results (a) and (b) in hand, we have

lim
c→−∞

3a−2E[(

∫ 1

0

sdW (s) +

∫ 1

0

(1− a)cJc(s)ds)]
2

= lim
c→−∞

3a−2E[(

∫ 1

0

sdW (s))2 + (

∫ 1

0

(1− a)cJc(s)ds)
2 + 2

∫ 1

0

sdW (s)

∫ 1

0

(1− a)cJc(s)ds]
2

= 3a−2[
1

3
+

1

3
(1− a)2 − 2(1− a)

1

3
] = 1 (A.11)

(d) From the proof of Lemma A.2 (c), we know γ1 = Op(|c|−1). Phillips (2014) shows as

c→ −∞,
∫ 1

0
Jc(r)dr = Op(|c|−1),

∫ 1

0
rJc(r)dr = Op(|c|−1),

∫ 1

0
Jc(r)dW (r) = Op(|c|−1/2).

Recalling P (r) = Jc(r) − γ1r, it is easy to show
∫ 1

0
P (r)dW (r) = Op(|c|−1/2),

∫ 1

0
(cr −

1)P (r)dr = Op(1). Then it follows γ1

∫ 1

0
(cr − 1)P (r)dr = Op(|c|−1), which is of smaller

order than
∫ 1

0
P (r)dW (r). From Phillips (1987), as c → −∞, (−2c)

∫ 1

0
Jc(r)

2dr
p→ 1,

(−2c)−1/2
∫ 1

0
Jc(r)dW (r)

d→ N(0, 1). It is easy to show that the two limits hold when

Jc(r) is replaced with P (r). Thus,
(∫ 1

0
P (r)2dr

)−1/2 ∫ 1

0
P (r)dW (r)

d→ N(0, 1) as c →
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−∞. Then we have

lim
c→−∞

E[((c̈− c)2

∫ 1

0

P (r)2dr] = lim
c→−∞

[
E

(
∫ 1

0
P (r)dW (r) + γ1

∫ 1

0
(cr − 1)P (r)dr)2

(
∫ 1

0
P (r)2dr)2

∫ 1

0

P (r)2dr

]

= lim
c→−∞

E[

∫ 1

0
P (r)dW (r)

(
∫ 1

0
P (r)2dr)1/2

]2 + o(1) = 1 (A.12)

(e) Using the results stated in the foregoing parts, it follows limc→−∞E[γ1(c̈−c)
∫ 1

0
(cr−

1)P (r)dr] = limc→−∞E[Op(|c|−1)Op(|c|1/2)Op(1)] = limc→−∞O(|c|−1/2) = 0. N

Proof of Theorem 2.1: (a) The forecast error can be expressed as

T
1
2

σ
ê[rT ] =

T
1
2

σ
(µ̂[rT ] − µ[rT ])

=
ac

σ
T−1/2(û[rT ] − u[rT ]) +

T 1/2

σ
(β̈1 − β1) +

T

σ
(α̈− α)T−1/2û[rT ]

+

k∑
i=1

T 1/2

σ
αi(∆û[rT ]−i −∆u[rT ]−i) +

k∑
i=1

T 1/2

σ
(α̈i − αi)∆û[rT ]−i

=
ac

σ
T−1/2(û[rT ] − u[rT ]) + a

T 1/2

σ
(β̈1 − β1) +

T

σ
(α̈− α)T−1/2û[rT ]

+

k∑
i=1

T 1/2

σ
(α̈i − αi)∆û[rT ]−i

= A[rT ] +B[rT ] (A.13)

since ∆û[rT ]−i −∆u[rT ]−i = β1 − β̈1. We have

A[rT ] =
ac

σ
T−1/2(û[rT ] − u[rT ]) + a

T 1/2

σ
(β̈1 − β1) +

T

σ
(α̈− α)T−1/2û[rT ]

d→ ac(a−1P (r)− a−1Jc(r)) + aa−1γ1 + a(c̈− c)a−1P (r)

= c(P (r)− Jc(r)) + γ1 + (c̈− c)P (r)

= γ1(1− cr) + (c̈− c)P (r)
∆
= U1(c, a, r)

B[rT ] =

k∑
i=1

T 1/2

σ
(α̈i − αi)∆û[rT ]−i = −R

′
L̂[rT ] (A.14)

It follows that

lim
T→∞

1

T

T∑
t=1

A2
t =

∫ 1

0

U1(c, a, r)
2
dr

lim
T→∞

1

T

T∑
t=1

B2
t = lim

T→∞
R
′
(

1

T

T∑
t=1

L̂tL̂
′

t)R→ R
′
QR ∼ χ2

k

lim
T→∞

1

T

T∑
t=1

AtBt = 0 (A.15)
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For in-sample AMSE:

m1(c, a, 1, k) = lim
T→∞

1

σ2
E

T∑
t=1

(µ̂t − µt)2

= lim
T→∞

E
1

T

T∑
t=1

(A2
t +B2

t + 2AtBt)

= E

[∫ 1

0

U1(c, a, r)
2
dr

]
+ k (A.16)

(b) As c→ −∞,

lim
c→−∞

E

[∫ 1

0

U1(c, a, r)
2
dr

]
= lim
c→−∞

E

[∫ 1

0

{γ1(1− cr) + (c̈− c)P (r)}2 dr
]

= lim
c→−∞

E[γ2
1

∫ 1

0

(cr − 1)2dr] + E[(c̈− c)2

∫ 1

0

P (r)2dr] + 2E[γ1(c̈− c)
∫ 1

0

(cr − 1)P (r)dr]

= 1 + 1 + 2 · 0 = 2 [By Lemma A.2] (A.17)

Then, as c→ −∞, (A.16) equals 2 + k.

(c) For MSFE:

f1(c, a, 1, k) = lim
T→∞

T

σ2
E(µ̂T+1 − µT+1)2

= lim
T→∞

E(A2
T+1 +B2

T+1 + 2AT+1BT+1)

= E[U1(c, a, 1)2] + E(R
′
(L̂T+1L̂

′

T+1)R) + 0

= E[U1(c, a, 1)2] + k (A.18)

since E(R
′
(L̂T+1L̂

′

T+1)R) = tr
[
E(L̂T+1L̂

′

T+1RR
′
)
]

= E(R
′
QR) = k. N

Proof of Corollary 2.1: (a) First, note that the expression for V1(c, r) is derived from
Hansen (2010) by transforming vector stochastic integrals to explicit Brownian motion
processes. Following Lemma A.1 and Theorem 2.1 we have the restricted FGLS estimator
as V gls1 (c, r) = Jc(1)−cJc(r), the same as Hansen’s (2010) restricted OLS estimator (note

that Jc(1) = c
∫ 1

0
Jc(r)dr+W (1)). So we simply drop the superscript gls to save notation.

Using the definition of V1(c, r), we have m0(c, 1) = E[
∫ 1

0
V1(c, r)

2
dr] + k, f0(c, 1) =
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E[V1(c, 1)2] + k. For the averaging estimator, it follows that

mw(c, a, 1, k)

= lim
T→∞

1

σ2

T∑
t=1

E(µ̂t(w)− µt)2

= lim
T→∞

1

σ2

T∑
t=1

E(wµ̂t + (1− w)µ̃t − µt)2

= lim
T→∞

1

σ2

[
w2E

{
T∑
t=1

(µ̂t − µt)2

}
+ (1− w)2E

{
T∑
t=1

(µ̃t − µt)2

}
+ 2w(1− w)E

{
T∑
t=1

(µ̂t − µt)(µ̃t − µt)

}]

= w2

[
E

∫ 1

0

U1(c, a, r)
2
dr + k

]
+ (1− w)2

[
E

∫ 1

0

V1(c, r)
2
dr + k

]
+ 2w(1− w)

[
E

∫ 1

0

U1(c, a, r)V1(c, r)dr + k

]
= w2m1(c, a, 1) + (1− w)2m0(c, 1) + 2w(1− w)m01(c, a, 1) + k

(b) The MSFE fw(c, a, 1, k) of the averaging estimator can be derived in a manner
similar to that in (a) and is hence omitted.

(c) We have

lim
c→0

m01(c, a, 1) = lim
c→0

E

∫ 1

0

U1(c, a, r)V1(c, r)dr

= lim
c→0

E

∫ 1

0

[γ1(1− cr) + (c̈− c)P (r)][W (1)− cJ̄c(r)]dr

= lim
c→0

E[γ1W (1)] + lim
c→0

E

[
(c̈

∫ 1

0

P (r)dr)W (1)

]
(A.19)

= 1 + 0 = 1

The first term in (A.19) is E[E{γ1W (1)|J̃0(.)}] = E[(1−aċ+ 1
3 (aċ)2)−1{(1−aċ)E[W (1)2|J̃0(.)]+

(aċ)2/3}] = 1 since E[W (1)|J̃0(.)] = 0. That the second term is zero follows from the

facts that c̈ = [2
∫ 1

0
P (r)2dr]−1[P (1)2 − 1], E[P (r)W (1)] = 0, r ∈ [0, 1] and the law of

iterated expectations. N

Proof of Corollary 2.2: The proof is straightforward following the proof of Corollary
2.1 and is hence omitted.

Proof of Theorem 3.1: We have

lim
T→∞

E
M0(c, a, 1, k)− Tσ2

σ2

= lim
T→∞

E[
1

σ2

T∑
t=1

(e2
t − σ2) +

1

σ2

T∑
t=1

(µ̃t − µt)2 +
2σ̂2

σ2
(m01(c, a, 1) + k)− 2

σ2

T∑
t=1

et(µ̃t − µt)]

= 0 +m0(c, 1) + k + 2(m01(c, a, 1) + k)− lim
T→∞

E
2

σ2

T∑
t=1

et(µ̃t − µt) (A.20)
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The last term is -2 times

lim
T→∞

E
1

σ2

T∑
t=1

et(µ̃t − µt) = E

∫ 1

0

[−cJ̄c(r) +W (1)]dW (r) + Eχ2
k (A.21)

As c→ 0, we have E
∫ 1

0
[−cJ̄c(r)+W (1)]dW (r)→ EW (1)2 = 1, so the last term amounts

to -2 times limc→0[m01(c, a, 1) + k] so that the limit of (A.20) is limc→0[m0(c, 1) + k].
For the unrestricted case,

lim
T→∞

E
M1(c, a, 1, k)− Tσ2

σ2

= lim
T→∞

E[
1

σ2

T∑
t=1

(e2
t − σ2) +

1

σ2

T∑
t=1

(µ̂t − µt)2 +
2σ̂2

σ2
(m1(c, a, 1) + k)− 2

σ2

T∑
t=1

et(µ̂t − µt)]

= 0 +m1(c, a, 1) + k + 2(m1(c, a, 1) + k)− lim
T→∞

E
2

σ2

T∑
t=1

et(µ̂t − µt) (A.22)

The last term is -2 times

lim
T→∞

E
1

σ2

T∑
t=1

et(µ̂t − µt) = E

∫ 1

0

[γ1(1− cr) + (c̈− c)P (r)]dW (r) + Eχ2
k (A.23)

Using Lemma A.2, we have

lim
c→−∞

E

∫ 1

0

γ1(1− cr)dW (r) = lim
c→−∞

E[(1− aċ+
1

3
(aċ)2)−1

∫ 1

0

(1− aċs)dẆ (s)

∫ 1

0

(1− cr)dW (r)]

= lim
c→−∞

E[(1− aċ+
1

3
(aċ)2)−1(

∫ 1

0

(1− aċs)dW (s)

∫ 1

0

(1− cr)dW (r)

+

∫ 1

0

(1− aċs)(c− aċ)ds
∫ 1

0

(1− cr)dW (r))] = 3a−2(
1

3
a− 1

3
a(1− a)) = 1 (A.24)

lim
c→−∞

E

∫ 1

0

(c̈− c)P (r)dW (r) = lim
c→−∞

E[
(
∫ 1

0
P (r)dW (r))2∫ 1

0
P (r)2dr

+ op(1)] = 1 (A.25)

Substituting (A.24) and (A.25) in (A.23) establishes that the limit of (A.22) equals
limc→−∞[m1(c, a, 1) + k]. N

Proof of Theorem 4.1: To prove this result, we need to derive the explicit forms of
mols

1K and mols
0K . We first consider the case where l ≤ k. Let Ht = (∆yt−1, ...,∆yt−K)

′
and

for i ≤ j, H[i,j],t = (∆yt−i, ...,∆yt−j)
′
, α[i,j] = (αi, ..., αj)

′
. Let xt = (t, yt−1)′. Define the

orthogonalized series H∗t [x∗t ] as the residuals from regressing Ht[xt] on a constant. Let

Σ = E(H∗tH
∗′
t ) =

[
Σ11[l×l]

Σ12[l×(K−l)]

Σ21[(K−l)×K]
Σ22[(K−l)×(K−l)]

]
[K×K]

For unrestricted estimation, we reformulate the regression as

∆yt = θ0 + x∗
′

t θ1 +H∗
′

[1,l],tα[1,l] + ε∗t (A.26)

where the effective error is ε∗t = H∗
′

[l+1,k],tα[l+1,k] + et, with H∗[i,j],t defined analogously to

H[i,j],t. θ0 and θ1 are functions of the true parameters; specifically, θ1 = (−β1(α−1), α−
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1)
′
. From this regression, it follows that

T 1/2(ᾰ[1,l] − α[1,l]) = (
1

T

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1(
1√
T

T∑
t=1

H∗[1,l],tε
∗
t ) + op(1)

= (
1

T

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1(
1√
T

T∑
t=1

H∗[1,l],tet)

+ (
1

T

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1(
1√
T

T∑
t=1

H∗[1,l],tH
∗′
[l+1,k],tα[l+1,k]) + op(1)

d→ N(0, σ2Σ−1
11 ) + Σ−1

11 Σ12α[l+1,K] (A.27)

with α[l+1,K] = (αl+1, ..., αk, αk+1, ..., αK)
′
, where (αk+1, ..., αK)

′
= (0, ..., 0)

′
. We can

write

µ̆t(l)− µt = (θ̆0 − θ0) + x∗
′

t (θ̆1 − θ1) +H∗
′

[1,l],t(ᾰ[1,l] − α[1,l])−H∗
′

[l+1,k],tα[l+1,k] (A.28)

We now calculate the cross product of the misspecified unrestricted estimator with the
estimator from the largest unrestricted model. Denoting θ̆K0 , θ̆K1 , ᾰK[1,l], and ᾰK[l+1,K] as
the estimates from the largest model, we have:

µ̆t(K)−µt = (θ̆K0 −θ0)+x∗
′

t (θ̆K1 −θ1)+H∗
′

[1,l],t(ᾰ
K
[1,l]−α[1,l])+H∗

′

[l+1,K],t(ᾰ
K
[l+1,K]−α[l+1,K])

(A.29)

Here
√
T (ᾰK[1,K] − α[1,K]) =

√
T (ᾰK

′

[1,l] − α
′

[1,l], ᾰ
K′

[l+1,K] − α
′

[l+1,K])
′ d→ N(0, σ2Σ−1). Let

H∗[1,l] = (H∗[1,l],l+2, ...,H
∗
[1,l],T )

′
, H∗ = (H∗l+2, ...,H

∗
T )
′
. For mols

1K(c, δ, 1, l), we calculate
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mols
1K(c, δ, 1, l) = E[ lim

T→∞

1

σ2

T∑
t=1

(µ̆t(l)− µt)(µ̆t(K)− µt)]

= E[ lim
T→∞

T

σ2
(θ̆0 − θ0)

′
(θ̆K0 − θ0) +

1

σ2
(θ̆1 − θ1)

′
T∑
t=1

x∗tx
∗′
t (θ̆K1 − θ1)

+
1

σ2
(ᾰ[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
[1,l],t(ᾰ

K
[1,l] − α[1,l])

+
1

σ2
(ᾰ[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
[l+1,K],t(ᾰ

K
[l+1,K] − α[l+1,K])

− 1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
[1,l],t(ᾰ

K
[1,l] − α[1,l])

− 1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
[l+1,K],t(ᾰ

K
[l+1,K] − α[l+1,K]) + op(1)]

= 1 + E(F1c) + E lim
T→∞

[
1

σ2
(ᾰ[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
t (ᾰK[1,K] − α[1,K])

− 1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
t (ᾰK[1,K] − α[1,K])]

= E(F1c) + 1 + lim
T→∞

tr(H∗[1,l](H
∗′
[1,l]H

∗
[1,l])

−1H∗
′

[1,l]H
∗(H∗

′
H∗)−1H∗

′
) + 0

= E(F1c) + 1 + l (A.30)

where F1c = limT→∞
1
σ2 (θ̆1 − θ1)

′∑T
t=1 x

∗
tx
∗′
t (θ̆K1 − θ1) = Op(1) with E(F1c)

p→ 2, as
c→ −∞.[see equations (15) and (36) in Hansen, 2010]. The last two equalities in (A.30)
hold since

E lim
T→∞

[
1

σ2
(ᾰ[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
t (ᾰK[1,K] − α[1,K])−

1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
t (ᾰK[1,K] − α[1,K])]

= E[ lim
T→∞

1

σ2
(

T∑
t=1

H∗[1,l],tet)
′
(

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1
T∑
t=1

H∗[1,l],tH
∗′
t (

T∑
t=1

H∗tH
∗′
t )−1

T∑
t=1

H∗t et

+ lim
T→∞

1

σ2
(

T∑
t=1

H∗[1,l],tH
∗′
[l+1,k],tα[l+1,k])

′
(

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1
T∑
t=1

H∗[1,l],tH
∗′
t (

T∑
t=1

H∗tH
∗′
t )−1

T∑
t=1

H∗t et

− lim
T→∞

1

σ2
α[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
t (

T∑
t=1

H∗tH
∗′
t )−1

T∑
t=1

H∗t et + op(1)]

= lim
T→∞

tr(H∗[1,l](H
∗′
[1,l]H

∗
[1,l])

−1H∗
′

[1,l]H
∗(H∗

′
H∗)−1H∗

′
) + 0− 0

= l (A.31)

using the properties of a projection matrix. Hence (A.30) reduces to 2+1+ l as c→ −∞.
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For the restricted model, we can write

µ̃t(l)− µt = (θ̃0 − θ0) +H∗
′

[1,l],t(α̃[1,l] − α[1,l])−H∗
′

[l+1,k],tα[l+1,k] −
ac

T
y∗t−1 (A.32)

Then we calculate

mols
0K(c, δ, 1, l) = E lim

T→∞

1

σ2

T∑
t=1

(µ̃t(l)− µt)(µ̆t(K)− µt)

= E lim
T→∞

[
T

σ2
(θ̃0 − θ0)

′
(θ̆K0 − θ0)− ac

Tσ2

T∑
t=1

y∗t−1x
∗′
t (θ̆K1 − θ1)

+
1

σ2
(α̃[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
[1,l],t(α̃

K
[1,l] − α[1,l])

+
1

σ2
(α̃[1,l] − α[1,l])

′
T∑
t=1

H∗[1,l],tH
∗′
[l+1,K],t(α̃

K
[1+1,K] − α[l+1,K])

− 1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
[1,l],t(α̃

K
[1,l] − α[1,l])

− 1

σ2
α
′

[l+1,k]

T∑
t=1

H∗[l+1,k],tH
∗′
[l+1,K],t(α̃

K
[l+1,K] − α[l+1,K]) + op(1)]

= E(F01c) + 1 + l (A.33)

where F01c = limT→∞− ac
Tσ2

∑T
t=1 y

∗
t−1x

∗′
t (θ̆K1 − θ1) = Op(1). It follows F01c

p→ 0 as
c→ 0. So (A.33) reduces to 1 + l as c→ 0.

We next consider the case where l > k, and show the results for mols
1K and mols

0K remain
the same. For unrestricted estimation, similar to (A.26), we reformulate the regression
as

∆yt = θ0 + x∗
′

t θ1 +H∗
′

[1,l],tα[1,l] + ε∗t (A.34)

The effective error is ε∗t = −H∗′[k+1,l],tα[k+1,l] + et, where α[1,l] = (α1, ..., , αk, ...αl)
′

are the parameters corresponding to the selected lags and α[k+1,l] = (αk+1, ..., αl)
′

are
the parameters corresponding to the over-specified lags. Note that the true parame-
ters α[k+1,l] = (αk+1, ..., αl)

′
= (0, ..., 0)

′
. In this regression, it follows that T 1/2(ᾰ[1,l] −

α[1,l]) → N(0, σ2Σ−1
11 ), which is different from (A.27). Nevertheless, the subsequent cal-

culations are exactly the same as in (A.30− A.31), so the result remains the same. The
same conclusion applies to the restricted counterpart.

Now we prove the unbiasedness property. We elaborate on the steps to prove the result
for the case l ≤ k, with similar steps applicable to the case l > k with the same conclusion.
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Firstly, for the restricted case

E lim
T→∞

Mols
0 (c, δ, 1, l)− Tσ2

σ2

= E lim
T→∞

[
1

σ2

T∑
t=1

(e2
t − σ2) +

1

σ2

T∑
t=1

(µ̃t(l)− µt)2 +
2σ̆2

K

σ2
(mols

0K(c, δ, 1, l))− 2

σ2

T∑
t=1

et(µ̃t(l)− µt)]

= 0 +mols
0 (c, δ, 1, l) + 2mols

0K(c, δ, 1, l)− E lim
T→∞

2

σ2

T∑
t=1

et(µ̃t(l)− µt) (A.35)

The last term is -2 times

E lim
T→∞

1

σ2

T∑
t=1

et(µ̃t(l)− µt)

= E lim
T→∞

[
1

σ2

T∑
t=1

et(θ̃0 − θ0)− ac

Tσ2

T∑
t=1

ety
∗
t−1

+
1

σ2

T∑
t=1

etH
∗′
[1,l],t(α̃[1,l] − α[1,l])−

1

σ2

T∑
t=1

etH
∗′
[l+1,k],tα[l+1,k]]

= 1 + E(F01c) + E lim
T→∞

1

σ2
[

T∑
t=1

etH
∗′
[1,l],t(

1

T

T∑
t=1

H∗[1,l],tH
∗′
[1,l],t)

−1(
1

T
H∗[1,l],tet)] + 0

= 1 + E(F01c) + l (A.36)

which is mols
0K(c, δ, 1, l). Note that here we have − ac

Tσ2

∑T
t=1 ety

∗
t−1

d→ F01c. To show

− ac
Tσ2

∑T
t=1 ety

∗
t−1 and − ac

Tσ2

∑T
t=1 y

∗
t−1x

∗′
t (θ̆K1 − θ1) follow the same limit F01c, notice

that y∗t−1 = Sx∗t , where S = [0, 1]. We have

lim
T→∞

− ac

Tσ2

T∑
t=1

y∗t−1x
∗′
t (θ̆K1 − θ1)− (− ac

Tσ2

T∑
t=1

ety
∗
t−1)

= lim
T→∞

ac

Tσ2
[

T∑
t=1

Sx∗tx
∗′
t

T∑
t=1

(x∗tx
∗′
t )−1

T∑
t=1

x∗t et −
T∑
t=1

Sx∗t et]

= lim
T→∞

ac

Tσ2
[S

T∑
t=1

x∗t et − S
T∑
t=1

x∗t et] = 0 (A.37)

Then, adding the terms in (A.35) yields the final result mols
0 (c, δ, 1, l).

For the unrestricted case,

E lim
T→∞

Mols
1 (c, δ, 1, l)− Tσ2

σ2

= E lim
T→∞

[
1

σ2

T∑
t=1

(e2
t − σ2) +

1

σ2

T∑
t=1

(µ̆t(l)− µt)2 +
2σ̆2

K

σ2
(mols

1K(c, δ, 1, l))− 2

σ2

T∑
t=1

et(µ̆t(l)− µt)]

= 0 +mols
1 (c, δ, 1, l) + 2mols

1K(c, δ, 1, l)− E lim
T→∞

2

σ2

T∑
t=1

et(µ̆t(l)− µt) (A.38)
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The last term is -2 times

E lim
T→∞

1

σ2

T∑
t=1

et(µ̆t(l)− µt)

= E lim
T→∞

[
1

σ2

T∑
t=1

et(θ̆0 − θ0) +
1

σ2

T∑
t=1

etx
∗′
t (θ̆1 − θ1)

+
1

σ2

T∑
t=1

etH
∗′
[1,l],t(ᾰ[1,l] − α[1,l])−

1

σ2

T∑
t=1

etH
∗′
[l+1,k],tα[l+1,k]]

= 1 + E(F1c) + l (A.39)

which is mols
1K(c, δ, 1, l). Hence, adding the terms in (A.38), we obtain the final result

mols
1 (c, δ, 1, l).N

Proof of Theorem 4.2: This result is proved in Theorem 4.1; see (A.30-A.33).

Proof of Theorem 4.3: We follow the steps as in the proof of Theorem 4.1. First we
derive the explicit forms of mgls

1K and mgls
0K . For l < k (the misspecified case), Lemma A.1

(a)-(d) still holds, and compared to (e) of Lemma A.1 now we have

T 1/2(α̈[1,l] − α[1,l])
d→ N(0, σ2Q−1

11 ) +Q−1
11 Q12α[l+1,K] (A.40)

where

Q = E(LtL
′

t) =

[
Q11[l×l]

Q12[l×(K−l)]

Q21[(K−l)×K]
Q22[(K−l)×(K−l)]

]
For any i ≤ j, define L[i,j],t = (∆ut−i, ...,∆ut−j)

′
. Following the steps in proving Theo-

rem 2.1, the forecast error from the misspecified FGLS model can be expressed as

T
1
2

σ
ê[rT ] =

T
1
2

σ
(µ̂[rT ] − µ[rT ])

= A[rT ] + Ḃ[rT ] + C[rT ] (A.41)

where A[rT ] is defined as in (A.14) and

Ḃ[rT ] =

l∑
i=1

T 1/2

σ
(α̈i − αi)∆û[rT ]−i =

T 1/2

σ
(α̈[1,l] − α[1,l])

′
L̂[1,l],[rT ]

C[rT ] = −
K∑

i=l+1

T 1/2

σ
αi∆u[rT ]−i = −T

1/2

σ
α
′

[l+1,K]L[l+1,K],[rT ] (A.42)

Following the results of Theorem 2.1, Corollary 2.1 and proof of Theorem 4.1, the cross
products mgls

1K(c, a, δ, 1, l), mgls
0K(c, a, δ, 1, l) can be easily derived:

lim
c→−∞

mgls
1K(c, a, δ, 1, l) = 1 + 1 + l

lim
c→0

mgls
0K(c, a, δ, 1, l) = 1 + l (A.43)
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which also hold for l > k. The subsequent unbiasedness property can be established in a
manner similar to the proof of Theorem 4.1 and is hence omitted.N

Proof of Theorem 4.4: This result is proved in Theorem 4.3.
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APPENDIX B: DETAILED MONTE CARLO RESULTS

This section reports the results of a set of Monte Carlo experiments to assess the adequacy
of the asymptotic approximations in finite samples and evaluate the effectiveness of the
proposed approach relative to existing methods. To facilitate a direct comparison, we
adopt the same design as Hansen (2010). In particular, the sample size T ∈ {50, 200},
the innovations et

i.i.d∼ N(0, 1), the trend parameters are set at β0 = β1 = 0 and the true
lag order k ∈ {0, 4, 8}. Results are presented for p ∈ {0, 1}.

B.1. Forecast Risk with Known Lag Order

The first two experiments assume knowledge of the true order k thereby enabling us to
delineate the effect of persistence uncertainty on the forecasts. With reference to equation
(2.1), the first data generating process (DGP) sets α1 = · · · = αk = 0, varies c from -20
to 0, which implies a range for α of [0.6, 1] for T = 50 and a range of [0.9, 1] for T = 200.
For each parameter configuration, the finite sample forecast risk TE[(µ̂T+1 − µT+1)2]
is calculated for six estimators: unrestricted FGLS estimator, DFGLS pretest estimator
and FGLS Mallows averaging estimator together with their three OLS counterparts. The
risk is calculated using 500,000 Monte Carlo replications.

Figures B.1 and B.2 present the results for the first DGP for p = 0 and p = 1, respectively.
It is clear that FGLS incurs lower risk than OLS for all three types of estimators: un-
restricted, pretest and averaging. This suggests that the efficiency gain of using FGLS
not only lies in the unrestricted case, but is more broadly applicable to the pretesting
and averaging schemes. Moreover, as in the OLS case illustrated by Hansen (2010), the
FGLS pretest estimator exhibits high risk and the FGLS Mallows averaging estimator
uniformly dominates the unrestricted FGLS estimator for p = 1.1 For p = 0, the supe-
riority of the proposed estimator over unrestricted FGLS estimation is only discernible
for c > −5. In terms of comparison with OLS model averaging, the risk of the proposed
estimator is uniformly smaller for p = 1 and nearly uniformly smaller for p = 0. Overall,
our FGLS Mallows averaging estimator performs well and displays lowest risk among all
estimators for c < −5 when p = 1.

The second DGP sets αj = −(−θ)j for j = 1, ..., k and θ = 0.6. The results are
presented in Figures B.3 and B.4, which exhibit the same overall pattern as observed in
Figures B.1 and B.2, respectively, i.e., the FGLS estimators dominate their OLS counter-
parts, and for a large range of c values (around c < −3), the FGLS averaging estimator
has the smallest forecast risk among all estimators when the model includes a determin-
istic trend.

B.2. Forecast Risk with Unknown Lag Order

We next consider the situation where the number of autoregressive lags k is unknown.
Three types of estimators are compared: (1) the Mallows selection estimator (denoted
S-OLS/FGLS), which selects unrestricted models from AR(1) through AR(K + 1), i.e.,
µ̂t(0) through µ̂t(K); (2) the Mallows averaging estimator (denoted PA-OLS/FGLS, PA

1However, this is only observed in simulations; to have a concrete judgment, one might follow Zhang, Ul-
lah and Zhao (2016) to derive sufficient conditions which involves sample size, the number of parameters
and possibly the persistence parameter.
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abbreviating partial averaging) that averages over this set of unrestricted models; (3) the
general averaging estimator (denoted GA-OLS/FGLS) which combines all models from
{µ̂t(l)} and {µ̃t(l)} for l ∈ {0, 1, ...,K}. Again, we set αj = −(−θ)j for j = 1, ..., k and
θ = 0.6.

Figures B.5 and B.6 present the results for the six forecast methods. All three types
of FGLS estimators uniformly dominate their OLS counterparts. The risk reduction is
substantial. Overall, FGLS general averaging achieves uniformly lowest risk among all
averaging/selection strategies when p = 1 and is competitive with the best estimator
(which turns out to be PA-FGLS for an intermediate range of c values when T = 200)
for each value of c when p = 0. The results are very similar across all K and T .
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Figure B.1. Forecast risk of OLS averaging and GLS averaging, p = 0
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Figure B.2. Forecast risk of OLS averaging and GLS averaging, p = 1
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Figure B.3. Forecast risk of OLS averaging and GLS averaging, p = 0



A20 M. Kejriwal and X. Yu

-20 -15 -10 -5 0

c

5

6

7

8

9

10

11

12

13

14

F
or

ec
as

t R
is

k

T=50, k=4

Unres-OLS

Pretest-OLS

OLS-Ave

Unres-GLS

Pretest-GLS

GLS-Ave

-20 -15 -10 -5 0

c

10

11

12

13

14

15

16

17

18

19

F
or

ec
as

t R
is

k

T=50, k=8

-20 -15 -10 -5 0

c

5

6

7

8

9

10

11

12

13

14

F
or

ec
as

t R
is

k

T=200, k=4

-20 -15 -10 -5 0

c

9

10

11

12

13

14

15

16

17

18

F
or

ec
as

t R
is

k

T=200, k=8

Figure B.4. Forecast risk of OLS averaging and GLS averaging, p = 1
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Figure B.5. Forecast risk of General OLS averaging and General GLS averaging, p = 0
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Figure B.6. Forecast risk of General OLS averaging and General GLS averaging, p = 1
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APPENDIX C: ADDITIONAL EMPIRICAL RESULTS

This appendix provides additional empirical results pertaining to multi-step forecasts as
well as results based on the data transformed to stationarity as in McCracken and Ng
(2016).

C.1. Multi-Step Forecasts

While the focus of our paper is on one-step ahead forecasts, we also present some empirical
results for multi-step forecasts. These forecasts are obtained iteratively using the simple
recursion in step 5 of Algorithm 1. In particular, the h-step ahead unrestricted GLS
forecast is constructed by iterating on

ŷT+j|T = z′T+j β̈ + α̈(ŷT+j−1|T − z′T+j−1β̈) + α̈1(∆ŷT+j−1|T −∆z′T+j−1β̈) (C.1)

+ · · ·+ α̈k(∆yT+j−k|T −∆z′T+j−kβ̈)

for j = 1, ..., h, with ŷτ |T = yτ if τ ≤ T. The OLS-based forecasts are constructed
similarly (see Hamilton, 1994, p. 80-82). Then the Mallows criteria for the restricted and
unrestricted models and the corresponding weights are obtained as in sections 3 and 4.
For strictly stationary data satisfying certain mixing conditions, Hansen (2010) suggests
an alternative approach based on multi-step cross validation. While outside the scope of
the present paper, a systematic comparison of the two approaches within the near unit
root framework is an interesting topic for future research.

Tables C.1 and C.2, which are the analogues of tables 1 and 2 respectively in the main
text, present the results for 6-month and 12-month ahead forecasts. The results in table
C.1 show that the GLS-based methods still dominate the OLS-based methods: GA-GLS
stands out as the best for 6-month ahead forecasts and PA-GLS is the best for 12-month
ahead forecasts although in the latter case, GA-GLS is better than PA-GLS in terms of
pairwise comparison, with the percentage of wins at 56.1%. These results are consistent
with those reported in table C.2 where the GLS-based methods dominate their OLS
counterparts for at least six core macroeconomic series regardless of forecast horizon.

C.2. Forecasts using the McCracken and Ng (2016) Transformation

In this section, we present results for the case where the data are transformed to sta-
tionarity according to the codes provided by McCracken and Ng (2016). The results are
reported in tables C.3 and C.4. As suggested by a referee, this set of results includes
forecasts obtained by selecting the number of lags using AIC (labeled S-AIC-GLS and
S-AIC-OLS). The results show that our preferred approach based on GLS averaging con-
tinues to dominate OLS-based methods. In contrast, selection from a set of models with
different lags based on AIC underperforms compared to the averaging methods, which
applies to both GLS-based or OLS-based model selection. For multi-step forecasts, PA-
GLS dominates the other methods, which is not unexpected as the benefits of averaging
over the unit root restriction are likely to be smaller when applied to stationary data.
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Table C.1. Percentage wins/losses of different forecasting methods, multi-step [h = 6, 12]

h Method S-GLS PA-GLS GA-GLS PT-GLS S-OLS PA-OLS GA-OLS PT-OLS ALL

6

S-GLS 19.51 13.01 49.59 80.49 63.42 39.02 44.72 9.76
PA-GLS 80.49 28.46 62.60 85.37 78.05 53.66 60.16 17.89
GA-GLS 86.99 71.55 69.92 96.75 94.31 75.61 69.92 30.89
PT-GLS 50.41 37.40 30.08 73.17 65.04 50.41 48.78 12.20
S-OLS 19.51 14.63 3.25 26.83 15.45 3.25 22.76 0.00
PA-OLS 36.59 21.95 5.69 34.96 84.55 8.94 33.33 3.25
GA-OLS 60.98 46.34 24.39 49.59 96.75 91.06 47.97 12.20
PT-OLS 55.29 39.84 30.08 51.22 77.24 66.67 52.03 13.82

12

S-GLS 19.51 25.20 59.35 82.93 69.92 54.47 58.54 7.32
PA-GLS 80.49 43.90 66.67 84.55 79.68 65.85 65.85 35.77
GA-GLS 74.80 56.10 78.86 91.06 85.37 82.93 77.24 25.20
PT-GLS 40.65 33.33 21.14 73.17 65.85 51.22 48.78 7.32
S-OLS 17.07 15.45 8.94 26.83 17.07 8.13 28.46 0.81
PA-OLS 30.08 20.33 14.63 34.15 82.93 15.45 33.33 3.25
GA-OLS 45.53 34.15 17.07 48.78 91.87 84.55 47.15 7.32
PT-OLS 41.46 34.15 22.76 51.22 71.55 66.67 52.85 11.38

Note: this table shows the percentage of the 123 series for which a method listed in a row outperforms
a method in a column, include the other all in the last column.

Table C.2. Relative MSFE of eight core macroeconomic time series, multi-step [h = 6, 12]

h
Industrial Personal Mfg & trade Nonag.

CPI
Consumption CPI

PPI
production income sales employment deflator exc. food

6

S-GLS .960 .969 .967 .864∗∗∗ 1.030 1.005 .996 .992
PA-GLS .946 .934 .948 .865∗∗ .996 .982 .980 .959
GA-GLS .943 .901∗ .932 .879∗∗ .974 .962 .970 .950∗

PT-GLS .959 .923 .934 .889∗∗ 1.014 1.011 1.020 1.039
S-OLS 1.000 1.051 1.003 .938∗∗ 1.020 1.001 .990 .998
PA-OLS .977 .989 .981 .950∗ .989 .983 .972 .960
GA-OLS .953 .946 .937 .918∗∗ .973 .961 .970 .956∗

PT-OLS .959 .923 .934 .903∗∗ .972 .947 .989 .989

12

S-GLS .900 .891 .922 .829∗∗ 1.008 1.015 .966 .960
PA-GLS .888 .869 .899 .822∗∗ .980 .989 .961 .945
GA-GLS .891 .834∗ .888 .848∗∗ .966 .971 .954 .946
PT-GLS .967 .840∗∗ .925 .871∗ 1.007 .999 .992 1.018
S-OLS .994 1.039 .994 .951∗∗ 1.011 1.015 .978 .990
PA-OLS .964 .959 .959 .955∗ .980 .989 .956∗ .954∗

GA-OLS .924 .899∗ .911 .900∗∗∗ .966 .968 .953 .954
PT-OLS .968 .840∗∗ .926 .887∗ .998 .994 .973 1.023

Note: ∗denotes 10%, ∗∗denotes 5%, and ∗∗∗denotes 1% significance level for a two-sided Diebold and
Mariano (1995) test. The benchmark is an unrestricted OLS estimation method with 12 lags.
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Table C.3. Percentage wins/losses of different forecasting methods [McCracken-Ng trans-
formation]

h Method S-GLS PA-GLS GA-GLS PT-GLS S-AIC-GLS S-OLS PA-OLS GA-OLS PT-OLS S-AIC-OLS ALL

1

S-GLS 4.07 3.25 82.93 38.21 70.73 8.94 7.32 73.17 60.16 0.00
PA-GLS 95.94 51.22 97.56 94.31 99.19 62.60 55.29 95.94 98.37 26.83
GA-GLS 96.75 48.78 99.19 95.94 98.37 52.85 73.17 99.19 97.56 29.27
PT-GLS 17.07 2.44 0.81 18.70 23.58 7.32 1.63 31.71 24.39 0.81
S-AIC-GLS 61.79 5.69 4.07 81.30 69.92 10.57 7.32 69.11 73.17 3.25
S-OLS 29.27 0.81 1.63 76.42 30.08 3.25 4.07 56.91 41.46 0.00
PA-OLS 91.06 37.40 47.15 92.68 89.43 96.75 52.85 93.50 95.94 22.76
GA-OLS 92.68 44.72 26.83 98.37 92.68 95.94 47.15 97.56 95.12 16.26
PT-OLS 26.83 4.07 0.81 68.29 30.89 43.09 6.50 2.44 39.02 0.00
S-AIC-OLS 39.84 1.63 2.44 75.61 26.83 58.54 4.07 4.88 60.98 0.81

6

S-GLS 8.94 17.07 83.74 29.27 73.98 21.14 23.58 74.80 57.72 0.81
PA-GLS 91.06 59.35 90.24 84.55 90.24 78.86 70.73 88.62 86.99 44.72
GA-GLS 82.93 40.65 92.68 79.68 86.18 65.85 83.74 91.87 82.11 21.95
PT-GLS 16.26 9.76 7.32 13.82 14.63 10.57 7.32 30.08 14.63 2.44
S-AIC-GLS 70.73 15.45 20.33 86.18 78.86 27.64 28.46 78.05 77.24 6.50
S-OLS 26.02 9.76 13.82 85.37 21.14 9.76 16.26 60.16 30.89 0.00
PA-OLS 78.86 21.14 34.15 89.43 72.36 90.24 56.10 88.62 84.55 7.32
GA-OLS 76.42 29.27 16.26 92.68 71.55 83.74 43.90 91.87 78.86 8.13
PT-OLS 25.20 11.38 8.13 69.92 21.95 39.84 11.38 8.13 23.58 4.07
S-AIC-OLS 42.28 13.01 17.89 85.37 22.76 69.11 15.45 21.14 76.42 2.44

12

S-GLS 14.63 34.96 86.99 31.71 74.80 38.21 46.34 78.86 63.42 3.25
PA-GLS 85.37 69.11 90.24 76.42 85.37 79.68 77.24 86.99 83.74 43.90
GA-GLS 65.04 30.89 91.87 60.16 69.11 39.84 83.74 89.43 63.42 13.01
PT-GLS 13.01 9.76 8.13 13.01 14.63 12.20 8.13 28.46 14.63 1.63
S-AIC-GLS 68.29 23.58 39.84 86.99 78.86 43.90 46.34 80.49 73.98 13.01
S-OLS 25.20 14.63 30.89 85.37 21.14 17.89 39.02 63.42 30.08 0.81
PA-OLS 61.79 20.33 60.16 87.81 56.10 82.11 66.67 84.55 77.24 8.94
GA-OLS 53.66 22.76 16.26 91.87 53.66 60.98 33.33 88.62 60.98 5.69
PT-OLS 21.14 13.01 10.57 71.55 19.51 36.59 15.45 11.38 20.33 4.88
S-AIC-OLS 36.59 16.26 36.59 85.37 26.02 69.92 22.76 39.02 79.68 4.07

Note: this table shows the percentage of the 123 series for which a method listed in a row outperforms a method in a column,
include the other all in the last column.

Table C.4. Relative MSFE of eight core macroeconomic time series [McCracken-Ng trans-
formation]

h
Industrial Personal Mfg & trade Nonag.

CPI
Consumption CPI

PPI
production income sales employment deflator exc. food

1

S-GLS .969∗∗ 1.011 .983 .945∗∗∗ 1.000 .992 .989 .992
PA-GLS .965∗∗ .988 .971∗∗ .945∗∗∗ .975∗ .971∗∗ .972∗∗ .971∗∗

GA-GLS .960∗∗∗ .979 .969∗∗ .945∗∗∗ .979∗ .975∗ .975∗ .973∗∗

PT-GLS .979 1.037∗ 1.018 .956∗∗∗ 1.060∗∗ 1.036∗∗∗ 1.026∗ 1.058∗∗

S-AIC-GLS .975∗ 1.013 .984 .945∗∗∗ .991 .994 .994 .991
S-OLS .969∗∗ 1.009 .984 .949∗∗∗ 1.008 .993 .989 .993
PA-OLS .965∗∗∗ .986 .974∗ .952∗∗∗ .976∗∗ .971∗∗ .971∗∗ .972∗∗

GA-OLS .961∗∗∗ .976 .972∗∗ .950∗∗∗ .982∗ .978∗ .978∗∗ .977∗∗

PT-OLS .977 1.026 1.011 .968∗∗ 1.008 .993 .989 .993
S-AIC-OLS .968∗∗ 1.011 .987 .949∗∗∗ .995 .996 .993 .994

6

S-GLS .968 1.000 .965∗ .963∗∗ .988 .987 .989 .997
PA-GLS .963 .965 .950∗∗ .949∗∗ .965∗∗ .967∗∗∗ .967∗∗ .964∗∗

GA-GLS .973∗ .957 .956∗∗ .947∗∗∗ .967∗∗ .968∗∗∗ .968∗∗ .964∗∗

PT-GLS 1.026 1.029 .998 .983 1.011 1.007 .999 1.010
S-AIC-GLS .976 .986 .967∗ .963∗∗ .984 .984∗ .990 .998
S-OLS .971 .997 .968∗ .971∗∗ .991 .986 .990 .997
PA-OLS .966∗ .963 .952∗∗ .961∗∗ .967∗∗ .968∗∗∗ .969∗∗ .965∗∗

GA-OLS .977 .955 .959∗∗ .955∗∗ .972∗∗ .971∗∗∗ .974∗∗ .967∗∗

PT-OLS 1.017 1.029 1.008 .996 .991 .986 .990 .997
S-AIC-OLS .972 .983 .970∗ .971∗ .985 .984∗ .990 .999

12

S-GLS 1.000 1.046 .965∗∗ .976 .989 .983∗ .994 .984∗

PA-GLS .999 .911 .957∗∗ .953∗∗ .971∗∗ .975∗∗ .975∗ .971∗∗

GA-GLS 1.039 .916 .977 .978 .972∗∗ .974∗∗ .976∗ .971∗∗

PT-GLS 1.140∗∗ 1.105 1.048 1.047 1.016 1.005 1.014 .998
S-AIC-GLS .998 1.031 .967∗∗ .976 .988 .979∗ .998 .981∗

S-OLS 1.010 1.064 .971∗∗ .982 .995 .986 .998 .986∗

PA-OLS 1.000 .916 .961∗∗ .963∗ .975∗∗ .975∗∗ .978∗ .971∗∗

GA-OLS 1.049 .896 .984 .992 .974∗∗ .975∗∗ .977∗ .973∗∗

PT-OLS 1.106∗∗ 1.102 1.036 1.080 .995 .986 .998 .986∗

S-AIC-OLS 1.004 1.051 .971∗∗ .975 .993 .984 1.003 .985∗

Note: ∗denotes 10%, ∗∗denotes 5%, and ∗∗∗denotes 1% significance level for a two-sided Diebold and Mariano
(1995) test. The benchmark is an unrestricted OLS estimation method with 12 lags.
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