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Abstract: Are all forecasters the same? Expectations models incorporating information rigidities 
typically imply forecasters are interchangeable which predicts an absence of systematic patterns in 
individual forecast behavior. Motivated by this prediction, we examine the European Central Bank’s 
Survey of Professional Forecasters and find, in contrast, that participants display systematic patterns 
in predictive performance both within and across target variables. Moreover, we document a new 
result from professional forecast surveys which is that inter- and intra-forecaster relative predictive 
performance are strongly linked to the degree of difficulty in the forecasting environment. This 
insight can inform the ongoing development of expectations models. 
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I. Introduction 
Expectations are important for understanding the decision-making of households and firms, 

as well as for explaining movements in economic and financial variables. Early work on the 

formation of beliefs posited that agents form their expectations in a static or adaptive manner. 

However, these models eventually drew criticism because of their restrictions on agents’ information 

sets and for allowing agents to make systematic forecast errors. In response, the full-information 

rational expectations (FIRE) model was developed which assumes that all agents know the true 

structure of the economy and have access to the same information set. 

While the FIRE model remains the main paradigm for the formation of expectations, it 

implies that agents display identical forecast behavior and, therefore, cannot generate the type of 

dispersion in agents’ expectations – that is, disagreement – observed in surveys or financial markets. 

Consequently, in recent years the FIRE model has been replaced with a weaker form of rational 

expectations in which agents use available information efficiently subject to certain constraints. A 

prominent feature of these models is the presence of informational rigidities (IR) either in the form 

of sticky information [Mankiw and Reis (2002); Mankiw, Reis, and Wolfers (2003)] or noisy 

information [Woodford (2003); Sims (2003); Mackowiak and Wiederholt (2009)].  

While IR models can generate disagreement, a key, but largely overlooked, implication of 

almost all these models is that heterogeneity in individual forecast behavior should not display 

systematic patterns.1 This is because variation in forecast behavior only arises from randomness 

either in the updating of individual information sets or in the configuration of shocks faced by 

individuals. Agents can display differences in their forecast behavior at a point in time, but their 

forecast behavior should be the same on average over time.  Consequently, forecasters should be 

viewed as interchangeable with no distinguishing patterns in their average observed behavior.2 

Motivated by this consideration, this study uses data from the European Central Bank’s 

Survey of Professional Forecasters (ECB-SPF) to explore the implications of interchangeability 

across three aspects of forecast behavior. The first is whether the predictive performance metrics of 

participants display “distributional homogeneity” within a target variable – that is, do the mean and 

 
1 Coibion and Gorodnichenko (2012, 2015) test the predictions of the sticky information and the noisy 
information models for various aspects of forecast behavior at the aggregate level, but they do not consider 
this implication of IR models at the individual level. 
2 Clements (2022) makes this same observation to motivate his analysis of the US Survey of Professional 
Forecasters. The average observed behavior of forecasters refers to a period long enough to allow individuals 
to update their information sets on a comparable basis in the case of the sticky information model, or to be 
subject to a comparable set of shocks in the case of the noisy information model. 
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variation over time in a participant’s accuracy align with those of others on average.3 The second is 

whether the relative accuracy of forecasters displays systematic patterns within a target variable. The 

third is whether individual forecasters display similar behavior across target variables. While these 

empirical features are of general interest for expectations models, we have noted their relevance for 

IR models. 

We conduct the analysis within a panel data framework using the common correlated effects 

(CCE) estimator of Pesaran (2006). The CCE modeling strategy is attractive for several reasons. 

First, it allows for a broad identification of heterogeneity and correlation patterns in participants’ 

predictive performance. Second, the inclusion in the individual regressions of a time-specific cross-

sectional average of predictive performance controls for aggregate shocks that can generate 

dependence across participants which is a typical concern in panel data models. Last, the average 

predictive performance variable also provides a natural basis to identify tranquil/volatile forecast 

episodes that play a critical role in the analysis. 

The results provide strong evidence that ECB-SPF participants are not interchangeable. Our 

tests reject the property of distributional homogeneity which indicates there are significant 

differences across forecasters in the mean and variance of their predictive performance metrics 

within a target variable. There are also systematic patterns in participants’ relative predictive 

performance over time, both within and across target variables. Moreover, we document a new 

finding that these systematic patterns are strongly linked to the degree of difficulty in the forecasting 

environment. Within a target variable, some participants display higher relative accuracy in tranquil 

episodes, while other participants display higher relative accuracy in volatile episodes. Across target 

variables, we find that participants who display higher (lower) relative accuracy in tranquil/volatile 

environments for one target variable tend to display the same behavior for the other target variables. 

These results pose a challenge to IR models. 

Our results are consistent with recent work by Hounyo and Lahiri (2023) who test for equal 

predictive ability among participants in the US Survey of Professional Forecasters (US-SPF) and 

report evidence of “persistent performance heterogeneity”. Hounyo and Lahiri (2023) improve upon 

the bootstrap technique of D’Agostino, McQuinn and Whelan (2012) by allowing for cross-sectional 

and serial correlation in the forecast errors that can otherwise lead to incorrect inference. Taken 

together, the findings in our study and Hounyo and Lahiri (2023) contrast with previous evidence 

 
3 We use the term “target variable” to denote the combination of an outcome variable (e.g., GDP growth) 
and forecast horizon (e.g., one-year-ahead horizon). 
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presented by Kenny, Kostka and Masera (2014) and Meyler (2020) for the ECB-SPF and 

D’Agostino, McQuinn, and Whelan (2012) for the US-SPF. 

There are, however, several important differences between our study and Hounyo and Lahiri 

(2023). Here we provide a short comparison and defer a more detailed discussion until Section II. 

Beyond methodology and data sets, one difference pertains to focus. The empirical framework of 

Hounyo and Lahiri (2023) is designed to test for equal predictive performance within a target 

variable. In contrast, we develop and conduct a more stringent test of comparable forecast behavior 

by considering both first and second moments of predictive performance. The ability to discriminate 

between participants who may display equal accuracy but differ along other dimensions of forecast 

behavior is an important extension in the evaluation of expectations models. Our investigation also 

extends beyond the inter-forecaster comparisons in Hounyo and Lahiri (2023) by considering intra-

forecaster comparisons across target variables as an additional basis to explore the issue of the 

interchangeability of forecasters. 

Another difference with Hounyo and Lahiri (2023) concerns the rank ordering of 

participants. While their approach allows for the identification and ranking of participants with 

superior or inferior forecasting skills during the sample period, it is silent on whether the ordering is 

stable over time. In contrast, our approach allows for a deeper investigation into the behavior of the 

rank orderings. We find that the bulk of the rank ordering of participants changes with variation in 

the forecasting environment. This result suggests that forecaster comparisons can be sensitive to the 

relative prevalence of tranquil and volatile episodes in a selected sample period and offers a 

cautionary note for studies that assume rank orderings are largely stable. 

We conclude that models featuring information rigidities and their implication for forecaster 

interchangeability are not consistent with observed features of the ECB-SPF. The mean and 

variation over time in participants’ accuracy do not align with each other on average. In addition, we 

document systematic patterns in individual predictive performance that are strongly linked to the 

degree of difficulty in the forecasting environment. While such behavior could reflect heterogeneity 

in participants’ loss functions or the use of different models, a deeper exploration into this line of 

research is beyond the scope of this paper.4 We do, however, investigate the possibility of non-

uniform processing capacity across forecasters that is, in turn, related to differential private 

information [Clements (2022)]. Taken together, our study principally contributes to a large literature 

 
4 While strategic behavior could offer another explanation for these features, the anonymity of the ECB-SPF 
forecasters would likely rule out this explanation.  
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that uses survey data to inform the ongoing development of models of expectations formation, with 

particular focus on uncovering new facts about predictive performance. 

The paper is organized as follows. The next section discusses the modeling strategy and 

estimation framework used for the empirical analysis. Section III provides a summary of the 

literature evaluating various aspects of professional forecasters’ predictive performance. Section IV 

describes the ECB-SPF data. Section V reports the estimation results and documents systematic 

patterns in participants’ relative predictive performance and how it varies with the difficulty of the 

forecasting environment. This section also explores the behavior of the rank ordering of forecasters. 

Section VI concludes by discussing the implications of our findings. 

II. Modeling Strategy and Estimation Framework 
Our modeling strategy and estimation framework are motivated by the survey-based 

predictive performance metric introduced by D’Agostino, McQuinn, and Whelan (2012) for the US-

SPF and adopted by Hounyo and Lahiri (2023). A key aspect of both analyses concerns the 

challenge of evaluating predictive performance when there is time variation in the forecasting 

environment. Specifically, participants generating the same prediction error in different periods will 

not reflect equal predictive ability if forecasting in some periods is easier/more difficult as compared 

to others. The evaluation of predictive performance is further complicated in an unbalanced panel 

setting due to the entry and exit of participants either on an intermittent or permanent basis. 

To account for both considerations, D’Agostino, McQuinn, and Whelan (2012) originally 

proposed an adjustment to conventional predictive performance metrics. Their approach begins by 

constructing a normalized forecast error statistic for each variable, period, and participant. While we 

discuss their methodology within the context of point forecasts, it can also be applied to density 

forecasts. Abstracting from details related to data and survey features, the normalized squared error 

statistic for participant j, � 2
|( )j

t h te  , is given by: 
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where |
j
t h te   is participant j’s forecast error associated with the survey point prediction in period t and 

the realization of the target variable in period t+h, and 2
|( )t h te   is a measure of average forecast 

performance defined over the tN  survey participants in period t. Importantly, the metric in (1) 



5 
 

depends on participant j’s forecast performance relative to the other forecasters. Consequently, the 

normalization is designed to control for changes in the forecasting environment by generating, for a 

given value of 2
|( )j

t h te  , a value of � 2
|( )j

t h te  that is lower (higher) when forecasters are collectively less 

(more) accurate compared to periods when they are more (less) accurate. 

For each forecaster, we can calculate a score by taking an average of the normalized squared 

error statistics. Letting jT  denote the total number of surveys in which participant j appears and T
denote the total number of surveys conducted, the score of participant j is defined as: 

(2)   � 2
|

1

1 ( )   ,
T

j j
j t h t

t
S eT 



  %  

where � 2
|( )j

t h te   is set to zero if participant j did not respond to that survey. Because the performance 

score in (2) is calculated as an average, it can account for a participant entering or exiting a survey. 

D’Agostino, McQuinn, and Whelan (2012) derive a historical distribution of forecast 

performance using the score in (2) and the associated rank ordering of all participants. A test for 

equal ability proceeds by randomly reshuffling and reassigning individual forecasts of a given 

variable for a particular survey. The same procedure is applied to each survey, resulting in a new 

sequence of forecasts for each participant that can be used to calculate an overall score from (2) and 

construct a rank ordering. The process is repeated many times to generate a large number of 

simulated distributions of forecaster performance, with the test for equal ability comparing the 

historical distribution of forecast performance to the simulated distributions. Under the null 

hypothesis of equal ability, the historical distribution of forecast performance should lie within 

selected percentiles of the simulated distribution that serve as confidence intervals. D’Agostino, 

McQuinn, and Whelan (2012) find little evidence that the best forecasters are significantly better 

than others, although there is a relatively small group of forecasters that perform very poorly. 

While the approach in D’Agostino, McQuinn, and Whelan (2012) is attractive, Hounyo and 

Lahiri (2023) argue that the independent nature of the resampling method used to generate the 

simulated distribution is problematic for two reasons. First, common aggregate shocks can generate 

cross-sectional dependence across participants. Second, overlapping forecast horizons can generate 

time-series dependence across participants. As Hounyo and Lahiri (2023) note, D’Agostino, 

McQuinn, and Whelan (2012) independently resample observations from one forecaster to another 

within the same survey which ignores possible cross-sectional dependence in participants’ forecast 

errors. They also note that D’Agostino, McQuinn, and Whelan (2012) independently resample 
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observations from one period to another which rules out possible serial correlation in a participant’s 

forecast errors even though two of the four target variables involve overlapping forecast horizons. 

To address these two concerns, Hounyo and Lahiri (2023) propose an alternative to the 

bootstrap procedure of D’Agostino, McQuinn, and Whelan (2012). Their method applies a wild 

bootstrap to the vector containing all the individual forecast errors at each point in time. Their 

approach accounts for any cross-sectional and serial correlation in participants’ forecast errors while 

preserving the unbalanced nature of the panel.5 Importantly, the application of their testing 

procedure to forecasts of GDP growth and inflation from the US-SPF strongly rejects the null 

hypothesis of equal predictive ability, overturning the findings of D’Agostino, McQuinn, and 

Whelan (2012). In particular, the results indicate there are systematic differences in forecasters’ 

ability that extend beyond the best forecasters and include forecasters across all percentiles of the 

distribution of predictive performance. 

While the issue of equal predictive ability in Hounyo and Lahiri (2023) has relevance for our 

investigation, there is scope for further exploration into the properties of individual forecast 

behavior. For example, the implications of IR models for forecaster interchangeability apply equally 

to the mean and variation over time in accuracy and, therefore, would argue for also taking higher 

moments into consideration. In addition, the presence of systematic patterns in predictive 

performance raises questions about the source(s) for this feature of the data as well as the possible 

impact of these patterns on the rank ordering of forecasters. Hounyo and Lahiri (2023) rank 

forecasters based on average predictive performance, but it is not clear whether this ranking is stable 

over time.  

On a more general level, another aspect of Hounyo and Lahiri (2023) to consider centers on 

their use of the metric in (1). Specifically, the normalized metric in (1) involves an asymmetric 

treatment of accuracy at the individual level versus the aggregate level. That is, a forecaster who 

makes a relatively large error when the average forecast error is small will incur a large penalty, 

whereas a forecaster who makes a relatively small error when the average forecast error is large will 

not benefit much.6 

 
5 See Hounyo and Lahiri (2023) for a more detailed discussion. 
6 For example, if an individual’s forecast error is 0.5 percentage point and the average forecast error is 2 
percentage points, then the individual’s normalized forecast error decreases to 0.25 percentage point and 
there is a ‘benefit’ of 0.25 percentage point. On the other hand, if an individual’s forecast error is 2 percentage 
points and the average forecast error is 0.5 percentage point, then the individual’s normalized forecast error 
increases to 4 percentage points and there is a ‘penalty’ of 2 percentage points. 
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Drawing upon the previous discussion, we propose a heterogeneous panel data model to 

describe the predictive performance of survey participants. The empirical analysis is based on the 

following specification for the forecast performance of each participant j and survey in period t: 

(3)  | | |
j j
t h t j j t h t t h tFP FP         

where |
j
t h tFP  and |t h tFP   denote a forecast performance (FP) metric at the individual and cross-

sectional average level, respectively, and |
j
t ht   is a mean-zero error term. For the moment, we only 

note that lower (higher) values of the FP and F P  measures denote higher (lower) forecast 

accuracy and defer a more detailed discussion of the specific metrics until Section IV.  

There is a close parallel between the specifications in (3) and (1) such that the panel data 

model can be viewed as a linear regression-based analogue to the normalized metric used in 

D’Agostino, McQuinn, and Whelan (2012) and Hounyo and Lahiri (2023). There are, however, 

several advantages to our empirical framework. First, the participant-specific intercept and slope 

allow for a deeper exploration into the nature of heterogeneity. Specifically, we can evaluate 

individual forecast performance through two channels: an individual fixed effect  -- which 

captures the component of a forecaster’s performance that is time-invariant -- and a time-varying 

component ( )FP -- which captures the component that depends on the degree of difficulty in the 

forecast environment. In addition, the linear specification in (3) does not maintain the asymmetric 

treatment of forecast accuracy in (1) at the individual level versus the aggregate level. 

Our empirical framework also accounts for cross-sectional dependence in the data. 

Specifically, the inclusion of the cross-sectional average of predictive performance  FP  in the 

individual regressions in (3) allows us to interpret our empirical framework within the context of the 

common-correlated effects (CCE) estimator of Pesaran (2006). As shown by Pesaran (2006), 

averaging the dependent variables in a panel data model at a point in time yields a proxy for an 

unobserved common component that can control for cross-sectional correlation across units.7 In the 

context of the ECB-SPF, the movements in F P  capture the effect of aggregate shocks that 

generate higher or lower accuracy across participants in a period and thereby also provide a very 

natural way to describe time variation in the difficulty of the forecasting environment. 

 
7 See Pesaran (2006) for a more detailed discussion. 
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We calculate robust standard errors for the estimated parameters in (3) by applying the 

Newey-West (1987) covariance matrix modified for use in a panel setting to account for 

autocorrelation and conditional heteroscedasticity in the data. As previously discussed, the issue of 

time series dependence arises when the data involve overlapping forecast horizons which is relevant 

for our analysis. 

The heterogeneity admitted by the specification in (3) also allows for a more detailed 

comparison of the statistical features of participants’ accuracy and an evaluation of their alignment. 

Specifically, we can consider both first and second moments of accuracy as a basis to investigate the 

issue of comparable forecast behavior. As shown in the Appendix, the restriction 0j   and 1j   

provides a test for distributional homogeneity which involves a joint test of equal predictive 

performance and equal variance of the predictive performance metric across participants.8 The 

testing procedure formalizes the idea that if forecasters are interchangeable, then over time their 

observed behavior should be indistinguishable from that of the consensus forecast. 

In addition to the test for distributional homogeneity, another attractive feature of our 

empirical framework is that we can examine the estimated parameter pairings ˆˆ( , )j j   for evidence 

of other distinguishing patterns in participants’ predictive performance within a target variable. A 

property of the regression equation (3) is that the estimated values for   and   across participants 

will be centered around 0 and 1, respectively. As shown in Figure 1, we can partition the parameter 

space into four quadrants which affords an extremely intuitive way to visualize features of 

participants’ predictive performance. If the estimated parameter pairings are not distributed 

randomly across the quadrants in Figure 1, then one possibility is that a scatterplot of the estimated 

parameter pairings principally run from the lower-left ( 0, 1)    quadrant up through the upper-

right ( 0, 1)    quadrant. In this configuration, the lower-left quadrant would identify 

participants who are more accurate on average than their peers irrespective of the forecasting 

environment, while the upper-right quadrant would identify participants who are less accurate on 

average than their peers irrespective of the forecasting environment.9  

A second possibility is that the estimated parameter pairings principally run from the upper-

left ( 0, 1)    quadrant down through the lower-right ( 0, 1)    quadrant, implying that 

relative predictive performance varies with the forecasting environment. Specifically, participants in 

 
8 We would like to thank an anonymous referee for bringing this point to our attention. 
9 Recall that lower (higher) FP values are associated with higher (lower) individual forecast accuracy and 
lower (higher) F P values are associated with tranquil (volatile) forecasting environments.  
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the upper-left quadrant are relatively more accurate in a tranquil environment and then relatively less 

accurate as the environment becomes more volatile. The opposite holds for participants in the 

lower-right quadrant. Additionally, the quadrant scatterplot is informative about the dispersion of 

the estimated parameter pairings and their correspondence with the nature of the forecasting 

environment.  

Estimation of (3) also allows us to generate a forecast performance profile for each 

participant based on the predicted values of the individual regressions � FP  where: 

(4) �  | |
ˆˆj

t h t j j t h tFP FP     

The behavior of the performance profiles depends on the forecasting environment and the quadrant 

location of the estimated parameter pairings. As we vary the value of FP, the performance profile of 

participants located in the lower-left quadrant will run below the profile of those located in the 

upper-right quadrant without crossing. In the case of participants in the upper-left quadrant and 

lower-right quadrant, however, changes in the forecasting environment can cause their profiles to 

cross and generate variation in the rank orderings of predicted forecast accuracy. Our ability to 

observe movements in participants’ rank orderings and gauge their stability over time provides a 

deeper insight into forecaster performance compared to other studies and highlights another 

important contribution of the analysis.   

Our empirical framework also lends itself to making intrapersonal comparisons of the 

participants. Earlier discussion of IR models highlighted the implication that individuals should not 

display systematic patterns in their forecast behavior across target variables. To investigate this issue, 

we consider one approach that focuses on the quadrant location of a participant’s estimated 

parameter pairing. Specifically, Section V describes a simulation exercise to assess if the quadrant 

locations for a participant’s estimated parameter pairings are similar across target variables. 

We also consider a second approach that examines the relationship between a participant’s 

overall forecast performance relative to the consensus across target variables. Specifically, we 

construct the following metric for individual j for each target variable: 

(5)      | |
1

1
T

j j
j t h t t h t

t
FP FP FP FPT  



     
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where |
j
t h tFP  is set to |t h tFP  if participant j did not respond to that survey. The metric in (5) is 

similar to the score described in (2) and provides an assessment of a participant’s average relative 

forecast performance. That is, it indicates how a participant’s predictive performance compares to 

the cross-sectional average over time, with negative (positive) values associated with higher (lower) 

overall accuracy. The findings that a participant’s estimated parameter pairings tend to locate in the 

same quadrant and that the metric from (5) is correlated across target variables would indicate 

commonalities in a participant’s forecast behavior and offer evidence of deviations from IR models. 

One last consideration is that the specification in (3) nests two alternative approaches 

previously used to capture the effects of aggregate shocks. Specifically, the normalization procedure 

proposed by D’Agostino, McQuinn, Whelan (2012) and maintained by Meyler (2020) and Hounyo 

and Lahiri (2023) corresponds to the restriction that the j s   are jointly equal to zero, while the 

application of time fixed effects adopted by Kenny, Kostka, and Masera (2014) corresponds to the 

restriction that all of the j s   are equal. To preview our findings, the data reject both alternative 

approaches designed to control for variation in the forecasting environment. 

Taken together, our modeling strategy provides a unified empirical framework to analyze the 

predictive performance of ECB-SPF participants and to inform models of the expectations 

formation process. Regarding IR models, our approach affords several avenues to analyze and 

characterize patterns in predictive performance and to determine if those patterns are consistent 

with interchangeable behavior on the part of participants. Moreover, our approach uses 

conventional estimation and testing procedures, as well as accounts for a range of econometric 

issues arising from the nature of the survey instrument and data. Importantly, changes in the 

predictability of a target variable do not present a challenge or require the adoption of some type of 

sub-sample analysis. Rather, time variation in the forecasting environment is an integral element in 

our methodology and plays a central role in our ability to compare and to contrast various features 

of participants’ predictive performance. 

III. Literature Review 

Our findings make several contributions to the existing literature on the expectations 

formation process. One area of interest focuses on the use of a panel data framework to explore 

different aspects of the predictive performance of ECB-SPF participants. Kenny, Kostka, and 

Masera (2014) compare the predictive performance of individual-level ECB-SPF density forecasts to 

density forecasts from a set of simple alternative benchmark models. Their results indicate 
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significant time variation in the forecast accuracy of participants relative to the benchmark models. 

Examining the link between the moments of density forecasts and density forecast performance, 

Kenny, Kostka, and Masera (2015a) find that forecast performance could be improved if 

participants corrected a downward bias in their reported variances. Kenny, Kostka, and Masera 

(2015b) report that predictive performance differs across forecasting tasks, with surveyed densities 

being much more informative about direction-of-change predictions than high and low outcome 

events. We also find significant time variation in the relative performance of both point and density 

forecasts. Moreover, we extend previous work on the determinants of differential predictive 

performance of ECB-SPF participants by identifying changes in the forecast environment as a new 

and important channel of influence that induces time-variation in the rank orderings of the panel. 

Meyler (2020) applies the bootstrapping and Monte Carlo simulation techniques of 

D’Agostino, McQuinn, and Whelan (2012) to examine the issue of equal predictive performance for 

ECB-SPF point forecasts. He correctly notes that the testing procedure relies on participants’ 

forecast errors being uncorrelated across periods. When the data in (1) involve overlapping forecast 

horizons (h >1), the conventional application of the testing procedure is not valid because of 

autocorrelation in the forecast errors. To remedy this situation, Meyler (2020) proposes separating 

the data across nonoverlapping forecast horizons. A drawback of this approach is that it restricts his 

analysis to SPF rounds that are four quarters apart which dramatically lowers the power of the 

testing procedure because of the reduced time series dimension of the data. An attractive feature of 

our approach is that it does not require the panel to be separated into sub-samples, thereby allowing 

us to exploit efficiency gains from using all the information on participants in a collective manner. 

Another area of interest is heterogeneity in the forecast features of the ECB-SPF. Kenny, 

Kostka, and Masera (2014, 2015a, 2015b) find considerable heterogeneity in the performance of the 

surveyed densities, while Meyler (2020) finds little evidence of participants who perform significantly 

better or worse than their peers in terms of point forecasts. Our empirical framework provides an 

extremely flexible approach to investigate heterogeneity in predictive performance across multiple 

dimensions such as target variables and the quadrant location of a participant’s estimated ˆˆ( , )j j   

parameter pairings. Moreover, we apply our empirical framework to both point and density forecasts 

as a robustness check and find that predictive performance displays stronger correlation patterns for 

the surveyed density forecasts than the point forecasts. Abstracting from other considerations, this 

result may help to explain some of the conflicting evidence reported in Kenny, Kostka, and Masera 

(2014, 2015a, 2015b) and Meyler (2020). 



12 
 

Our paper also contributes to a related literature that focuses more broadly on systematic 

patterns in survey-based forecasts. Bruine de Bruin et al. (2011) report strong evidence of 

persistence in individual participants’ relative levels of uncertainty from the Federal Reserve Bank of 

New York Survey of Consumer Expectations. Boero, Smith, and Wallis (2015) examine the Bank of 

England Survey of External Forecasters and find significant persistence in the relative levels of point 

forecasts and uncertainty. Clements (2022) documents persistence in the relative levels of accuracy 

and disagreement of point forecasts for the US-SPF, while Rich and Tracy (2021) document 

persistence in the relative levels of disagreement and uncertainty for the ECB-SPF. While our study 

shares a similar motivation to Clements (2022), there are notable differences. For example, Clements 

(2022) restricts his analysis to point forecasts from the US-SPF and relies on a rank correlation test 

applied to two sub-samples to assess systematic patterns in individual forecast behavior. 

Finally, our modeling strategy is closely related to the work of Qu, Timmermann, and Zhu 

(2019, 2021) that uses a panel data framework to analyze forecast accuracy. They consider various 

approaches to separate the importance of common shocks from idiosyncratic, individual-specific 

shocks. Our analysis differs in two important respects. The first is in terms of dimensions of the 

data. The modeling framework and testing procedures in Qu, Timmermann, and Zhu (2021) are 

designed for a large cross-section. However, our examination of the ECB-SPF only includes three 

variables – real GDP growth, inflation, and unemployment – which is too small for applying their 

methods. The second is in terms of focus. A key issue of interest in Qu, Timmermann, and Zhu 

(2019) is the identification of participants with superior forecasting skills. Consequently, their 

methodology involves the consideration of predictive performance across multiple dimensions and 

the assessment of a very large number of pairwise comparisons. In contrast, our interest is not in a 

detailed exploration aimed at an overall ranking of forecasters. Rather, the inter- and intrapersonal 

comparisons in our analysis are much more limited in scope and are more narrowly directed at 

assessing their consistency with expectations models that predict the absence of systematic patterns 

at the individual level. 

IV. The European Central Bank Survey of Professional Forecasters 
The ECB-SPF began in January 1999 and provides a quarterly survey of euro area forecasts. 

The survey draws its pool of panelists from both financial and nonfinancial institutions, with most, 

but not all, located in the euro area. Meyler (2020) notes that the principal aim of the survey is to 

solicit expectations about real GDP growth, inflation, and unemployment, although the 

questionnaire also contains a noncompulsory section asking participants for their expectations of 
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other variables and to provide qualitative comments that inform their quantitative forecasts.10 The 

ECB-SPF asks panelists for forecasts at short-, medium- and longer-term horizons, including both 

“rolling” and “calendar year” variants. The survey is fielded in January, April, July, and October, 

with approximately 55 panelists on average responding per survey. For additional details about the 

ECB-SPF, see Garcia (2003) and Bowles et al. (2007). 

We examine forecasts for real GDP growth, HICP inflation, and the unemployment rate. 

This choice partly reflects the structure of the survey instrument that asks respondents to submit 

both point- and density-based forecasts for these three macroeconomic variables.11 Because Kenny, 

Kostka, and Masera (2014, 2015a, 2015b) restrict their analyses to surveyed density forecasts and 

Meyler (2020) restricts his analysis to surveyed point forecasts, our inclusion of both types of 

forecasts offers an important robustness check. For the density forecasts, participants report their 

subjective probability distribution of forecasted outcomes as a histogram using a set of intervals 

provided in the survey. While the ECB-SPF occasionally changes the number of closed intervals for 

the histogram, it has essentially maintained a common bin width for the closed intervals throughout 

its history.12 

Regarding forecast horizons, we examine point and density forecasts that involve rolling 

one-year-ahead and one-year/one-year-forward horizons. Compared to calendar year horizons, an 

advantage of the rolling horizons is that the horizon length remains constant through time and 

allows us to treat the data as quarterly observations on a set of individually homogeneous series. As 

Garcia (2003) notes, there is a temporal misalignment between the target variables because of 

differences in the data frequency and publication lags of the variables. Specifically, real GDP growth 

is published quarterly with a two-quarter lag, while HICP inflation and the unemployment rate are 

published monthly with a one-month and a two-month lag, respectively.13 

Our study analyzes surveys conducted from 1999:Q1–2018:Q3, with forecast evaluation for 

all series ending in 2019:Q3. The ECB-SPF, like other surveys, has experienced entry and exit of 

 
10 The additional expectations are for variables such as wage growth, the price of oil, and the exchange rate.   
11 The ECB-SPF is among a small but growing number of surveys that solicit both point and density 
forecasts. Other notable surveys include the US-SPF (published by the Federal Reserve Bank of Philadelphia), 
the Bank of England Survey of External Forecasters, and Federal Reserve Bank of New York Survey of 
Consumer Expectations. 

12 The only deviation in this design started with the 2020:Q2 survey in response to the COVID-19 outbreak. 
The (nearly) constant interval width of the ECB-SPF density forecasts contrasts with the US-SPF density 
forecasts, which have experienced periodic changes in interval widths. 
13 For example, the 2010:Q1 survey questionnaire asks respondents to forecast one-year-ahead output growth 
from 2009:Q3–2010:Q3. For HICP inflation, the corresponding forecast horizon is December 2009–
December 2010. For the unemployment rate, the corresponding forecast is for November 2010.  



14 
 

respondents over time. In addition, occasionally participants do not respond to a questionnaire or to 

individual items within the questionnaire. As noted by Meyler (2020), participants provide the 

highest number of forecasts for HICP inflation and the lowest number for unemployment, with the 

number of forecasts at the one-year-ahead horizon exceeding that at the one-year/one-year-forward 

horizon. Participants also report more point forecasts than density forecasts. Given the unbalanced 

panel structure of the ECB-SPF, we only include participants at each individual target 

variable/horizon who provide at least 50 forecasts.14 Further, we only consider matched point and 

density forecasts to maintain comparability across the types of forecasts. Consequently, the number 

of participants varies from 34 (HICP inflation at the one-year-ahead horizon) to 21 (unemployment 

rate at the one-year/one-year-forward horizon). 

An important issue for the assessment of predictive performance is the choice of data 

vintage used to construct realizations of the target variables. As is the case for most macroeconomic 

data for most countries, euro-area macroeconomic statistics tend to be revised from preliminary 

releases. Consequently, a choice must be made about the relevant release associated with a 

participant’s forecast. Following Meyler (2020), we construct realizations of the target variables for 

HICP inflation and the unemployment rate using monthly data from the first full release.15 For real 

GDP growth, we construct realizations of the target variables using quarterly data from the second 

estimate. We have considered other approaches to construct realizations of the target variables as 

additional robustness checks.16 

Another important issue for the assessment of predictive performance is the choice of point 

and density forecast accuracy measures. For the point forecasts, we adopt the absolute error as the 

metric: 

(6)  |
POINT j j

t h t t h t t hFP X E X     

where t hX  denotes the realized value of the relevant ECB-SPF target variable in period t+h and 

[ ]j
t t hE X   denotes the reported point forecast from participant j in the survey at date t. 

 
14 We have also experimented with a lower threshold of 40 participants and obtained similar results.   
15 For example, if the target variable is one-year-ahead HICP inflation, we use the first full release reporting 
the value of the price index in month t+12. The same release is used to obtain the value of the price index in 
month t.  
16 We used current vintage data as one robustness check. As another robustness check, we construct growth 
rates using the first full release to obtain the value of the price index in month t and the second estimate for 
the level of real GDP in quarter t. The results changed very little using these alternative approaches.  
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For the density-based accuracy measure, we adopt the absolute rank probability score 

(ARPS) as the metric: 

(7) |
1 1 1

1
1

tk i i
DENSITY j j

t h t g t g t h
i g gt

FP p I
k 

  

 
     

where we assume there are tk  bins associated with the histogram for the survey at date t, j
g tp is the 

probability assigned by respondent  j to the gth bin, and g t hI    denotes an indicator variable that takes 

a value of one if the actual outcome in period t+h is in the gth  interval of the histogram from the 

survey at date t. The ARPS has the property that a participant receives “credit” by assigning 

probability in bins close to the bin containing the actual outcome.17 

The evaluation of the ECB-SPF density forecasts requires additional discussion beyond the 

selections of data vintage and metrics. To the extent that respondents place any probability in either 

open interval, the manner chosen to close off the open intervals will affect the value of the forecast 

performance metric in (7). We follow a common—although ad hoc—assumption and close the 

exterior open intervals by assigning them twice the width of the interior closed intervals. We also 

need to address the issue of the location of probability mass associated with the density forecasts. 

We again draw upon common practices and assume that the probability mass is distributed 

uniformly within each bin of the histogram. Finally, we exclude the 2009:Q1 one-year-ahead real 

GDP growth density forecast data because many respondents placed significant probability in the 

lower open interval of the histogram in this survey.18 

V. Empirical Results 
We begin by examining the behavior of the (cross-sectional) average forecast performance 

metrics  FP  to compare predictability across the target variables as well as to identify tranquil and 

volatile episodes. Figure 2 plots the movements of  FP  for the point forecasts and density 

 
17 The squared norm is used in Meyler (2020) for point forecasts and in Kenny, Kostka, and Masera (2014, 
2015a) for density forecasts. Compared to the absolute value norm in (6) and (7), the squared norm is more 
sensitive to outliers and the manner used to close the exterior open intervals for density forecasts. For 
robustness, we also used the squared norm and found similar results. 
18 For this survey, the significant probability mass at the lower open interval corresponded to a growth rate of 
“-1 percent or less” and was due to the survey design of the density forecasts and its inability to provide 
sufficient coverage for the pessimistic point predictions of output growth. For individuals who either 
reported point predictions below -1 percent or wanted to indicate significant downside risk, they assigned 
most of their probability to the open-ended interval. See Abel et al. (2016) for further discussion. 
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forecasts of real GDP growth, HICP inflation, and the unemployment rate at the one-year-ahead 

horizon, while Figure 3 provides the corresponding information at the one-year/one-year-forward 

horizon. The metrics are plotted based on the realization of the target variable, with gray bars 

indicating recessions as determined by the Euro Area Business Cycle Dating Committee of the 

Center for Economic Policy Research.19 

As shown, there is generally a close correspondence between the point and density forecast 

performance metrics for the same target variable. While the difficulty of forecasting outcomes 

around the time of the global financial crisis and the euro-area debt crisis is evident, the data indicate 

other episodes associated with sizable forecast errors that are not uniform in their timing across the 

target variables. Consequently, there is sufficient variability in the forecasting environments to 

mitigate concerns that our results may be largely driven by just a few events.  

As for the pattern of the forecast errors, they are highest for real GDP growth around the 

time of the global financial crisis. For HICP inflation, they are also highest around the time of the 

global financial crisis as well as elevated toward the beginning of the sample and during the middle 

of the last decade. For the unemployment rate, the forecast errors are again largest around the time 

of the global financial crisis, although they are also elevated at the beginning of the sample and 

around the time of the euro-area debt crisis. 

Interpersonal Comparisons of Predictive Performance 

We estimate the parameters in (3) using ordinary least squares (OLS), with standard errors 

computed using the Newey-West (1987) covariance matrix estimator modified for use in a panel 

data set.20 Column 1 in Tables 1-2 presents formal tests for distributional homogeneity of the 

predictive performance metrics. Letting 1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ( , ), ( , ), ..., ( , )N N           denote the vector of 

estimated parameters of the model, we construct the following Wald test statistic for the joint null 

hypothesis that 0 1j j  I  for  j  =1,…,N participants in the panel for a specific target variable: 

(8)      1

0 0
ˆ ˆ ˆvarW     

     
 

 
19 For example, the metric associated with the forecasts of HICP inflation from 2015:Q1-2016:Q1 is plotted 
at 2016:Q1. While Figure 2 plots the value for the one-year-ahead point forecasts of real GDP growth in 
2009:Q1, recall that the analysis does not include these data due to the exclusion of the matched density 
forecasts. Unlike the absolute error metric, the ARPS metric is restricted to fall in the range between 0 and 1.    
20 We allow the error terms to follow a fourth-order moving average process to account for the overlap of 
forecast horizons.  
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The values of the test statistic indicate strong evidence of systematic differences in the mean and 

variance of participants’ forecast accuracy as we reject the null hypothesis at the 1 percent 

significance level in all cases except for the point forecasts of inflation at the one-year horizon.21 

The test of distributional homogeneity involves a joint test of equal predictive performance 

and equal variance of the predictive performance metric. Because almost all investigations into 

forecast performance have focused exclusively on equal predictive ability, it would be of interest to 

explore how this issue may bear upon the reported rejections. Even if participants display equal 

predictive ability, our more restrictive testing procedure could lead to a rejection of the null 

hypothesis due to heterogeneity in the variance of the performance metric. To investigate this 

possibility, we apply the testing procedure of Hounyo and Lahiri (2023) to the ECB-SPF data and 

report the findings in the Appendix.  

As shown, the evidence strongly rejects the null hypothesis of equal predictive ability at 

conventional significance levels.22 Consequently, the rejection of distributional homogeneity does 

not mask equal predictive ability among forecasters. It is also interesting to note that the pattern of 

rejections of equal predictive ability is remarkably similar to that documented by Hounyo and Lahiri 

(2023) for the US-SPF where the best forecasters as well as forecasters across the other percentiles 

of the distribution of predictive performance are more accurate than what would be expected by 

random chance using the bootstrap procedure. 

Because our empirical framework nests two common approaches to control for variability in 

the forecasting environment, we also construct Wald test statistics for the validity of the normalized 

predictive performance metric 1 2( 0)N     K  and for the use of time fixed effects 

1 2( )N    K . Except for the point forecasts of inflation at the one-year horizon, the results 

in column 2 and column 3 strongly reject the normalized predictive performance metric and the use 

of time fixed effects to control for the effects of aggregate shocks, respectively. These findings offer 

an additional reason why our evidence of systematic differences in the predictive performance of 

ECB participants contrasts with the analyses of Kenny, Kostka, and Masera (2014) and Meyler 

(2020). Specifically, Kenny, Kostka and Masera (2014) use time fixed effects to control for changes 

in the forecasting environment., while Meyler (2020) adopts the normalization procedure.23 

 
21 The different degrees of freedom reflect the varying number of respondents meeting the participation 
restriction for the various target variables. 
22 Following Hounyo and Lahiri (2023), we also consider the case of excluding forecasters who scored worse 
than the 80th percentile and found similar results. These findings are also reported in the Appendix. 
23 As previously discussed, the more general nature and greater parameter flexibility of our empirical 
framework allows the model estimates to account for changing relative performance rankings. The inability of 
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To gain insight into the relative accuracy of participants, Figures 4-5 display scatterplots and 

correlation coefficients (r) for the individual estimated parameter pairings  ˆˆ ,j j   for the point 

forecasts and density forecasts, respectively. The patterns are striking in their similarity across target 

variables. Because few of the estimated parameter pairings fall in the lower-left ( 0, 1)    and 

upper-right ( 0, 1)    quadrants, the visual evidence does not support the view that the ECB-

SPF panel is comprised of participants who remain relatively more accurate and other participants 

who remain relatively less accurate across all forecasting environments. Instead, evidence of the 

estimated parameter pairings largely falling in the upper-left ( 0, 1)    and lower-right 

( 0, 1)    quadrants indicates that participants’ relative accuracy varies with the forecasting 

environment. Moreover, the patterns do not suggest clustering or that the negative relationship 

reflects the behavior of a few participants. Rather, the observations are dispersed within each of the 

two quadrants and display a comparable count across the two quadrants. We also observe the 

correlations are larger in absolute value for the density forecasts compared to the point forecasts. 

Given the evidence documenting a strong link between a participant’s predictive 

performance and the difficulty of the forecasting environment, it is natural to ask what might be 

driving this result. Here we consider one possible explanation that draws upon Clements (2022) and 

can be easily incorporated within our empirical framework. Specifically, Clements (2022) examines 

the US-SPF and investigates whether systematic differences in forecast accuracy are related to 

systematic differences between forecasters in their degree of contrarianism. Such would be the case 

if some forecasters receive superior private information, resulting in predictions that display greater 

contrarianism but also higher accuracy. 

We investigate the relationship between forecast accuracy and contrarianism by pairing a 

participant’s average relative forecast performance metric in (5) with an analogue for disagreement. 

Specifically, we construct the following measure of average relative disagreement: 

(9)      | |
1

1
T

j j
j t h t t h t

t
D D D DT  



    

where 

(10) | [ ] [ ]j j
t h t t t h t t hD E X E X     

 
the specifications in Kenny, Kostka and Masera (2014) and Meyler (2020) to capture this feature of the data 
may be another factor explaining why our conclusions differ. 
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and where |
j
t h tD   is set to |t h tD   if participant j did not respond to that survey. The metric in (9) 

indicates how a participant’s disagreement compares to average disagreement across the responding 

survey group over time, where individual disagreement is described in (10) and is measured by the 

absolute value of the deviation between a participant’s forecast and the consensus forecast.24 

Because a positive (negative) value in (9) reflects higher (lower) relative disagreement, we would 

expect a negative association with average relative forecast performance if superior information is 

the source for the persistent performance heterogeneity among forecasters. 

Figure 6 displays scatterplots and correlation coefficients (r) for the individual pairings of 

disagreement and predictive performance for the point forecasts. As shown, there is a positive 

relationship of varying strength between disagreement and accuracy across target variables which 

suggests that more contrarian forecasters on average make less accurate forecasts. This finding is 

consistent with evidence in Clements (2022) for the US-SPF and does not support the conjecture 

that heterogeneity in forecast accuracy reflects some participants benefiting from superior private 

information. 

Time-variation in Forecast Performance Profiles  

An attractive feature of our empirical framework is that we can examine the implications of 

the estimation results for the forecast performance profiles of participants. To illustrate, we will 

initially select a participant from each of the four quadrants associated with a target variable. While 

any scatterplot can be used for the exercise, we select the one-year-ahead point forecasts of GDP 

growth because it is likely to be of particular interest.25 Figure 7 depicts the data and the estimated 

regression line for each participant identified by the color-coded circles for the one-year-ahead GDP 

growth rate in the upper-left panel in Figure 4. As shown, the estimated regression lines display a 

very high fit to the data and suggest little reason to depart from the linear specification in (3).26 

Figure 8 plots the predicted forecast performance profiles of the same four participants and 

provides a visual investigation into their behavior as well as the incidence and nature of crossings 

that bear upon the issue of the stability of rank orderings. Using the estimated parameter pairing for 

 
24 Similar to the inclusion of F P  in (5), the inclusion of average disagreement |( )t h tD  in (9) is consistent 
with Clements (2022) who cites the importance of controlling for variation in the extent of disagreement over 
time.    
25 While the one-year-ahead point forecasts of inflation would also be of interest, recall that we do not reject 
the property of distributional homogeneity for this series. 
26 There is an outlier observation for three of the four participants associated either with realized GDP 
growth in 2008:Q3 or 2008:Q4. We exclude the relevant observation from the scatterplots (but not the 
reported 2R values) in Figure 7 to enhance presentation of the data. The scatterplots and regression lines 
including all observations are provided in the Appendix.      
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each participant, we vary the average forecast performance metric  FP  to trace out the 

performance profiles. Figure 8 also includes a 45-degree line indicating where individual predicted 

forecast performance � FP  equals the cross-sectional average of forecast performance  FP . 

The resulting performance profiles closely align with our expected behaviors.27 If 

participants were principally located in the lower-left (purple) and the upper-right (blue) quadrants, 

then this configuration would produce relatively stable rankings over time. This is shown by the 

purple and blue lines not crossing, with increases in the difficulty of the forecasting environment 

only acting to widen the gap between them. Because participants in the lower-left quadrant are 

predicted to be systematically more accurate than the average, the purple line always lies below the 

45-degree line. The opposite holds for the participant in the upper-right quadrant. It is important to 

note that our illustration does not claim that the performance profiles cannot display crossings, but 

it does indicate that the crossings can only occur among participants located in the same quadrant. 

As shown in Figures 4 and 5, most participants are located in the upper-left (yellow) and 

lower-right (red) quadrants. In contrast to the previous configuration, this configuration will 

produce highly variable rankings over time as performance profiles will display crossings beyond 

those involving participants located in the same quadrant. This is illustrated on a general level by the 

yellow and red lines crossing the 45-degree line which indicates a switch in the forecast accuracy of 

the participants relative to the cross-sectional average. Focusing on our selected participants, we see 

the yellow and red lines cross at 0.83 (the 59th percentile of FP) as well as crossings with the 

participant from the lower-left quadrant at 0.41 (29th percentile) and 1.45 (90th percentile), 

respectively.28 As shown, these crossings are associated with changes in rankings of participants as 

the forecasting environment evolves from low difficulty to extreme difficulty.29 

 
27 Similar to Figure 7, there is a corresponding outlier value of FP that we elect to exclude from the plots in 
Figure 8 to enhance presentation of the performance profiles. The performance profiles values using the full 
range of FP values are also provided in the Appendix.  
28 While participants in the lower-left quadrant display forecasts that are systematically more accurate than the 
average, this does not imply that their forecasts always outperform those of individuals in other quadrants. 
Consequently, there is no inconsistency with the figure displaying the crossings of the performance profiles 
by the participants in the upper-left and lower-right quadrants. A similar point holds for participants in the 
upper-right quadrant. 
29 As shown in the corresponding figure in the Appendix, there is an additional crossing of the yellow and 
blue lines near the upper range of the FP values. While a crossing point can always be calculated between the 
45-degree line and the performance profile of a participant in the upper-left or lower-right quadrant, this may 
occur outside the range of FP values in the sample.  
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To gain a better appreciation of the extent of this variability, we now consider all 33 

participants associated with the one-year-ahead point forecasts of GDP growth. We construct rank 

orderings based on participants’ forecast accuracy evaluated at eight values spanning the range of FP 

values for this target variable. Table 3 reports the results, where the first column lists the forecaster 

IDs and the remaining columns moving from left to right indicate the rank ordering of each 

forecaster as the forecasting environment becomes more difficult. For ease of comparison, the order 

of the ID numbers is based on the initial ranking of forecasters at the lowest value of FP = 0.25. 

As shown in Table 3, the pattern of the rank orderings is consistent with the evidence from 

the scatterplot of the estimated parameter pairings in the upper-left panel of Figure 4. Some 

respondents largely maintain similar rankings either because they tend to be highly accurate (#22), 

highly inaccurate (#36), or close to the cross-sectional average most of the time (#54, #16). For 

most respondents, however, their rank orderings vary over the forecast environment. While this 

variation can reflect dramatic improvements (#94, #52) or dramatic declines (#37, #39) in 

predictive performance, it is more typical to observe individuals who become relatively more 

accurate (#24, #2) or relatively less accurate (#54, #98) as the forecasting environment turns more 

challenging. 

There are two key takeaways that emerge from Figure 8 and Table 3. The first is that 

forecaster evaluations and comparisons may not be invariant to the relative prevalence of tranquil 

and volatile episodes in a selected sample period. The second is that the evidence may provide one 

explanation for the finding that it is difficult, ex ante, to devise forecast combination methods that 

beat a simple average.30 While our analysis links predictive performance to variation in the 

forecasting environment, this feature may not be easily exploitable because of the inherent difficulty 

of predicting tranquil/volatile episodes in real time. If, however, we were to allow for the availability 

of some information on an ex post basis, then the Appendix describes a “performance weighting” 

combination scheme that consistently and significantly outperforms the equally-weighted consensus 

forecast.31 

Intrapersonal Comparisons of Predictive Performance  

The analysis up to this point has examined forecast data for the target variables in isolation. 

However, we can also investigate if there are commonalities in individual predictive performance 

across target variables. While the scatterplots in Figure 4 and Figure 5 show that the estimated 

parameter pairings principally lie in the ( 0, 1)   and ( 0, 1)   quadrants, they do not 

 
30 See Timmermann (2006) and Genre et al. (2013). 
31 We would like to thank an anonymous referee for suggesting this exercise. 
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indicate the extent to which the pairings for a participant tend to locate in the same quadrant across 

target variables. Another consideration is the extent to which a participant’s predictive performance 

for a target variable correlates with performance for other target variables. Previous discussion has 

noted the relevance of these additional considerations for IR models. 

Our investigation into the location of the parameter pairings for a participant requires more 

than simply focusing on the quadrant associated with the estimates. We must also account for the 

uncertainty associated with the estimates. Consequently, we adopt Monte Carlo simulation 

techniques and generate 1,000 draws of the parameter pairings vector for each target variable and 

horizon using the estimated joint normal distribution for      1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , ..., ,N N         

. We 

can then use the simulated distributions to calculate the percentage of simulated parameter pairings 

located in each quadrant for a participant. 

Figure 9 and Figure 10 plot the distributions for the point forecasts and density forecasts, 

respectively, where the estimated pairings are color-coded in black and the simulated pairings are in 

gray. As shown, the distributions for the density forecasts are much tighter compared to the point 

forecasts.32 While we only make note of this difference at present, it would be interesting for future 

research to explore the reasons for this feature of the data. For example, it is possible that 

respondents make less use of rounding and report less judgmental density forecasts compared to 

point forecasts.33 Relatedly, Glas and Hartmann (2022) analyze the US-SPF and ECB-SPF and note 

that survey participants who report rounded point forecasts differ from respondents who round 

probabilities for density forecasts. 

Figure 11 and Figure 12 focus on the quadrant location of the parameter pairings associated 

with participants’ point forecasts and density forecasts, respectively. The values report the highest 

fraction of simulated parameter pairings for a participant that fall in the same quadrant based on the 

6,000 simulations (1,000 simulations for each of the six target variables). For purposes of 

comparison, we present the results for the 23 participants included in all six combinations of target 

variables.34 Overall, the evidence in Figure 11 provides general support for the idea that a 

participant’s parameter pairings tend to locate in the same quadrant as almost all the histogram bars 

exceed 40 percent. Using 50 percent as an arbitrary threshold, the histogram bars show that about a 

third of the participants exceed the threshold criterion. 

 
32 The difference in precision may explain why rejections of various hypotheses in Tables 1-2 are stronger for 
the density forecast data. 
33 We would like to thank an anonymous referee for bringing this point to our attention.   
34 We have also extended the analysis to include the other participants in our study and the results are similar.  
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A very different picture emerges when we look at the density forecasts. There are now 19 

participants who exceed the threshold criterion, with the calculated percentages notably higher than 

the 50 percent value in many cases. Particularly noteworthy are the two participants whose forecast 

behavior suggests their parameter pairings would almost always fall in the same quadrant across the 

six combinations of target variables. Compared to the point forecasts, the density forecasts indicate 

considerably more overlap in quadrant locations which is consistent with the evidence from Figure 9 

and Figure 10 and provides another example of the different conclusions that can be drawn between 

the point and density forecasts. 

We can also use the average relative forecast performance metrics in (5) to make various 

comparisons across the forecast data, where lower values again indicate better predictive 

performance. Because of the large number of comparisons, we only provide a summary of the 

results. Overall, we find that forecast performance correlates positively across horizons and outcome 

variables in almost all cases. There are, however, differences across some dimensions that are worth 

noting. One difference is that the density forecast data generate a much stronger association than the 

comparable point forecast data. The top panel in Figure 13 is representative of this finding and 

shows scatterplots of the average relative forecast performance metrics for inflation at the two 

forecast horizons for the point forecast data and density forecast data, respectively. While the point 

forecast data indicate a modest correlation of 0.43, the density forecast data indicate a correlation of 

0.77 which is nearly twice as high. Looking across all pairwise combinations of target variables, the 

correlations for the point forecast data are typically in the 0.2-0.4 range, while the correlations for 

the density forecast data are in the 0.7-0.8 range. 

Another feature of predictive performance that emerges is that the correlations are generally 

higher for the same target variable at different horizons than for different target variables at the 

same horizon. An ordered ranking of the correlations indicates that the lowest three values are 

associated with inflation and GDP growth at the two forecast horizons and GDP growth and 

unemployment at the one-year/one-year-forward horizon. In contrast, the highest three values are 

associated with unemployment (using both types of forecast data) and inflation at the two forecast 

horizons. 

A further examination of forecast performance across the target variables reveals two other 

features. First, there tends to be a stronger correlation at the shorter horizon. The middle panel of 

Figure 13 shows scatterplots of the average relative forecast performance metrics for GDP growth 

and unemployment. Unlike the pattern at the one-year-ahead horizon, there is much less of a 

translation of forecast performance from unemployment into GDP growth at the one-year/one-
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year-forward horizon. Second, there is less of a linkage between forecast performance for GDP 

growth and inflation than there is for GDP growth and unemployment. The bottom panel of Figure 

13 shows the scatterplots of the corresponding average relative forecast performance metrics at the 

one-year-ahead horizon, where we again include the GDP growth/unemployment scatterplot to 

facilitate the comparison. For inflation and GDP growth, predictive performance shows a slightly 

negative relationship.35 In the case of GDP growth and unemployment, however, there is a 

sufficiently meaningful positive association. 

VI. Conclusion 
This paper adopts the common correlated effects (CCE) estimator of Pesaran (2006) to 

investigate whether ECB-SPF participants can be viewed as interchangeable. While the behavior of 

professional forecasters is of interest by itself, our study draws further motivation from IR models 

and their implication that systematic patterns should not be evident in the forecast data. In addition 

to making comparisons of predictive performance across participants, we investigate the correlation 

patterns for an individual’s predictive performance across parameter configurations and target 

variables. As a robustness check, we also consider the evidence from point forecasts and density 

forecasts. 

Based on forecasts for output, inflation, and unemployment, we find strong evidence of 

systematic patterns in participants’ predictive performance. Moreover, the patterns are not a 

consequence of differential innate ability, but instead are episodic in nature and directly linked to 

changes in the forecasting environment. By way of a simple narrative, our interpersonal analysis of 

predictive performance suggests that participants largely divide into two “camps”: those who display 

relatively more accurate forecasts in low-variance times and those who do so in high-variance times. 

Consistent with this view, we find the rank orderings of participants shift over time and display 

considerable variability. 

Our intrapersonal analysis of predictive performance indicates that the influence of the 

forecasting environment carries over to other features of the forecast profile of participants. 

Specifically, we find there are commonalities across parameter quadrants and target variables, with 

the density forecast data revealing greater similarities in individual forecast behavior. In terms of the 

narrative introduced above, participants tend to locate in the same “camp” which indicates that a 

 
35 This is the only instance where the average relative forecast performance metrics display a negative 
relationship.  
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participant’s relative accuracy in a forecasting environment is positively correlated across target 

variables.  

Overall, we conclude that the predictive performance of ECB-SPF participants reflects 

distinguishing behaviors that are inconsistent with the implications of IR models for 

interchangeability. The strong evidence of systematic patterns in predictive performance and their 

relationship to the nature of the forecasting environment is a new finding and reflects the 

capabilities and advantages of the CCE empirical framework. 

It would be interesting and important to determine if these same empirical features are 

present in other long running panel survey data.36 Our findings support further development of 

expectations models that can generate systematic patterns in key features of forecasters’ behavior as 

well as account for the differential effects of the forecast environment on predictive performance. 

The opportunity to explore and identify the key underpinnings during such a development would 

serve as fertile ground for future research. 

  

 
36 The US-SPF would seem to be a natural candidate. It is unclear, however, if a parallel analysis can be 
conducted for the US-SPF because of differences in the survey instrument. Specifically, the US-SPF does not 
feature “rolling” forecast horizons. Such investigations, however, would not need to be restricted to 
professional forecasters and should be considered for surveys more generally.  
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Table 1  
Comparison of Predictive Performance Behavior of ECB-SPF Participants 

Point Forecasts 

 | | |
POINT j jFP FPj jt h t t h t t h t        

 Distributional 
Homogeneity 

1: 00 jjH j    I  

Normalization 
Approach 

: 00 1 2H N     K  

Time Fixed Effects 

:0 1 2H N    K  Point Forecast Data 

GDP growth: 
one-year-ahead 

2 (62) 332.8 * *   2 (31) 76.0 * *   2 (30) 245.9 * *   

GDP growth: 
one-year/one-year-
forward 

2 (58) 244.7 * *   2 (29) 68.1 * *   2 (28) 143.9 * *   

Inflation: 
one-year-ahead 

2 (68) 77.7   2 (34) 41.1   2 (33) 29.3   

Inflation:  
one-year/one-year-
forward 

2 (62) 156.2 * *   2 (31) 90.9 * *   2 (30) 80.4 * *   

Unemployment: 
one-year-ahead 

2 (56) 134.5 * *   2 (28) 58.0 * *   2 (27) 58.1 * *   

Unemployment: 
one-year/one-year-
forward 

2 (48) 225.8 * *   2 ( 24 ) 42 .0 *   2 (23) 100.1 * *   

Note: Model parameters are estimated using ordinary least squares (OLS), with standard errors computed using the 
Newey-West (1987) covariance matrix estimator modified for use in a panel data set. The error terms to follow a fourth-
order moving average process to account for the overlap of forecast horizons. Degrees of freedom are reported in 
parentheses. 
** Significant at the 1% level 
 * Significant at the 5% level 
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Table 2  
Comparison of Predictive Performance Behavior of ECB-SPF Participants 

Density Forecasts 

 | | |
DENSITY j jFP FPj jt h t t h t t h t        

 Distributional 
Homogeneity 

1: 00 jjH j    I  

Normalization 
Approach 

: 00 1 2H N     K  

Time Fixed Effects 
:0 1 2H N    K  Density Forecast Data 

GDP growth: 
one-year-ahead 

2 (62) 348.5 * *   2 (31) 240.1 * *   2 (30) 191.3 * *   

GDP growth: 
one-year/one-year-
forward 

2 (58) 371.2 * *   2 (29) 173.1 * *   2 (28) 100.6 * *   

Inflation: 
one-year-ahead 

2 (68) 352.6 * *   2 (34) 208.8 * *   2 (33) 103.2 * *   

Inflation:  
one-year/one-year-
forward 

2 (62) 345.6 * *   2 (31) 273.5 * *   2 (30) 134.3 * *   

Unemployment: 
one-year-ahead 

2 (56) 324.2 * *   2 (28) 141.1 * *   2 (27 ) 106.0 * *   

Unemployment: 
one-year/one-year-
forward 

2 (48) 138.6 * *   2 (24) 69.8 * *   2 (23) 74.6 * *   

Note: Model parameters are estimated using ordinary least squares (OLS), with standard errors computed using the 
Newey-West (1987) covariance matrix estimator modified for use in a panel data set. The error terms to follow a fourth-
order moving average process to account for the overlap of forecast horizons. Degrees of freedom are reported in 
parentheses. 
** Significant at the 1% level 
 * Significant at the 5% level 
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Table 3 

Rank Orderings of Forecast Accuracy: Point Forecasts of One-Year-Ahead GDP Growth   

 
Forecaster 

ID 

 
0.25FP   

 
0.50FP   

 
0.75FP   

 
1.00FP   

 
1.50FP   

 
2.00FP   

 
4.00FP   

 
6.00FP   

37 1 4 4 8 14 21 25 25 
39 2 3 3 5 11 17 21 24 
42 3 2 2 2 5 8 10 13 
22 4 1 1 1 1 2 5 6 
61 5 5 8 13 16 20 20 20 
95 6 6 7 12 13 15 18 18 
4 7 7 10 14 17 19 19 19 
5 8 10 18 21 24 26 27 27 

88 9 8 6 9 10 10 9 9 
23 10 9 5 4 7 7 7 7 
89 11 19 25 26 27 27 28 29 
54 12 14 17 18 20 18 17 17 
33 13 27 29 30 31 33 33 33 
38 14 11 11 11 9 9 8 8 
15 15 26 28 29 30 30 31 31 
16 16 16 16 17 15 12 14 14 
47 17 15 15 16 12 11 12 11 
98 18 20 22 23 22 23 23 23 
31 19 21 23 24 23 24 22 22 
56 20 25 27 27 28 29 29 28 
24 21 17 19 19 19 16 15 16 
85 22 13 12 10 6 5 6 5 
93 23 24 26 25 25 25 24 21 
26 24 12 9 3 4 4 3 3 
29 25 30 30 32 32 32 32 32 
20 26 23 21 20 18 13 13 12 
96 27 18 13 6 3 3 2 2 
1 28 29 24 22 21 14 11 10 

94 29 22 14 7 2 1 1 1 
52 30 28 20 15 8 6 4 4 
2 31 31 32 31 29 28 26 26 

36 32 33 33 33 33 31 30 30 
90 33 32 31 28 26 22 16 15 
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Appendix 

1: Test for Distributional Homogeneity of Predictive Performance Metrics 

To demonstrate that the restriction ( , ) (0,1)j j    provides a test for distributional 

homogeneity of the first and second moments of forecast performance metrics across survey 

participants, we begin by taking expectations of equation (3) in the paper: 

 
 
 

| | |

| |

[ ] [ ]

[ ]

j j
t h t j j t h t t h t

j
t h t j j t h t

E FP E FP

E FP E FP

  

 

  

 

  

 
 (1.1) 

As discussed in Section II, we define interchangeability as the condition that there are no 

systematic differences across participants in their forecast behavior. Equating (1.1) for participant i  

and j, we have: 

 | |( ) ( )i k
t h t t h tE FP E FP   (1.2) 

Substituting (1.1) into (1.2) yields: 

    | |i i t h t k k t h tE FP E FP        (1.3) 

where the absence of systematic differences across forecasters in their predictive performance 

requires that i k     and i k    . 

Using (1.1) and the condition that i k     and i k     from (1.3) allows us to 

derive the following expression for the expectation of average forecast performance: 
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N
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 
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  
 
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

 (1.4) 
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where tN  denotes the number of survey respondents at time t and where (1.4) only holds if 0 

and 1.   

Looking further at equation (1.1) and abstracting from the discussion of j , the condition 

that 1j  requires covariance   | |,j
t h t t h tFP FP   to be equal to the variance  |t h tFP . This would 

be similar for all other respondents. Because the ' s in equation (1.1) are assumed to be 

uncorrelated across respondents because the common correlated effects (CCE) estimator controls 

for cross-sectional dependence, then covariance   | |,j
t h t t h tFP FP   will be equal to variance  |

j
t h t  , 

which will only equal variance  |t h tFP  if all the variances across respondents are equal. 

Consequently, the restriction ( , ) (0,1)j j    provides a test that: 

 1 2 1 2
| | | | | |( ) ( ) ( ) ( ) ( ) ( )N N

t h t t h t t h t t h t t h t t h tE FP E FP E FP V FP V FP V FP          K I K  (1.5) 

which involves an equality of the mean and variance of the distribution of the forecast performance 

metrics across all respondents. 
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2: Hounyo – Lahiri (2023) Testing Procedure 
The following tables report the results from applying the Hounyo-Lahiri (2023) testing 

procedure for equal predictive performance to point forecasts and density forecasts from the 

European Central Bank Survey of Professional Forecasters. Following Hounyo and Lahiri (2023), 

the testing procedure for the point forecasts was implemented by using the normalized squared 

error statistic given by: 

 �   
  

2

|
2

1

1 t

j
t h t t hPOINT j

t h t N
j

t h t t h
jt

X E X
FP

X E X
N

 


 






 (2.1) 

where tN  is again the number of survey respondents at time t and the remaining notation is defined 

in equation (6) of the paper. 

For the density forecasts, we implemented the testing procedure using the normalized 

absolute rank probability score given by: 

 � |
|

|
1

1 t

DENSITY j
t h tDENSITY j

t h t N
DENSITY j

t h t
jt

FP
FP

FP
N










 (2.2) 

where the non-negative domain of the absolute rank probability score obviates the application of an 

additional operator on the forecast performance metric and the remaining notation is defined in 

equation (7) of the paper. 

As shown, the results in Table 1A (point forecasts) and Table 2A (density forecasts) strongly 

reject the null hypothesis of comparable forecast performance and document that the performance 

of forecasters across the various percentiles is more accurate than what can be explained by random 

chance (generated from their wild bootstrap procedure) at conventional levels of significance. The 

overall results and p-values are very similar to those reported by Hounyo and Lahiri (2023).  

Following Hounyo and Lahiri (2023) we also implemented the tests using a restrictive data 

set, where we excluded forecasters who scored worse than the 80th percentile. Table 3A (point 

forecasts) and Table 4A (density forecasts) report the results from this exercise. As shown, excluding 

the forecasters does not change the conclusions.  



4 
 

Table 1A – Point Forecast Data 

  Best 5 25 50 75 Worst 

Forecaster performance  0.669 0.685 0.905 0.995 1.115 1.547 

GDP growth: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.11; 1.70) 

0.000 

(1.22; 1.83) 

0.000 

(1.58; 2.33) 

0.000 
(1.76; 2.59) 

0.000 
(1.97; 2.91) 

0.000 
(2.71; 4.21) 

0.000 

Forecaster performance  0.705 0.719 0.897 0.973 1.095 1.474 

GDP growth: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.20; 1.79) 

0.000 
(1.27; 1.88) 

0.000 
(1.59; 2.32) 

0.000 
(1.76; 2.59) 

0.000 
(2.00; 2.92) 

0.000 
(2.55; 4.05) 

0.000 

Forecaster performance  0.690 0.696 0.862 0.987 1.126 1.485 

HICP inflation: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.13; 1.69) 

0.000 
(1.24; 1.81) 

0.000 
(1.54; 2.25) 

0.000 
(1.79; 2.59) 

0.000 
(2.02; 2.94) 

0.000 
(2.67; 4.04) 

0.000 

Forecaster performance  0.754 0.784 0.834 0.940 1.135 1.686 

HICP inflation: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.40; 2.10) 

0.000 
(1.45; 2.18) 

0.000 
(1.62; 2.39) 

0.000 
(1.86; 2.71) 

0.000 
(2.20; 3.20) 

0.000 
(3.33; 5.32) 

0.000 

Forecaster performance  0.626 0.658 0.847 0.954 1.104 2.091 

Unemployment: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.18; 1.75) 

0.000 
(1.25; 1.83) 

0.000 
(1.67; 2.45) 

0.000 
(1.89; 2.77) 

0.000 
(2.17; 3.20) 

0.000 
(4.02; 6.18) 

0.000 

Forecaster performance  0.739 0.774 0.844 0.945 1.086 1.908 

Unemployment: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.33; 2.04) 

0.000 
(1.39; 2.13) 

0.000 
(1.65; 2.45) 

0.000 
(1.85; 2.72) 

0.000 
(2.15; 3.20) 

0.000 
(3.63; 5.77) 

0.000 

NOTE: This table provides the empirical distribution of forecaster performance for point forecasts of GDP growth, HICP 
inflation, and unemployment from the European Central Bank Survey of Professional Forecasters. We measure forecast  
performance for point forecasts using the average of the normalized squared forecast error in equation (1.1). The figures in 
parentheses ( * *

;5 95Q Q ) refer to the 5th and the 95th percentiles generated by the cross-sectional and serial correlation bootstrap 
procedure of Hounyo and Lahiri (2023). The reported p-value is the proportion of the 999 bootstrap replications that are less 
than observed forecast performance.     
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Table 2A – Density Forecast Data 

  Best 5 25 50 75 Worst 

Forecaster performance  0.806 0.812 0.942 0.964 1.079 1.309 

GDP growth: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.38; 2.07) 

0.000 

(1.44; 2.13) 

0.000 

(1.63; 2.39) 

0.000 
(1.76; 2.59) 

0.000 
(1.92; 2.81) 

0.000 
(2.32; 3.44) 

0.000 

Forecaster performance  0.806 0.834 0.921 0.969 1.076 1.260 

GDP growth: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.49; 2.26) 

0.000 
(1.60; 2.37) 

0.000 
(1.81; 2.62) 

0.000 
(1.94; 2.80) 

0.000 
(2.11; 3.07) 

0.000 
(2.47; 3.67) 

0.000 

Forecaster performance  0.768 0.820 0.920 0.971 1.084 1.261 

HICP inflation: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.48; 2.14) 

0.000 
(1.62; 2.39) 

0.000 
(1.81; 2.60) 

0.000 
(1.94; 2.78) 

0.000 
(2.14; 3.06) 

0.000 
(2.49; 3.64) 

0.000 

Forecaster performance  0.761 0.786 0.907 0.991 1.068 1.285 

HICP inflation: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.70; 2.53) 

0.000 
(1.78; 2.64) 

0.000 
(2.07; 2.99) 

0.000 
(2.23; 3.24) 

0.000 
(2.45; 3.53) 

0.000 
(2.87; 4.23) 

0.000 

Forecaster performance  0.727 0.765 0.924 0.969 1.057 1.471 

Unemployment: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.42; 2.08) 

0.000 
(1.49; 2.21) 

0.000 
(1.79; 2.60) 

0.000 
(1.91; 2.79) 

0.000 
(2.09; 3.05) 

0.000 
(2.86; 4.22) 

0.000 

Forecaster performance  0.866 0.870 0.930 0.981 1.015 1.323 

Unemployment: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.71; 2.61) 

0.000 
(1.77; 2.64) 

0.000 
(1.93; 2.87) 

0.000 
(2.08; 3.05) 

0.000 
(2.19; 3.24) 

0.000 
(2.79; 4.20) 

0.000 

NOTE: This table provides the empirical distribution of forecaster performance for density forecasts of GDP growth, HICP 
inflation, and unemployment from the European Central Bank Survey of Professional Forecasters. We measure forecast  
performance for density forecasts using the average of the normalized absolute rank probability score in equation (1.2). The 
figures in parentheses ( * *

;5 95Q Q ) refer to the 5th and the 95th percentiles generated by the cross-sectional and serial correlation 
bootstrap procedure of Hounyo and Lahiri (2023). The reported p-value is the proportion of the 999 bootstrap replications 
that are less than observed forecast performance.     
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Table 3A – Point Forecast Data: Restricted to Best 80% 

  Best 5 25 50 75 Worst 

Forecaster performance  0.696 0.707 0.957 1.038 1.103 1.207 

GDP growth: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.18; 1.78) 

0.000 

(1.29; 1.89) 

0.000 

(1.65; 2.39) 

0.000 
(1.87; 2.66) 

0.000 
(2.01; 2.89) 

0.000 
(2.31; 3.53) 

0.000 

Forecaster performance  0.763 0.773 0.913 1.007 1.097 1.215 

GDP growth: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.14; 1.75) 

0.000 
(1.20; 1.80) 

0.000 
(1.45; 2.16) 

0.000 
(1.60; 2.38) 

0.000 
(1.75; 2.59) 

0.000 
(2.02; 3.21) 

0.000 

Forecaster performance  0.739 0.748 0.915 1.002 1.107 1.275 

HICP inflation: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.21; 1.84) 

0.000 
(1.31; 1.93) 

0.000 
(1.61; 2.35) 

0.000 
(1.81; 2.62) 

0.000 
(2.01; 2.93) 

0.000 
(2.42; 3.63) 

0.000 

Forecaster performance  0.834 0.840 0.890 0.972 1.120 1.279 

HICP inflation: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.52; 2.30) 

0.000 
(1.57; 2.36) 

0.000 
(1.72; 2.55) 

0.000 
(1.93; 2.71) 

0.000 
(2.18; 3.23) 

0.000 
(2.70; 4.17) 

0.000 

Forecaster performance  0.695 0.711 0.932 1.038 1.067 1.268 

Unemployment: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.32; 1.95) 

0.000 
(1.37; 2.02) 

0.000 
(1.79; 2.64) 

0.000 
(2.01; 2.92) 

0.000 
(2.20; 3.20) 

0.000 
(2.63; 4.08) 

0.000 

Forecaster performance  0.788 0.805 0.920 0.962 1.137 1.236 

Unemployment: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.42; 2.17) 

0.000 
(1.48; 2.23) 

0.000 
(1.75; 2.59) 

0.000 
(1.92; 2.82) 

0.000 
(2.19; 3.32) 

0.000 
(2.54; 3.84) 

0.000 

NOTE: This table provides the empirical distribution of forecaster performance for point forecasts of GDP growth, HICP 
inflation, and unemployment from the European Central Bank Survey of Professional Forecasters. We measure forecast  
performance for point forecasts using the average of the normalized squared forecast error in equation (1.1). The figures in 
parentheses ( * *

;5 95Q Q ) refer to the 5th and the 95th percentiles generated by the cross-sectional and serial correlation bootstrap 
procedure of Hounyo and Lahiri (2023). The reported p-value is the proportion of the 999 bootstrap replications that are less 
than observed forecast performance.     
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Table 4A – Density Forecast Data: Restricted to Best 80% 

  Best 5 25 50 75 Worst 

Forecaster performance  0.832 0.839 0.950 0.992 1.055 1.150 

GDP growth: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.30; 1.90) 

0.000 

(1.36; 1.94) 

0.000 

(1.52; 2.17) 

0.000 
(1.65; 2.34) 

0.000 
(1.76; 2.51) 

0.000 
(1.93; 2.79) 

0.000 

Forecaster performance  0.838 0.858 0.953 0.988 1.055 1.152 

GDP growth: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.39; 2.16) 

0.000 
(1.48; 2.23) 

0.000 
(1.66; 2.48) 

0.000 
(1.76; 2.62) 

0.000 
(1.88; 2.81) 

0.000 
(2.05; 3.08) 

0.000 

Forecaster performance  0.804 0.840 0.949 0.989 1.053 1.151 

HICP inflation: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.54; 2.25) 

0.000 
(1.63; 2.44) 

0.000 
(1.85; 2.71) 

0.000 
(1.97; 2.86) 

0.000 
(2.10; 3.05) 

0.000 
(2.36; 3.45) 

0.000 

Forecaster performance  0.791 0.812 0.934 1.021 1.072 1.141 

HICP inflation: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.64; 2.48) 

0.000 
(1.70; 2.55) 

0.000 
(1.96; 2.91) 

0.000 
(2.12; 3.13) 

0.000 
(2.24; 3.33) 

0.000 
(2.46; 3.70) 

0.000 

Forecaster performance  0.780 0.806 0.973 1.017 1.052 1.158 

Unemployment: 
one-year-ahead  * *

5 95;Q Q  
p-value 

(1.51; 2.21) 

0.000 
(1.59; 2.31) 

0.000 
(1.87; 2.73) 

0.000 
(1.98; 2.89) 

0.000 
(2.09; 3.05) 

0.000 
(2.31; 3.47) 

0.000 

Forecaster performance  0.892 0.901 0.942 1.019 1.040 1.075 

Unemployment: 
one-year/one-year 
forward 

 * *
5 95;Q Q  

p-value 

(1.67; 2.53) 

0.000 
(1.72; 2.57) 

0.000 
(1.88; 2.77) 

0.000 
(2.01; 2.95) 

0.000 
(2.11; 3.10) 

0.000 
(2.24; 3.32) 

0.000 

NOTE: This table provides the empirical distribution of forecaster performance for density forecasts of GDP growth, HICP 
inflation, and unemployment from the European Central Bank Survey of Professional Forecasters. We measure forecast  
performance for density forecasts using the average of the normalized absolute rank probability score in equation (1.2). The 
figures in parentheses ( * *

;5 95Q Q ) refer to the 5th and the 95th percentiles generated by the cross-sectional and serial correlation 
bootstrap procedure of Hounyo and Lahiri (2023). The reported p-value is the proportion of the 999 bootstrap replications 
that are less than observed forecast performance.



8 
 

3: Figures Displaying the Full Data Set for 1-year-ahead GDP Growth 
Forecasts 

Figure 7A and Figure 8A exclude an outlier observation for three of the four participants 

associated with realized GDP growth in 2008:Q3 or 2008:Q4. As discussed in the main text, this 

exclusion was done for presentational purposes. The following figures include the full range of FP  

values. The 2R values reported in Figure 7A are identical to those that appear in Figure 7 in the 

paper. 
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Figure 7A 
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Figure 8A 
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4: Forecast Combination Exercise 
For this exercise, we assume knowledge of the difficulty of the forecasting environment 

( )FP  as well as the estimated parameters and the root mean square error (RMSE) of equation (3) at 

the individual level. For each forecaster j, we calculate the probability of the forecaster being more 

accurate than the cross-sectional average as: 

 
�

| |
|ˆ

ˆ

j
t h t t h tj

t h t j

FP FP
p


 



   
 
 

 (4.1) 

where   is the cumulative standard normal distribution and ˆ j is the RMSE for forecaster j. 

Using Figure 8 as a reference, it is relatively straightforward to understand the intuition for 

equation (4.1). The numerator on the right-hand side of equation (4.1) is the vertical distance 

between the 45-degree line and a respondent’s predicted performance for a particular survey date, 

which is then normalized by the respondent’s RMSE. If the respondent’s predicted performance 

coincides with average predictive performance, the associated probability is 50 percent. Values of 

�FP  that lie above (below) FP are associated with individual predictive performance that is relatively 

less (more) accurate than average performance and results in probability values less (more) than 50 

percent, with further deviations between �FP  and FP generating larger changes in probability. 

The performance weighted consensus forecast is given by: 

 | | |
1

tN
Performance weighted j j
t h t t h t t h t

j
FP w FP

  


  (4.2) 

 where the weight for forecaster j, |
j
t h tw  , is:  

 |
|

1 |

ˆ
ˆ

t jN
t h tj

t h t i
i t h t

p
w

p



 

  (4.3) 

We carry out the exercise for the one-year-ahead GDP growth forecasts using eight surveys 

that are closest to the FP values in Table 3. As shown in Table 5A, we find that the performance-

weighted consensus forecast outperforms the (equally weighted) consensus forecast in each of these 

eight surveys. Moreover, the median performance improvement is 24 percent, with the smallest 

improvement at 12.6 percent and the largest improvement at 35.5 percent.
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Table 5A 
 

Consensus Forecast 
 

 FP  

Performance-weighted Forecast 
�

| |
1

tN
i i
t h t t h t

i
w FP 


  

Ratio 
�

| |
1

tN
i i
t h t t h t

i
w FP

FP

 



 

0.2536 0.2056 0.811 

0.5094 0.3742 0.735 

0.7408 0.6328 0.854 

0.9907 0.7530 0.760 

1.562 1.1760 0.753 

1.861 1.2005 0.645 

4.798 4.1952 0.874 

5.698 4.2086 0.738 

 

 


