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Abstract

Online recommendation platforms aid consumers in making decisions amidst large

choice sets by suggesting commonly-chosen alternatives to a given product. Using ob-

served recommendations for hotels, I construct an embedding of the latent preference

space for the mean consumer. Using this information, I estimate typical distance-based

linear and mixed logit demand models and attempt to recover substitution patterns in

the absence of observed characteristics or consumer demographics. Monte Carlo tests

suggest that in environments where unobserved consumer heterogeneity results in poor

identification of demand system parameters, using coordinates of the embedding in place

or in addition to true characteristics improves estimates of substitution, markups, and

merger effects. Using data for hotels in downtown Chicago, I estimate hotel-level diver-

sion ratios and find initial evidence that Upper Upscale-class hotels receive the highest

mean diversion ratios from rival hotels, suggesting that the quality tier may be most

represented in the choice sets of downtown consumers. Future work aims to compare

the price and welfare implications of mergers across alternative data and models.
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1 Introduction

A challenge central to many studies in empirical IO is the estimation of demand models and

the recovery of substitution patterns. Typical approaches—product-based or characteristics-

based—require data on product differentiation, which is usually paired with either inherent

assumptions on aggregated preferences or combined with data on local consumers in or-

der to add richness to the distribution of consumer preferences. This in turn creates two

challenges for the practitioner: first, whether the data on product attributes is sufficient

to properly capture product differentiation, or whether it is available at all. Second, while

Census data is often used to characterize local consumers, these data might not be rele-

vant to the actual consumer base, or otherwise insufficient to capture richness of consumer

heterogeneity, resulting in poor identification of the parameters of the demand model.

In this paper, I show how information from product recommendation systems—specifically,

the publicly-shown default recommendations on alternative products—can be incorporated

to augment the estimation of demand systems. In contrast to approaches which use con-

sumer responses to obtain second-choice data and construct additional moments to match

(Berry, Levinsohn, and Pakes (2004), Conlon, Mortimer, and Sarkis (2023)), I use rankings

over recommendations to construct a continuous vector representation (an “embedding”)

of the latent preference space, where more frequently-chosen substitutes to a given prod-

uct are located closer to it in a metric space. I use the resulting embedding to construct

demand estimates using a distance-based product-space approach in the vein of Pinkse,

Slade, and Brett (2002), as well as a random-coefficients logit model (Berry, Levinsohn, and

Pakes (1995), henceforth BLP) where the coordinates of the embedding reflect variation in

characteristics and the representative consumer’s preferences for the product.

I demonstrate an application to the hotel sector, where the typical mixed logit approach

faces challenges owing to the lack of information about consumer preferences; the usual

demographics approach displayed by Nevo (2001) is not suitable as the customer base is

not local. The recommendations are recovered from public searches on Booking.com, and

contain no proprietary information: a method which can be generalized to the collection

of many other types of consumer products. Given an assumption that platforms aim to

maximize the probability that a searching user makes a purchase, the ranked order of

alternative recommendations for a product j can be interpreted as a descending ordinal

ranking of choice probabilities, conditional on the user expressing interest in product j, such
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that the set of displayed suggestions maximizes the probability of a selection being made.

This is similar to the treatment of platform data by Kim, Albuquerque, and Bronnenberg

(2010), where product search data on Amazon.com is treated as aggregation of individual

searches: here I treat the default recommendations as aggregates of the consumer choices

that platforms observe to recover substitutes.

I merge these recommendations with monthly price and quantity data for hotels in down-

town Chicago, a market environment with a very high density of spatially-differentiated

products and where the estimation of hotel-level substitution patterns would be challenging

with the limited observed characteristics and consumer demographics available. I show that

the platform data can aid the definition of market sets through the connectivity of recom-

mendations, allowing the downtown market to be separated from confounding collected data

on O’Hare hotels. The recovered embedding—visualized in two dimensions—demonstrates

clear patterns of grouping luxury hotels closely together, separate from a large cluster of

varied hotels likely driven by geographic proximity.

To demonstrate the use of the embedding, I first construct several Monte Carlo tests in-

corporating different forms of consumer heterogeneity. In a simple example of random-

coefficients logit, I test both a distance-based approach similar to Pinkse et al. (2002) and

a more conventional BLP approach. I find that a BLP specification using coordinates of

the embedding in place of characteristics is able to produce closer estimates of diversion to

the outside option and markups. In a more comprehensive example where unobserved con-

sumer heterogeneity results in variation that poorly identifies the demand system, I show

that a specification using coordinates of the embedding produces lower RMSE in terms of

estimates of diversion, markups, out-of-sample fit, and merger profit and welfare predic-

tions when compared to a specification using the full set of true characteristics. Results

are further improved when using both sets of data via a mixed embedding, suggesting the

complementary of the approach in appropriate settings.

Second, I obtain results from a BLP demand system in the Chicago hotel data using the

embedding in place of unobserved characteristics and consumer demographics. In this data-

limited context, I am able to recover substitution patterns and markups in an environment

with over a hundred competing products (hotels). I find that upper upscale hotels capture

the highest average diversion from rivals, while within-quality-class diversion is typically

second-highest. This might suggest that the upper upscale quality class is better-dispersed

across the market, or that the platform skews consumers towards these higher-cost options.
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Future work will build on these results with more detailed data and model comparisons.

This paper complements the rapidly growing literature on the use of auxiliary data to

enhance demand estimation and pin down more accurate substitution patterns. The use of

auxiliary data is not new: Nevo (2001) and Petrin (2002) use consumer demographics to aid

in the estimation of substitution patterns. The method is also conceptually similar to the

idea of identifying second (or alternative) choices: survey data has often been used for this

purpose (Berry et al. (2004), Grieco, Murry, and Yurukoglu (2021), Conlon et al. (2023)).

Survey data has also been used to construct embeddings of the product space for demand

estimation, as in Magnolfi, McClure, and Sorensen (2023) and Compiani, Morozov, and

Seiler (2023). In the context of this paper, which is generalizable to other settings where

consumers lack knowledge of the full product space, surveys are infeasible: it is unlikely

that the survey respondents’ preferences are complete over a large number of hotels in

a given city, particularly as knowledge of a hotel’s characteristics or utility are hard to

discern without prior research or experience. The platform instead pools the information

of consumers who have already searched: as the platform sees what consumers search for

and eventually select, it can summarize these outcomes as recommendations for a consumer

currently engaging in search.

This paper’s approach is also similar in concept to work which makes use of platform search

and clickthrough data, which has been used to recover the product space and consumer pref-

erences or otherwise learn about consumer search patterns (Kim et al. (2010), De Los Santos,

Hortacsu, and Wildenbeest (2012), and Hodgson and Lewis (2024)). These approaches have

seen prior applications to hotels, as in Armona, Lewis, and Zervas (2021), who use search

data from Expedia to construct a Bayesian Personalized Ranking for consumers to learn

latent product attributes and Kaye (2024), who examines the effects of personalized rec-

ommendations on consumer welfare. Related papers using embeddings built from data on

consumer search and purchases to estimate demand are Ruiz, Athey, and Blei (2020), Ku-

mar, Eckles, and Aral (2020), and Gabel and Timoshenko (2022). However, many of these

approaches rely on the availability of micro-data on searches or purchases: an advantage

of the method proposed by this paper is how it can be generalized to new settings, and

the convenience of public-facing information which is easy to collect. A remaining problem

is, however, how the utilization of these data—which Battaglia, Christensen, Hansen, and

Sacher (2024) refer to as “unstructured data”—affects inference given that they are the

result of an algorithmic construction.

4



2 Method

2.1 Recommendation Rankings and Recovering Triplets

Consider a consumer who approaches a market unsure of their purchase decision and who

searches for options on an online platform. When consumers investigate an option (i.e. click

on it to learn more without making a purchase decision), they are presented with a list of

similar or recommended products from which to also choose. Part of the platform’s product

is easing the search problem that consumers face, which in turn makes it more likely that

the consumer makes a purchase. As platforms have extensive data on consumers’ purchase

options and search paths, they are able to tailor these recommendations towards what the

consumer is likely to pick if they reject the initially-selected option in favor of an alternative.

As the behavior of the platform is in part a black box without evidence from internal data,

I make a simplifying assumption as to their objective function.

Assumption 1. The objective of a recommendation platform is to maximize the probability

that an arriving consumer makes a purchase on the platform.

Assumption 1 is fairly strong and requires further study to wholly validate, but provides

an intuitive generalization. While plausible, it is not immediately provable that this is an

accurate heuristic for platform behavior in all respects: platforms may approach recommen-

dations in terms of boosting product discovery versus maximizing consumer search precision

in terms of local utility maximization, or their recommendations may lean towards steering

consumers towards options which provide higher revenue to the platform (Hodgson and

Lewis (2024)). A deeper question is what underlying data drives the recommendations that

platforms make, and whether these data are in turn generated in part by the outcomes of

the platform’s recommendations. In this study, as some assumption on platform behavior

is necessary, I will treat Assumption 1 as true, noting that my results hinge on its validity.

I discuss this topic further in Section 2.5.

The platform’s behavior under Assumption 1 is such that for any number of displayed rec-

ommendations R and given an initially-clicked option j, the platform wishes to maximize

the choice probabilities across displayed options r ∈ R conditional on j. Assuming con-

sumers focus their consideration on recommendations that they are provided, this in turn

maximizes the likelihood of a discrete choice being made across a distribution of consumer
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i preferences g(θ):

R(j) = argmaxr
∑

r∈R(j)

Pr(r|j)

=

∫
expuij∑

k∈J expuik

∑
r∈R

expuir∑
k∈J\ji expuik

g(θ)dθ

(1)

Given a mixed logit data generating process, the result of this is that recommendations

display a rank-order of aggregate second choices, which Conlon et al. (2023) write as:

Dj→k =
∑
i

πi
sik

1− sij
·
sij
sj

,

given probability weights of π on consumers i and market shares s.1

Based on Assumption 1, if product k is the top recommended substitute for product j, then k

is the most-likely alternate choice for the representative consumer who searched for j. Hence,

µk|j > µℓ|j ∀ℓ ̸= j, k ∈ J given mean utility µ for the products: k provides the highest choice

probability on average, conditional on being interested in searching for j. Extending this to

cardinal utility, the implication of Assumption 1 is that if k is the top recommendation for

j, then ||µj , µk|| < ||µj , µℓ|| ∀ ℓ ̸= j, k ∈ J for some distance metric on mean utility. This

logic extends for each of the subsequently-recommended alternatives, such that the platform

provides substantial information on which products are considered closest substitutes for

the consumer who demonstrates interest for given products (Compiani, Lewis, Peng, and

Wang (2022) note that consumers search in order of observed utility).

Figure 1 shows an example of the recommendations when accessing a hotel on Booking.com.

Most hotels include a panel which includes up to 7 suggested alternatives which are com-

monly booked by travelers who viewed the initial hotel. A consumer clicks on a hotel, and

is presented with the hotel’s details and a list of alternatives:

By scraping hotel suggestions—in this case, performed via manually recording the sug-

gested alternatives when exploring each hotel’s page on the platform—from Booking.com,

I construct an ordered list of substitutes to each product for the default consumer. These

recommendations are collected for nights a minimum of six months in the future, using

1
I briefly discuss the incorporation of recommendations as second-choice data in Section 2.4.
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Figure 1: Example of Recommendations Page

short, incognito searches in order to capture the recommendations presented without bias

for search history. I use this to construct triplets: data points of “product A is closer to

B than it is to C” using a ranking of products suggested when searching for each product

j ∈ J . I then employ the t-Distributed Stochastic Triplet Embedding (tSTE) algorithm

proposed by Van Der Maaten and Weinberger (2012) to compute a continuous vector rep-

resentation of the products’ mean utility in a low-dimensional latent space.

This exercise is similar to Armona et al. (2021), who consider that if consumers search

products j1, j2 in order, then the products mush have related attributes. However, they

make use of the consumers’ search data from the platform itself: a feature of my method is

that I do not require data beyond what platforms display to consumers, as Assumption 1

allows the argument that platforms are incentivized to portray accurate information based

on past consumer purchase decisions.

2.2 Triplet Embeddings

Formally, given a set of products j = 1, . . . , J , we want to find a set of vectors x ≡
{x1, . . . , xJ} ∈ Rm that represent the products in m-dimensional space. We use the t-

distributed Stochastic Triplet Embedding (tSTE) algorithm proposed by Van Der Maaten

and Weinberger (2012). Letting T be the set of triplet comparisons in our data, each one

indicating that some product i is closer to j than it is to k, tSTE solves
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max
x

∑
(i,j,k)∈T

ln(πijk) where πijk =

(
1 +

∥xi−xj∥
2

α

)−α+1
2

(
1 +

∥xi−xj∥
2

α

)−α+1
2

+
(
1 + ∥xi−xk∥

2

α

)−α+1
2

Previous studies have made use of survey or recommendations data with the explicit goal

of construction the product space (Magnolfi et al. (2023)), allowing for a more natural

interpretation of demand coefficients and for variation in the data to reveal consumer pref-

erences. By contrast, this paper’s method recovers the preference space: these triplets

represent differentiation in utility rather than purely the characteristics space, and hence

encode consumer-based information on both characteristics and preferences. This blurs the

assumptions made in logit models where the inputs X solely reflect product characteristics,

giving the estimated parameters a sensible economic interpretation. In this application, the

model acts more like approaches in machine learning, where inputs of the model are used

to best fit substitution patterns demonstrated by the data, without clean interpretations

for the model’s parameterization.

In the context of hotels, the embedding reflecting elements of consumer preferences may be

a feature rather than a bug in one regard. A known challenge is that consumer attributes

cannot be incorporated by typical methods such as census data, as local households are

not the consumer base for hotels, and so recovering information on consumer preferences is

useful as this may be all the information available. What is not entirely clear is the how

the difference between these two spaces matters for the interpretation of the results. It

also constrains the set of counterfactuals: an analysis of product entry would be extremely

limited without making substantial assumptions over the location of the product in the

latent space. Additionally, given that I treat recovered information from the embedding as

data, there may be additional questions about inference, as discussed by Battaglia et al.

(2024).

I am not aware of strict rules for the selection of the hyperparameter m (the number of

dimensions in the embedding). Magnolfi et al. (2023) discuss several rules of thumb: a

simple approach is to examine whether the variation in the embedding can be reflected

in fewer dimensions through principal component analysis. If m − 1 components in PCA

capture over some threshold of variation, reject m and proceed to testing m− 1.
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In general, having a wider set of recommendations is better, as it provides more information

for the relative positioning of products. However, even a limited set of recommendations

can help identify the local choice set for consumers of those products. This is analogous

to the discussion of how models of discrete choice can be estimated using just a subset of

the choice model (McFadden (1978), Fox (2007)). Section 5 suggests, however, that larger

sets of recommendations are useful for framing local subsets with respect to each other,

improving estimation of diversion to the outside option.

2.3 Path-Connectedness of Recommendations

It is necessary for products to be path-connected in recommendations for the tSTE em-

bedding to present a unique distance between them. Consider hotels (A,B,C,D), where

(A,B,C) and D are disconnected. As D is never recommended when searching for any of

(A,B,C), all information relating D to (A,B,C) shows that D is the further component of

any triplet, then no unique position in the embedding for D exists as all distances further

than the distances between any of (A,B,C) fit. Hence, no sensible distance metric—or

measure of differentiation—between (A,B,C) and D exists.

I define recommendation spaces as topological spaces formed by reciprocal bonds between

hotels when one is recommended from the other. Separate recommendation spaces S1 and

S2 are disconnected if no hotels in set S1 contain a recommendation for, or are recommended

by, any hotel in set S2. Define a matrix of recommendations R, where Rij = 1 denotes that

hotel j is recommended when a user searches for hotel i. Then the matrix S = R′R is a

matrix of recommendation spaces, where each value Sij > 0 denotes that hotels i and j are

in the same recommendation space.

Assumption 2. If hotels j and k are path-disconnected in recommendations, then demand

shocks ξj do not affect sk, and diversion between the two products is zero such that they can

be considered separable.

Hotels which are not path-connected and are thus in separate recommendation spaces can

be treated as separate markets, i.e. a consumer searching for one will never be directed

to the other by any chain of recommendations, which implies no diversion from one to

the other due to exogenous shifts. Assumption 2 allows the practitioner to augment their

understanding of the product space with additional information: for example, separating
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hotels by market, or identifying which products are separable in utility. In this paper’s

application, sub-markets are not observed in the data within the large Chicago MSA, and

so this method is used to clarify geographic markets.

2.4 Incorporation as Second-Choice Data

Separate to this paper’s discussion of the continuous representation of the preference space,

a natural implementation of default recommendations is to use them as a form of second-

choice data combined with traditional methods of demand estimation. This takes a similar

place to more traditional survey-based approaches for revealing the explicit second choice

of a consumer (Berry et al. (2004)): if the consumer indicated preference for j, their second

choice would most likely be one of the closely-recommended alternatives, and so preferences

over the characteristics of j and its alternative are correlated. In such a context, few

recommendations per product are necessary as their role is to define the top substitute(s)

rather than identify the local choice set or overall product space. While I consider this

the most straightforward way of incorporating recommendations, it is not the focus of this

paper: I focus on the use of embeddings—discussed in the following section—to create

vector representations of the utility space.

As an example of one possible method for how to apply these data in the context of the

estimation of aggregated demand systems, recommendations can be used to construct ad-

ditional moments to discipline the estimates of the demand system. This is similar to the

approach of Conlon et al. (2023), who choose parameters of the model to match observed

first- and second-choice probabilities, minimizing the least squares error to the estimated

first- and second-choice probabilities. In my case, I have sets of recommended alternatives

but no observed choice probabilities, and so instead one can choose parameters of the model

such that the estimates of substitution patterns select one of the recommendations as the

top alternative to each product. For each product j in the product setJ with a set of

platform-recommended alternatives Rj , and with estimated mean product-level diversion

ratios D(θ)j at the parameter draw θ, define the moment g as:

g(θ)j = λ1{k /∈ Rj} where D(θ)jk = maxD(θ)j ,

where λ is a penalty function that increases with how far product k is from the top recom-

mended alternatives r ∈ Rj .
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2.5 Platform Bias

In Section 2.1, I detail how I make the assumption that recommendations steer consumers

to the most commonly chosen alternatives—the closest in preference space—with the caveat

that at this point I am unable to test this hypothesis for platform conduct. This potentially

overlooks how the objectives of the platform may bias the results that they provide to their

consumers. An open question is whether platform conduct can be identified by the data

used in this paper: in other words, in the absence of micro-data that allows for observable

individual consumer search patterns.

Many platforms are upfront with the fact that their recommendations are not unbiased in

optimizing a revenue-maximization process: they may prioritize certain hotels for which

they receive higher revenue due to price, contract terms, or other factors. Kaye (2024)

discusses in more detail the underlying trade off of match quality versus price competition

using clickthrough data, while Hodgson and Lewis (2024) explores the conditions under

which a platform may prefer to recommend similar products (consumer finds the best local

alternative) versus using recommendations to steer towards product discovery (consumer

gets a wider picture of the product space). For example, if purchases of a certain prod-

uct gave proportionately higher benefit to the platform, and the platform aimed to steer

consumers towards this product as a result, it should be placed consistently closer to rivals

than it otherwise would be. Outside of hotels, Christensen and Timmins (2022) provides

one such example where recommendations for real estate are systematically biased to steer

minorities towards less-desirable neighborhoods.

Additional concerns about the unobservability of the platform’s behavior arise from how

users interact with the platform. The platform may—rather than assuming users simply

browse linearly—attempt to tailor the menu of displayed options to induce a selection by

showing less desirable or otherwise-extreme options. The platform may also be in a non-

equilibrium state of continually learning from consumers’ choices, who in turn make choices

based on the platform and subsequently feed back into the platform’s data. Further work

on the differences in portrayed default recommendations across platforms can help inform

researchers on what to take away from the displayed options.
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3 Data and Embedding

In this section, I detail the price and quantity data for hotels as well as the collected

recommendations which I use to build the embeddings.

3.1 Product Space

The first source of data is a panel of hotel-level monthly average daily rates (ADR) and

occupancy rates from Chicago, provided by STR LLC, a common source for studies of

the hotel sector. The data cover a period of 2010 through 2018. Hotels in this sample

are anonymized, but listed by a consistent identification code which allows for consistent

representation in the data. Additionally, I observe a number of general characteristics

of hotels: their quality tier (class) from Luxury to Economy, their rough number of rooms

(allowing occupancy rates to be converted to quantities of sold rooms), and their categorical

location (downtown, airport, etc). I normalize hotel-month quantities to the average daily

number of rooms sold in the month.

I choose to observe data at the monthly level to relax issues related to stockouts. In higher-

frequency (i.e. daily) hotel data, finite capacity results in the presence of corner solutions,

which impede inverting the demand system and identifying parameters as the unconstrained

quantities demanded are unobserved. Several approaches to resolving this issue have been

proposed, such as using micro-data to estimate the latent choice sets or estimating over the

various observed choice sets (Conlon and Mortimer (2013), Agarwal and Somaini (2022)).

I instead sidestep the problem through aggregation to the monthly level.

My second source of data is scraped hotel recommendations from Booking.com. I collect

up to alternate-product recommendations from hotels in two markets: the primary sample

is downtown Chicago, though I also collect recommendations from hotels near O’Hare. As

these are both anonymized and grouped into Chicago jointly in the STR data, it provides

a demonstration for recovering separate markets as the recommendation sets are path-

disconnected. In total, I collect recommendations for 180 hotels: when limiting to those

which have at least six recommended alternatives and which appear in the STR data, this

falls to 132 unique hotels. These recommendation rankings are converted to triplets and

used to estimate an embedding using the tSTE algorithm.
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3.2 Recommendations and Embeddings

Taking the 132 hotels which have at least six recommendations, I identify the connected

sets S1, S2 which emerge from the patterns of recommendations. As I can observe the

location indicator flags for the hotels in the sample, the data reveal that set 1 is entirely

downtown hotels while set 2 is wholly airport hotels: the downtown and O’Hare markets

are wholly separated in that platforms will never recommend one when searching for the

other. In total, my data set separates into 108 hotels in downtown Chicago and 24 hotels

near O’Hare.

Table 1: Data Summary Statistics

Class Area Hotels ADR SD Occupancy SD

Luxury 1 21 269.86 90.02 72.09 16.06

Upper Upscale 1 46 180.28 49.46 74.93 16.66

Upscale 1 25 165.47 51.04 76.66 15.26

Upper Midscale 1 12 168.23 44.58 78.91 14.35

Midscale 1 3 128.89 35.79 74.87 19.90

Economy 1 1 105.60 25.99 50.39 22.75

Luxury 2 1 135.90 18.42 67.81 14.76

Upper Upscale 2 11 135.33 22.79 70.88 14.25

Upscale 2 8 108.91 19.19 75.49 13.14

Upper Midscale 2 2 99.70 26.56 75.66 12.50

Midscale 2 2 66.28 15.40 73.32 12.85

Area 1 corresponds to downtown Chicago, while Area 2 is O’Hare.

Figure 2 displays the embedding on hotel recommendation rankings computed in 2 dimen-

sions for each of the separated markets. This is a highly limiting number of dimensions,

but is a useful way of visualizing the output. While individual hotels are not named – and

hence their identities and locations are unknown – there are a few intuitive clusters. In the

downtown market, there is a concentrated cluster of luxury hotels, as well as a broader,

more general close grouping that might indicate geographic proximity. O’Hare hotels are

less tightly defined, though a central cluster of upscale and upper upscale hotels suggests

a similar grouping of similar properties. Visually, this provides some evidence that the

embedding is able to capture similarities between hotels and represent them in a metric

space.

As each embedding is independent of the other, it creates a challenge in that the distances

or characteristics of each market are not comparable.2 I proceed by estimating demand

2
If the set of products was constant across markets, such as in a more typical consumer goods scenario,
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Figure 2: Plot of Embedding in 2 Dimensions
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(b) Embedding of Chicago O’Hare Hotels

solely on the downtown Chicago market where the product differentiation is denser.

A possible criticism is that as preferences include price sensitivity, the embedding vectors

X—and hence the representation of the preference space—is correlated with the prices of the

hotels themselves. Hotels exhibit clear vertical differentiation in quality, which positions

hotels at various price points, and hence price variation might affect the layout of the

preference space in ways the embedding restricts.3 As a defense, I argue that hotel price

variation can be understood in two ways: prices that correspond to the quality tier and are

part of product differentiation, and price variation linked to short-term supply and demand

shocks. The former is exogenous and linked to the product space: hotel quality is defined

outside of the model, does not vary over time, and is linked to the hotel’s average price.4

The latter price variation is endogenous and what I aim to use to recover substitution. In

other words, short-term price fluctuations drive substitution between hotels, but should

not adjust how hotels are perceived respective to each other and hence not impact the

embedding. However, where this is a concern to the practitioner, one possibility is to

condition the vectors of X on prices by including the average price of each product as a

vector in a mixed embedding, allowing each other vector to reflect differentiation that is

not price-related.

this would not be an issue.
3
This contrasts with studies that focus on recovering the product space independently of price: Magnolfi

et al. (2023) explore ready-to-eat cereals which are primarily horizontally differentiated in terms of brands.
4
STR defines the chain scale—my chosen quality metric—of a hotel by “grouping branded hotels based

on average room rates.”
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4 Model and Empirical Strategy

In this section, I outline how the distances computed by the embedding can be used in typical

product-based approaches to demand estimation, before moving to using the embedding

coordinates for characteristics-based logit approaches. As discussed in Section 2.2, I treat

the embedding of the preference space as a suitable representation of the product space given

the acknowledgement that the estimated parameters no longer have a clean interpretation of

consumer preferences over distances or product attributes. Instead, they act to best fit the

model to the data, and so the focus of each model is their estimated substitution patterns

or other post-estimation statistics.

4.1 Distance-Based Model

A straightforward way to incorporate continuous and observed measures of differentiation

is a linear distance-based approach (Pinkse et al. (2002), Pinkse and Slade (2004)), even

when the distance between products is an abstraction rather than literal distance. In this

case, the dimensionality issue of the typical product-based approach to demand estimation

is eased: rather than estimate J2 cross-price elasticity parameters, substitution is recovered

via estimating a function f(·) of observed differentiation between product attributes:

log(qjt) = α0 + α1 log pjt +
∑
k ̸=j

f(djk;β) log pkt + ejt, (2)

for some function f over observed distances djk between products j and k, estimating cross-

price elasticities through a small number of parameters β. The distances between products

are, as discussed in Section 2.2, distances in preference space, and hence the parameters

β on the distance function are a scaling of distances between utilities rather than a strict

preference measure of the sensitivity of substitution to spatial competition.

I take a simplified function of distance and define f(djk) as:

f(djk) =
β

1 +
djk

max ||d||

and djk =

 ∑
i=1,...,5

(xij − xik)
2

0.5

(3)
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This model is attractive for its ease of estimation and interpretability. However, it has sev-

eral limitations. First, the model is not micro-founded and so lacks welfare interpretations:

one solution to this is the Almost-Ideal Demand System (AIDS) of Deaton and Muellbauer

(1980), where the distance-based approach is applied similarly to discipline the estimation

of cross-price elasticities. Second, the model makes extremely strong assumptions on the

structural errors in the demand system as discussed in Berry and Haile (2021), with one

error per equation. Lastly, a common metric of interest to researchers and practitioners is

the diversion ratio between products. In the log-linear model, these values are not naturally

bounded by (0, 1) and are biased by the ratio of sales quantities.5

Identification of the endogenous prices is a challenge regardless of the demand specification:

as Armona et al. (2021) note, cost shifters are not readily available in hotel data.6 I instead

use the implicit supply shifter of the presence of hotel capacity constraints. Farronato

and Fradkin (2022) discuss the use of this source of identification: the impact of demand

shocks is larger when the shock is large relative to available capacity, as hotels ration their

finite capacity dynamically.7 I compare the exogenous variation in quantities—predicting

quantities based on hotel and market fixed effects—to q̄j , the capacity of hotel j:8

zpjt =
q̂jt
q̄j

where log(q̂jt) = τ̂j + τ̂t (4)

Hence, controlling for observable demand variation, the interaction of exogenous variation

in demand with the excluded number of rooms q̄ is itself excluded:

E(e′zp|xjt) = 0 (5)

I discuss the validity of the instrument and detail F-test statistics in Appendix A. Rival

prices are instrumented by including zpk in the same functional form as log(pk). For simplic-

ity, I estimate a common own-price elasticity α. Equation 2 is estimated by 2-stage least

squares, using a vector of hotel and year-month fixed effects for α0.

5
Given own-price elasticity αj and cross-price elasticity f(djk), diversion Djk =

f(djk)

αj

qk
qj
.

6
While Armona et al. (2021) calibrate their logit price parameter to avoid this issue, an alternative

solution is proposed by Lewis and Zervas (2019), who jointly model the monopolist’s supply-side problem.
7
See Cho, Lee, Rust, and Yu (2018) for a detailed description of dynamic pricing in the hotel sector.

8
A meaningful extension is to pair the price and quantity data with additional observable market or

hotel characteristics which may predict demand, providing more variation in the instrument.
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In environments where the it is challenging to find good instruments for own and rival

prices—hotels being one such example—an alternative approach is a spatial autoregressive

model (SAR) which has seen other use in real-estate contexts. The spatial endogeneity of

prices can be account for through controlling for spatial correlation, constructing instru-

ments based on pairwise connectedness (see Kelejian and Prucha (1998) and Kelejian and

Prucha (2010)). Further work will incorporate such a model given the challenge of finding

appropriate instruments and natural spatial element in the hotel context.9

4.2 Mixed Logit Demand Model

Treating the coordinates of the embedding as latent characteristics, I apply a mixed logit

demand model in the style of Berry et al. (1995), writing consumers as taking a discrete

choice over hotels j in area-month market t:

uijt = αipjt + xjtβi + ξjt + ϵijt

(αi, βi) = (α, β) + Σvi
(6)

Hotel average monthly prices are denoted pjt, and hotel exogeneous characteristics are

captured in the vector xjt. Consumers have heterogeneous preferences over observable

characteristics, reflected by the random coefficients αi and βi with variances denoted by

the diagonal matrix Σ. ξjt reflects an unobserved demand shock. The error term ϵijt is

distributed as extreme value type I.

The outside option—making no purchase, or staying in a hotel not included in the data—is

normalized to u0 = 0. I define the market size as in Farronato and Fradkin (2022): the

market size M is constant and equal to 2×maxt
∑

j qjt.

As hotel characteristics do not change over time in my sample, I concentrate non-price

linear characteristics into hotel and market fixed effects. Letting Vijt = αipjt + xjtβi + ξjt,

I can then write quantities as Equation 7, given a distribution over consumer preferences

G(i):10

qjt = M

∫
exp(Vijt)

1 +
∑

k exp(Vikt)
dG(i), (7)

9
Siebert and Zhou (2024) provide an example of using a SAR in the context of housing demand.

10
I simulate the integral over G(i) using 1,000 Halton draws.
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To define hotel “characteristics,” I make use of the coordinates of the embedding, expressed

in m = 5 dimensions. Accounting for a constant and price, using the embedding results

in a total of 7 nonlinear characteristics with random coefficients. The coordinates of the

embedding—as mentioned earlier—provide differentiation in preference space rather than

strictly product space. There is no natural interpretations of the random coefficients on

the parameters relating to these characteristics. For example, it is not clear how a con-

sumer with a strong preference for Marriott hotels exhibits this through the parameters of

the model, as preferences and characteristics for Marriott do not correspond to any single

dimension. One interpretation is mechanical: as the embedding is constructed to fit Eu-

clidean distances between product utilities, random coefficients allow for flexible scaling of

utility on each dimension of the embedding, and hence relaxes the assumption of Euclidean

distances between products. For some values of the parameters βik, the hypothetical Mar-

riott enjoyer’s preferences are captured by weighting the distances between Marriott hotels

as smaller across the respective dimensions of the embedding.

To construct instruments, I use the same price instrument zp as defined previously as

a proxy cost shifter. I also construct quadratic differentiation instruments (Gandhi and

Houde (2023)) over the five nonlinear terms l (x1, . . . , x5), where djktl = xl,jt − xl,kt:

zjt =

[
zpjt,

∑
k

djktl × djktl′

]
∀ l′ ≥ l

I incorporate price variation by constructing a measure of the exogenous variation in price

p̂jt = E[pjt|xjt, zjt], and extend zjt to include interactions with differences djk,p̂ = p̂jt − p̂kt:

zfulljt =

[
zpjt,

∑
k

d2jk,p̂,
∑
k

djk,p̂ × djktl,
∑
k

djktl × djktl′

]
∀ l′ ≥ l

The column vectors of the instruments are subsequently normalized to mean zero, standard-

deviation 1. Following the typical 2-step generalized method of moments procedure, I take

the approximation to the optimal instruments (Reynaert and Verboven (2014)) and solve

the updated problem. Estimation makes use of pyBLP (Conlon and Gortmaker (2020)).
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5 Monte Carlo Examples

Through two Monte Carlo tests, I provide preliminary evidence that my proposed method

improves the estimation of substitution patterns when the product space is unobserved,

and when the true demand system involves substantial heterogeneity in preferences. In

the following two sections, I detail two examples of mixed logit data-generating processes.

Variation in the data does not perfectly identify the estimated models, and so the test’s

goal is to that the RMSE of key post-estimation statistics (diversion ratios, markups, and

out-of-sample fit) decreases when incorporating recommendation data versus the case where

no product-space data are available, or when using product-space data when variation in

the data poorly identifies the parameters of the model.

Recommendations in this context are simulated by taking product-level rankings of closeness

to substitutes. As a proxy for conditional choice probabilities from simulated consumers,

for each product j I rank products k ̸= j in descending order of their true diversion ratios

D, aggregated to the level of Djk.
11 12

∑
i

πi
sik

1− sij
·
sij
sj︸ ︷︷ ︸

Mixed logit choices

≈ sk
1− sj︸ ︷︷ ︸

Diversion ratios

This captures a similar concept of what the closest-preferred alternative to product j is

in the data: which is the most likely alternative chosen if j was no longer selected. The

assumed behavior of the platform is therefore to recommend products in order of these

rankings. The econometrician, however, does not observe these true diversion rankings—or

the exogenous characteristics—and only sees prices, quantities, a product-market-level cost

shifter, and the recommendation rankings.

5.1 Random Preferences

I first consider an environment where a large number of products are highly differentiated,

with utility modeled using common assumptions of normally-distributed consumer prefer-

11
I take the quantity-weighted average of product-market-level diversion Djkt to form product-level di-

version ratios Djk.
12
See: Conlon et al. (2023).
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ences. This environment allows me to explore the performance of the proposed method

when true characteristics are effective for estimating the demand system and the variation

in the data is well-understood.

Data are simulated from a mixed-logit data-generating process with J = 100, T = 1000,

and F = 10, with utility taking a BLP framework as in Equation 6 and firms competing via

Bertrand-Nash. Products j ∈ J have a constant, a price, and six exogenous characteristics

generated N(0, 1) i.i.d. Each of these eight characteristics has both a linear and nonlinear

coefficient in simulation. The nonlinear coefficient matrix Σ has no non-zero off-diagonal

values. The integral over consumers’ preference draws vi is simulated using 1000 Halton

draws. Full details of the DGP are included in Appendix B. The outlined specification

results in a mean inside share of 0.67, with [5, 95] percentile bounds on prices and shares at

[6.28, 10.28] and [0.002, 0.017].

A first question is to what degree having more or fewer recommendations matters for the

results. I examine the relationship between estimated elasticities and distances between

products using a distance-based log demand setup (Pinkse et al. (2002)). While this specifi-

cation cannot reproduce the discrete choice data-generating process (Jaffe and Weyl (2010))

and imposes strict restrictions on the structural errors of the demand system (Berry and

Haile (2021)), it is simple to compute and demonstrative of the relationship between dis-

tances and substitution patterns. I write the demand system as in Equation 2, where

distances are written as:

f(djk) =
∑

r=0,...,3

βr

(
djk

max ||d||

)r

and djk =

 ∑
i=1,...,6

(xij − xik)
2

0.5

(8)

I construct embeddings of m = {2, . . . , 12} dimensions using the ordinal rankings of prod-

ucts, incorporating recommendations of the top 5, 10, 25, or 50 products (indexed by R),

as well as approaching the problem without any recommendation data as a baseline.13 To

select K, I apply a rule of thumb from Magnolfi et al. (2023), assessing whether the m− 1

principal components of the m-dimension embedding capture at least some threshold of the

variation, and rejecting m if so.14 I find that a threshold of 75% would reject m = 3, 90%

would reject m = 7, and 95% would fail to reject m = 8. I proceed with the 90% threshold

13
All embeddings use the tSTE algorithm with a convergence threshold of 1e− 7.

14
Appendix Figure 2 displays the values across m = {2, . . . , 12}.
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and thus each level of R selects m = 6.

Figure 5 plots f(djk) for each value of R and when using the observed characteristics,

versus estimating f(djk) from the true cross-price elasticities. The observed characteristics

result in a non-monotonic function, suggesting that they are not well-suited to capturing

substitution via the (inherently misspecified) log-log model. By contrast, the estimated

f(djk) with values of R = {25, 50} produce closer patterns to the true relationship. The

lower values of R, which use a smaller set of close substitutes, result in overestimating the

elasticities of the closest substitutes.

Figure 3: Estimated Cross-Price Elasticity Function
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A more common application of the embedding coordinates is using them as inputs for a

characteristics-based approach. A second question is thus how the embedding performs

across different numbers of recommendations, and when compared to specifications incor-

porating the true characteristics. Using the coordinates of these embeddings (x̃rj1, . . . , x̃
r
j6)

as exogenous characteristics, I estimate the mixed-logit demand system. No fixed effects

are included as these would be collinear with instruments given the invariant choice sets -

in practice, product-level fixed effects are sensible. As instruments I include the cost shifter

wjt, as well as differentiation IVs based on the nonlinear characteristics.

Table 2 lists the error in estimated diversion to inside and outside options across values

of R = {0, 5, 10, 25, 50}, with the estimates using the true characteristics as a comparison.

As expected, having the true characteristics provides the best fit - however, in practice

the “true” characteristics are at least partially unknown.15 Furthermore, this method is

15
Consider the challenge of capturing in finite dimensions all aspects of product differentiation in a fashion
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applicable to cases where characteristics are unavailable or unquantifiable in a useful way,

such as with highly varied or stylistic consumer products. Thus, the relative close fit of

substitution patterns is a useful indicator. As R increases, the RMSE of both the outside

and inside estimated diversion falls, most noticeably for diversion to the outside option.

Table 2: Estimated Results by Number of Recommendations

Recommendations

True xj 0 5 10 25 50

Inside RMSE 0.000 0.021 0.011 0.005 0.005 0.005

Outside RMSE 0.003 0.072 0.076 0.030 0.007 0.003

Markups RMSE 0.009 0.888 0.679 0.019 0.011 0.011

Estimates utilize 2-step GMM, followed by iterating the 2-step problem using the approximation
to the optimal instruments (Reynaert and Verboven (2014)). All specifications include linear
coefficients on the constant, price, and embedding coordinates x̃. In the R = 0 case, there are no
x̃. In the xj case, the true characteristics are used. The diversion statistics are medians of the
product-level Djk.

Table 3 compares estimated outcomes when looking at four cases: when the researcher ob-

serves product characteristics, recommendations (R = 25), both, or neither. As including

all six true characteristics would closely recover the exact DGP, I assume the researcher only

observes partial true characteristics, and does not observe x4, x5, x6, a plausible scenario

where aspects of utility are difficult to observe in data. The key comparison is columns (2)

and (3): relative to having some measure of true data, incorporating recommendations does

slightly worse in estimating the median diversion to inside products, but notably better in

estimating diversion to the outside option and markups. Incorporating a mixed embedding

of characteristics and recommendations further improves estimates relative to only hav-

ing recommendations. The results suggest that researchers should—unsurprisingly—use as

much correctly-specified data as possible, but adding data from recommendations can im-

prove the scaling of estimated utility such that outside diversion is better estimated, with

implications for markups and counterfactuals.

5.2 Unobserved Consumer Demographics

A second—and more relevant—environment is one where unobserved consumer heterogene-

ity impedes the identification of the demand model even when data on the product space is

available. Prior work such as Nevo (2001) and Backus, Conlon, and Sinkinson (2021) often

item.
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Table 3: Comparative Performance of Data Sources

RMSE

TRUE (1) (2) (3) (4)

Inside Diversion 0.008 0.021 0.003 0.005 0.005

Outside Diversion 0.107 0.072 0.012 0.007 0.004

Markups 0.278 0.888 0.021 0.011 0.011

Partial True Characteristics X X

Recommendations X X

Partial true characteristics are x1, x2, and x3. All specifications include all X in the linear
specification with no fixed effects. Columns (1) and (3) are equivalent to the specifications shown
for R = 0, 25 in Table 2.

makes use of consumer demographics to aid in identifying substitution patterns; environ-

ments such as the hotel sector have no data on consumers, creating challenges for mixed

logit demand estimation. I hence create an extreme example where the parameters on the

true characteristics are poorly identified, and hence they are of limited use in estimating

substitution.

I simulate a DGP with J = 100, T = 1000, and F = 10, where each market includes a

random set of 50 products and firms compete via Bertrand-Nash. Consumers vary in terms

of product-specific demographics (bliss points):

uijt = xjtβ + αpjt + λdijt + ξjt + ϵijt where dijt =

(∑
kt

(Bikt − x2jkt)
2

)0.5

(9)

given α, λ < 0 and ϵ ∼ EV T1. Bliss points are drawn from a multivariate Gamma dis-

tribution (Bi1, Bi2, Bi3) ∼ Γ(2, 0.5). As consumers weigh the distance to the square of

(normally-distributed) product attributes, products which are far apart in the product

space may be very close in the preference space for given consumers. Appendix B includes

the full details of the DGP.

As the researcher does not observe the consumer demographics (i.e. the bliss point values),

utility is modeled as the typical random-coefficients logit equation:

uijt = xjtβi + αipjt + ξjt + ϵijt,

using typical assumptions that the random coefficients are normally distributed. In this
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case, I include all of the observed Xjt in the model which uses observed characteristics, and

compare to a model using the coordinates of an 8-dimension embedding using the top 25

recommendations.16 All specifications include product-level fixed effects. Instruments are

the same: the cost shifter and differentiation IVs.

Table 5 displays the results for three cases: with recommendations, with true characteristics,

or with neither. In this case, the results in Column (2) reflect that the variation in the data,

owing to large unobserved consumer heterogeneity, poorly identifies the demand system and

leads to substantial errors in estimated results. Column (3) shows that using an embedding

based on recommendations in place of having all of the true characteristics produces lower

RMSE on all four examined metrics: diversion to products and to the outside option,

markups, and predicted out-of-sample market shares.17 When both sets of information are

available, incorporating both in a mixed embedding further reduces errors.18

Table 4: Comparative Performance of Data Sources: Case 2

RMSE

TRUE (1) (2) (3) (4)

Inside Diversion 0.009 0.007 0.006 0.005 0.005

Outside Diversion 0.498 0.260 0.148 0.146 0.135

Markups 0.183 0.031 0.027 0.027 0.025

Shares Out-of-Sample 0.007 0.002 0.002 0.001 0.001

True Characteristics X X

Recommendations X X

All specifications include product-level fixed effects in the linear specification, with random coef-
ficients on all non-linear X terms and prices. Diversion and markups are compared at the product
level. Out-of-sample shares are compared at the product-market level.

The estimates of the demand system are most relevant in the context of the question they

are used to answer: I construct a merger simulation in the data and compare profit and

welfare change predictions in each specification. When comparing the RMSE of estimated

percentage changes in profits and welfare, the recommendations specification outperforms

the true characteristics—and are further outperformed by a mixture of both sources of

data—but by an economically insignificant degree. Regardless, this demonstrates that

recommendations can substitute for characteristics in such a context when the latter are
16
Appendix Figure 3 shows the cumulative variation of principal components: I select m = 8 to fit a 95%

threshold.
17
The holdout sample consists of 10 markets with all 100 products, and new draws of N = 1000 consumers

per market. When applying sample estimates to the holdout sample, I assume ξ = 0.
18
The mixed embedding uses the 3 observable characteristics, and 6 dimensions freely chosen by the tSTE

algorithm.
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not available, both in terms of predicting substitution patterns and their implications for

relevant counterfactual analysis.

Table 5: Simulated Merger Results

TRUE (1) (2) (3) (4)

Change in Profits 0.279% 0.599% 0.270% 0.313% 0.273%

RMSE (pct pt) 0.444 0.148 0.147 0.141

Change in Consumer Surplus −0.416% −0.259% −0.452% −0.442% −0.444%

RMSE (pct pt) 0.613 0.081 0.072 0.069

True Characteristics X X

Recommendations X X

Percentage change displayed is the mean of product-market-level profits and market-level con-
sumer surplus. Merger simulation is a small 10 → 9 merger across all simulated markets.

6 Results

6.1 Distance-based Approaches

I estimate two specifications of the log-linear approach. The first is the nonlinear form

f(djk) = β
1+djk

as in Equation 3, normalizing djk by the maximum distance between

products such that it is bounded by (0, 1]. The structure of the elasticities is kept sim-

ple (e.g. one single α parameter, one term for f(·)) in order to focus on the concept

and minimize identification challenges: in practice, more complex methods for finding ap-

propriate specifications for f(·) can be used. The second is a cubic function of distance

f(djk) = β1djk + β2d
2
jk + β3d

3
jk. This more flexible form is inhibited by the collinearity

of the usual constant term of the cross-price elasticity d0jk with the fixed effects. As such,

it is solely useful to prove the decreasing relationship between elasticity and distance but

not to recover cross-price elasticities. As the estimates rely heavily on the limited variation

present in the price instrument, further work will expand on the identification strategy or

explore alternative approaches.19

Appendix Table 2 shows the parameter results of the two specifications. In each case, the

own and cross-price elasticity parameters are statistically significant. Own-price elasticities

19
See Lewis and Zervas (2019) for one example of modeling the monopolist’s supply and demand problem

for hotels jointly. Given the spatial context, a SAR may also be relevant in reducing reliance on price
instruments.
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are not unreasonable—though potentially quite low for a major downtown area—and cross-

price elasticities are decreasing in distances between products. The variation of elasticities

with distance are presented in Figure 4: Panel A shows the value of β
1+d for values of

d ∈ [0, 1]. Panel B reflects the change in cross-price elasticity from some absorbed-by-

fixed-effects baseline using Specification 2: the function is flat for much of the variation

in distance, suggesting that either the linear distance-based model is not doing well at

differentiating competitors purely by distance, or the model struggles to identify cross-price

elasticities. Given the noted challenges in identifying price effects in hotels and the necessity

of instruments for the prices of rival products, this latter case is plausible.

Figure 4: Estimated Cross-Price Elasticity Function
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(a) Estimated Cross-Price Elasticity Function
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(b) Estimated Relationship between Distance and
Changes in Cross-price Elasticity

6.2 Using the Embedding as Characteristics

Appendix Table 3 displays the estimated coefficients of the BLP specification. I obtain

statistically-significant values for both (β,Σ) on the price parameter. The median own-

price elasticity is similar to estimates obtained by Farronato and Fradkin (2022) in other

major cities - the focus on a large, downtown area affirms that the highly-elastic demand

is sensible. Figure 5 presents distributions of the estimated median markups and diversion

ratios.20 Median diversion to the outside option is 0.07, a particularly low value given

the 50%+ share of the outside option, which in turn is a positive sign that the model

avoids pitfalls related to IIA substitution patterns. Intuitively, most hotel guests are not

20
Outliers beyond the [5, 95] percentiles are dropped.
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substituting from a hotel choice to not staying at all due to price fluctuation: a confirmed

trip leads them to exclude the “no-purchase” outside option entirely, so this low value

is reasonable to obtain and fits with the Monte Carlo results that recommendations can

improve estimates of outside diversion. Median markups of 0.16 are not easily compared to

data: marginal costs recovered by the model are a function of both accounting costs and

economic costs stemming from the underlying dynamic process of price-setting (see Cho

et al. (2018)). Markups from the model are hence understated relative to industry statistics

Figure 5: Estimated Diversion and Markups
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In Table 6 I list the own-price elasticity by hotel class, as well as the mean diversion

ratio from a hotel in the row’s class to one in the column-labeled class. Mean own-price

elasticities are −7.17, which is not overly surprising given the high number of nearby hotels

may lead to consumers who can afford to be price-sensitive in the downtown area. The

estimated own-price elasticities are decreasing in magnitude with respect to hotel quality,

another intuitive conclusion as luxury customers are likely to be less price-sensitive versus

consumers of lower-quality hotels.

Another way of validating the recovered substitution patterns is to compare the average

product-level diversion ratios across known categories: in this case, hotel quality tiers. In

general, the diversion ratios suggest that diversion is primarily to other hotels in the same

class, or to those in adjacent classes. Upper upscale hotels have, on average, a diversion

ratio of 1.2% to another upper upscale hotel, which is higher than to any other class.

The diversion ratio also falls with distance to the hotel’s own class. This pattern begins

to lose coherence with upper midscale and midscale hotels, though this may have simple

explanations: the focus on the high-demand downtown Chicago area suggests that the

cheaper hotels may be more scattered and face closer competition from other hotel classes.
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The upper upscale class also receives an outsized share of diversion: as the most-represented

class in the sample, these hotels may simply see greater representation across the choice

sets of consumers.

Table 6: Estimated Elasticities and Diversion

Own Elasticity Luxury Upr Upsc Upscale Upr Mid Midscale

Luxury -3.708 0.018 0.021 0.009 0.003 0.001

Upper Upscale -7.106 0.003 0.012 0.006 0.002 0.001

Upscale -7.433 0.005 0.022 0.011 0.004 0.001

Upper Midscale -7.848 0.009 0.044 0.024 0.009 0.003

Midscale -8.012 0.029 0.181 0.107 0.037 0.016

Own-price elasticities are the simple average of computed elasticities in that category. Diversion ratios are
the average diversion ratio from a hotel in the row-labelled class to a hotel in the column-labeled class. For
example, the average diversion between luxury hotels and upper upscale hotels is 2.1%. Economy hotels are
omitted as there is only one in the sample.

The primary planned extension to the paper is to further test the results obtained in Section

6 by comparing the post-estimation statistics to alternative demand models. I look to

estimate out-of-sample fit, diversion ratios, and markups for hotels in the sample using

other common models (i.e. logit, the monopolist model used by Lewis and Zervas (2019),

and the aggregated category demand used by Farronato and Fradkin (2022)) to improve

the sense of how much the method provides for practitioners. This would also include

comparing price and welfare estimates from merger simulation, in order to put the results

in the context of common counterfactuals employed in the IO literature.

7 Conclusion

In this paper I discuss a generalizable approach to the collection and incorporation of

publicly-available and easily-collected data on default recommendations for demand es-

timation. Applications of this approach discussed for augmenting common IO demand

estimation models, such as linear distance-based demand and more complex mixed logit

approaches. I show how this method pertains to two questions: first, can we make use of

the information provided by default recommendations in order to help estimate demand,

by placing products in utility space when the researcher does not have access to useful

data on product characteristics or consumer preferences (e.g. search, second choice, etc)?

Second and more specifically, can the aforementioned information help estimate some of the

heterogeneity in preferences due to unobserved consumer information by positioning hotels
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in utility space?

I provide preliminary evidence as to the applicability of the method: in two Monte Carlo

experiments I show that incorporating a preference space constructed from recommenda-

tions in place of a product space can improve key post-estimation results of interest. This

is most relevant in cases where data on the product space are not readily available and

recommendations can enable demand estimation where it would otherwise be infeasible, or

where unobserved heterogeneity in preferences results in variation that poorly identifies a

demand system using the true characteristics. Taking these observations to data, I estimate

a BLP demand specification for a set of over 100 hotels in downtown Chicago and recover

substitution patterns and markups. Further work will attempt to validate these estimates

through additional counterfactuals such as merger simulation, and by comparing the results

of these tests to other demand models.

Beyond this application, this approach suggests promise in similar settings where the large

product space makes survey-based approaches challenging but existing consumer recom-

mendation and search tools such as platforms operate. Unlike other studies that have made

use of machine learning and consumer surveys or search data, this approach is low-cost in

terms of data acquisition, providing a useful alternative for practitioners in the field.
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Appendix A Instruments

If the assumption that the relationship between demand shocks and prices steepens when

hotels are nearer to full capacity holds, it should be visible in the data. Figure 1 plots a

binned scatter-plot of this relationship for hotels in each of the two markets, controlling for

hotel-level fixed effects. The steepening relationship is consistent with what is observed in

downtown Chicago, but not near O’Hare, suggesting that the identification strategy may

be valid downtown but not in the O’Hare market.

Appendix Figure 1: Relationship Between ADR and Occupancy
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As a robustness check, I estimate a linear regression of log quantity on log price separately on

each market area and employ a weak instrument test for the case of 1 endogenous regressor

and 1 instrument:

log qjt = α0 + α1 log pjt, (10)

using zpjt to instrument for pjt. The own-price elasticity coefficient, its standard error,

and the Montiel-Pfleunger Effective F-statistic for downtown Chicago are −3.23 (0.18) and

419.4, while near O’Hare they are 26.03 (24.89) and 1.053. Additionally, when incorporating

the price instrument in a logit model with one endogenous regressor where ujt = xjtβ +

αpjt + ϵjt and making the same exclusion restriction, I obtain an Effective F-statistic of

280.7 for downtown Chicago.
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Appendix B Monte Carlo Construction

In the first environment, consumer utility is given by uijt = xjtβi + αipjt + ξjt + ϵijt, with

errors ϵ ∼ EVT1 and i.i.d. Random coefficients (βi, αi) = (β, α) + Σvi, where sigma is a

diagonal matrix and vi a vector of 1000 Halton draws from a normal distribution. The

F = 10 firms each hold 10 products and compete via Bertrand-Nash. Product costs are

given by cjt = γxj + 2wjt, where wjt is a uniformly-distributed random variable in [0, 1]

which is observed as a cost shifter. Table 1 lists the true parameters of the model:

Appendix Table 1: Simulation 1 True Parameters

Constant Price x1 x2 x3 x4 x5 x6

β 1 −0.5 0 0 0 0 0 0

Σ 5 0.075 0.5 0.5 0.5 0.5 0.5 0.5

γ 5 - 0.1 0.1 0.1 0.1 0.1 0.1

The outlined specification results in a mean inside share of 0.67. The [5, 95] percentile bounds on
prices and shares are [6.28, 10.28] and [0.002, 0.017].

The second environment constructs consumer utility as uijt = 5−pjt−2
(∑3

k=1(Bikt − x2jkt)
2
)0.5

+

ξjt + ϵijt, given ξ ∼ N(0, 0.2) and EVT1 errors ϵ. N = 1000 consumers are simulated per

market with bliss points drawn from a Gamma distribution: (Bi1, Bi2, Bi3) ∼ Γ(2, 0.5).

J = 100 products owned by F = 10 firms are generated with K = 3 characteristics:21


X1

X2

X3

 ∼ N



0

0

0

 ,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1




Marginal costs are 4 + w, where w ∼ U [0, 2]. Firms compete via Bertrand-Nash. In each

scenario, the equilibrium prices are solved for by iterating towards the fixed point that

solves the Bertrand-Nash first-order conditions:

p− c =

(
−∂s(p)

∂p
· Ω
)−1

s(p) (11)

given a J × J matrix of firm ownership Ω.

21
The distribution of characteristics in the product space is taken from Dubé, Fox, and Su (2012).
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Appendix C Additional Tables and Figures

Appendix Table 2: Estimated Linear Demand Coefficients

(1) (2)

α −3.310*** −3.275***

(0.186) (0.183)

β 0.005***

(0.001)

β1 -0.047***

(0.015)

β2 0.130***

(0.037)

β3 -0.108***

(0.028)

F-Statistic 198.93 100.7

Distance Function 1/(1 + d) Cubic

Observations 9,112 9,112

Hotel FE Yes Yes

Year-Month FE Yes Yes

Appendix Figure 2: Cumulative Variation of m− 1 Principal Components (R = 5)
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Appendix Table 3: Estimated Demand Coefficients

β SE Σ SE

Constant 16.369 (9.248)

Price -0.043 (0.017) 0.026 (0.010)

x1 0.000 (0.310)

x2 0.000 (0.417)

x3 0.549 (0.265)

x4 0.181 (0.306)

x5 0.105 (0.531)

Median Outside Diversion 0.069

Median Own-price Elasticity -7.166

Median Cross-price Elasticity 0.056

Number of Obserations 9,112

BLP specification includes product and market-year-month level fixed effects to absorb
linear components of demands. Estimation utilized 2-step GMM followed by approxima-
tion to the optimal instruments and updating of results. The Montiel-Pflueger Effective
F-statistic for the logit specification and single price instrument z

p
is 280.7.

Appendix Figure 3: Cumulative Variation of m− 1 Principal Components (R = 25)
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