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a b s t r a c t

We study estimation and inference in cointegrated regression models with multiple structural changes
allowing both stationary and integrated regressors. Both pure and partial structural change models are
analyzed. We derive the consistency, rate of convergence and the limit distribution of the estimated
break fractions. Our technical conditions are considerably less restrictive than those in Bai et al. [Bai, J.,
Lumsdaine, R.L., Stock, J.H., 1998. Testing for and dating breaks in multivariate time series. Review of
Economic Studies 65, 395–432] who considered the single break case in a multi-equations system,
and permit a wide class of practically relevant models. Our analysis is, however, restricted to a single
equation framework. We show that if the coefficients of the integrated regressors are allowed to change,
the estimated break fractions are asymptotically dependent so that confidence intervals need to be
constructed jointly. If, however, only the intercept and/or the coefficients of the stationary regressors are
allowed to change, the estimates of the break dates are asymptotically independent as in the stationary
case analyzed by Bai and Perron [Bai, J., Perron, P., 1998. Estimating and testing linear models with
multiple structural changes. Econometrica 66, 47–78]. We also show that our results remain valid, under
very weak conditions, when the potential endogeneity of the non-stationary regressors is accounted for
via an increasing sequence of leads and lags of their first-differences as additional regressors. Simulation
evidence is presented to assess the adequacy of the asymptotic approximations in finite samples.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Issues related to structural change have received considerable
attention in the statistics and econometrics literature (see Perron
(2006), for a survey). In the last fifteen years or so, substantial
advances have been made in the econometrics literature to
cover models at a level of generality that allows a host of
interesting practical applications in the context of unknown
change points. These include models with general stationary
regressors and errors that can exhibit temporal dependence and
heteroskedasticity. Andrews (1993) and Andrews and Ploberger
(1994) provide a comprehensive treatment of the problem of
testing for structural change assuming that the change point
is unknown. Bai (1997) studies the least squares estimation
of a single change point in regressions involving stationary
and/or trending regressors. He derives the consistency, rate of
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convergence and the limiting distribution of the change point
estimator under general conditions on the regressors and the
errors. Bai and Perron (1998) extend the testing and estimation
analysis to the case of multiple structural changes, while Bai
and Perron (2003) present an efficient algorithm to obtain the
break dates corresponding to the global minimizers of the sum
of squared residuals. Perron and Qu (2006) consider the case in
which restrictions within or across regimes are imposed. Qu and
Perron (2007) cover the more general case of multiple structural
changes in a system of equations allowing arbitrary restrictions on
the parameters.

When dealing with non-stationary variables, the literature is
less extensive. With respect to testing, Hansen (1992b) develops
tests of the null hypothesis of no change in models where all
coefficients are allowed to change. An extension to partial changes
has been analyzed by Kuo (1998). The tests considered are the
Sup and Mean LM tests directed against an alternative of a one
time change in parameters. Hao (1996) also suggests the use of
the exponential LM test. Seo (1998) considers the Sup, Mean and
Exp versions of the LM test within a cointegrated VAR setup. The
Sup and Mean LM tests in this setup are shown to have a similar
asymptotic distribution as the Sup and Mean LM tests of Hansen
(1992b). Kejriwal and Perron (2008) show that such tests can suffer
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from important lack of power in finite samples and be subject to
a non-monotonic power function such that the power decreases
as the magnitude of the break increases. They suggest modified
Sup–Wald type tests that perform considerably better.

With respect to estimation, Perron and Zhu (2005) analyze
the properties of parameter estimates in models where the trend
function exhibits a slope change at an unknown date and the
errors can be either stationary or have a unit root. With integrated
variables, the case of most interest is that of a framework in
which the variables are cointegrated. Accounting for parameter
shifts is crucial in cointegration analysis since it normally involves
long spans of data which are more likely to be affected by
structural breaks. The goal is then to testwhether the cointegrating
relationship has changed and to estimate the break dates and form
confidence intervals for them. In this respect, an important paper
is that of Bai et al. (1998) who consider a single break in a multi-
equations system and show the estimates obtained bymaximizing
the likelihood function to be consistent. They also obtain a limit
distribution of the estimate of the break date under a shrinking
shift scenario assuming that the coefficients associated with the
trend and the non-stationary regressors shrink faster than those
pertaining to the stationary regressors.

The aim of this paper is to provide a comprehensive treatment
of issues related to estimation and inference with multiple
structural changes, occurring at unknown dates, in cointegrated
regression models. Our work builds on that of Bai and Perron
(1998) who undertake a similar treatment in a stationary
framework. Our framework is general enough to allow both
stationary and non-stationary variables in the regression. The
assumptions regarding the distribution of the error processes
are mild enough to allow for general forms of serial correlation
and conditional heteroskedasticity, as well as mild forms of
unconditional heteroskedasticity. Moreover, we analyze both pure
and partial structural change models. A partial change model is
useful in allowing potential savings in the number of degrees
of freedom, an issue particularly relevant for multiple changes.
It is also important in empirical work since it helps to isolate
the variables which are responsible for the failure of the null
hypothesis. The parameter estimates of the regression coefficients
and the break dates are obtained byminimizing the sumof squared
residuals. We derive the consistency, rate of convergence and
limiting distribution of the estimated break fractions under much
weaker conditions than those in Bai et al. (1998). We show that if
the coefficients of the integrated regressors are allowed to change,
the estimated break fractions are asymptotically dependent so
that confidence intervals need to be constructed jointly. Methods
to construct such confidence intervals are discussed. If, however,
only the intercept and/or the coefficients of the stationary
regressors are allowed to change, the estimates of the break dates
are asymptotically independent as in the stationary framework
analyzed by Bai and Perron (1998). Though our theoretical results
hold under much weaker conditions than those of Bai et al. (1998)
and allow for multiple breaks, our analysis is restricted to a
single cointegrating vector unlike theirs which is valid in a multi-
equations system which, thereby allows multiple cointegrating
vectors. In the multiple break case, the fact that the estimated
break fractions are asymptotically dependent complicates the
analysis considerably and the extension to a multi-equations
system is outside the scope of this paper.

This article is organized as follows. Section 2 presents themodel
and assumptions. In Section 3, we derive the consistency, rate of
convergence and limiting distribution of the estimates of the break
dates. Section 4 presents the results of simulation experiments to
assess the adequacy of the asymptotic approximations in finite
samples. Section 5 offers concluding remarks and all technical
derivations are included in a mathematical Appendix.
2. The model and assumptions

Consider the following linear regression model with m breaks
(m + 1 regimes):

yt = cj + z ′

ftδf + z ′

btδbj + x′

ftβf + x′

btβbj + ut

(t = Tj−1 + 1, . . . , Tj) (1)

for j = 1, . . . ,m + 1, where T0 = 0, Tm+1 = T and T is the
sample size. In this model, xft(pf ×1) and xbt(pb ×1) are vectors of
I(0) variables while zft(qf × 1) and zbt(qb × 1) are vectors of I(1)
variables defined by

zft = zf ,t−1 + uf
zt

zbt = zb,t−1 + ub
zt

xft = µf + uf
xt

xbt = µb + ub
xt

where zf 0 and zb0 are assumed, for simplicity, to be either Op(1)
randomvariables or fixed finite constants. For ease of reference, the
subscript b on the error term stands for ‘‘break’’ and the subscript
f stands for ‘‘fixed’’ (across regimes). By labeling the regressors xft
and xbt as I(0), we mean that the partial sums of the associated
noise components satisfy a functional central limit theorem. The
conditions imposed are discussed below. We then label a variable
as I(1) if it is the accumulation of an I(0) process.

The break points (T1, . . . , Tm) are treated as unknown. This
is a partial structural change model in which the coefficients of
only a subset of the regressors are subject to change while the
remaining coefficients are effectively estimated using the entire
sample. When pf = qf = 0, a pure structural change model
is obtained where all coefficients are allowed to change across
regimes.1 We can express (1) in matrix form as:

Y = Gα + W̄γ + U

where Y = (y1, . . . , yT )′, G = (Zf , Xf ), Zf = (zf 1, . . . , zfT )′,
Xf = (xf 1, . . . , xfT )′, U = (u1, . . . , uT )

′, W = (w1, . . . , wT )
′,

wt = (z ′

bt , x
′

bt)
′, γ = (δ′

b1, β
′

b1, . . . , δ
′

b,m+1, β
′

b,m+1)
′, α = (δ′

f , β
′

f )
′

and W̄ is the matrix which diagonally partitions W at the m-
partition (T1, . . . , Tm), that is, W̄ = diag(W1, . . . ,Wm+1) with
Wi = (wTi−1+1, . . . , wTi)

′ for i = 1, . . . ,m+1. The data generating
process is assumed to be

Y = Gα0
+ W̄ 0γ 0

+ U (2)

where α0, γ 0 and (T 0
1 , . . . , T

0
m) are the true values of the

parameters and the matrix W̄ 0 is the one that partitions W at
(T 0

1 , . . . , T
0
m).

As a matter of notation, ‘‘
p

→’’ denotes convergence in proba-
bility, ‘‘

d
→’’ convergence in distribution and ‘‘⇒’’ weak conver-

gence in the space D[0, 1] under the Skorohod metric. Also, xt =

(x′

ft , x
′

bt)
′, uxt = (uf ′

xt , ub′
xt)

′, zt = (z ′

ft , z
′

bt)
′, uzt = (uf ′

zt , ub′
zt)

′, ξt =

(ut , u
f ′
zt , ub′

zt , u
f ′
xt , ub′

xt)
′, µ = (µ′

f , µ
′

b)
′ and λ = {λ1, . . . , λm} is the

vector of break fractions defined by λi = Ti/T for i = 1, . . . ,m.
We make the following assumptions on the regressors and the
elements of the noise component ξt .

1 Note that (1) assumes a particular normalization of the cointegrating vector. Ng
and Perron (1997) study the normalization problem in a two variable models. They
show that the least squares estimator can have very poor finite sample properties
when normalized in one direction but can be well behaved when normalized in the
other. This occurs when one of the variables is a weak random walk or is nearly
stationary. They suggest to use as regressand the variable for which the spectral
density at frequency zero of the first differences is smallest.
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• Assumption A1: Let f ′
t = (z ′

ft , x
′

ft , z
′

bt , x
′

bt), F = (f1, . . . , fT )′

and F̄ 0 be the diagonal partition of F at (T 0
1 , . . . , T

0
m) such

that F̄ 0
= diag(F 0

1 , . . . , F
0
m+1). Define the matrix D0i =

diag((T 0
i −T 0

i−1)
−1Iqf , (T

0
i −T 0

i−1)
−1/2Ipf , (T

0
i −T 0

i−1)
−1Iqb , (T

0
i −

T 0
i−1)

−1/2Ipb). We assume that for each i = 1, . . . ,m + 1,
D0iF 0′

i F 0
i D0i converges to a random matrix not necessarily the

same for all i.
• Assumption A2: Define the matrix D̃ = diag(T−1/2Iqf , Ipf , T

−1/2

Iqb , Ipb). There exists an l0 > 0 such that for all l > l0,

the minimum eigenvalues of Ail = (1/l)D̃
∑T0i +l

T0i +1
ft f ′

t D̃ and of

A∗

il = (1/l)D̃
∑T0i

t=T0i −l
ft f ′

t D̃ are bounded away from zero (i =

1, . . . ,m + 1).
• Assumption A3: The matrix Bkl =

∑l
t=kwtw

′
t is invertible for

l − k ≥ qb + pb.
• Assumption A4: Let ξ ∗

t = (uf ′
zt , ub′

zt , u
f ′
xt , ub′

xt)
′ and p = pf +

pb + qf + qb. The vector {ξ ∗
t ut} satisfies Assumption A4 in

Qu and Perron (2007). Define the Lr -norm of a random matrix
X as ‖X‖r = (

∑
i
∑

j E
∣∣Xij
∣∣r)1/r for r ≥ 1 and Ft = σ -

field
{
..., ξ ∗

t−1, ξ
∗
t , . . . , ut−2, ut−1

}
. If ξ ∗

t ut is weakly stationary
within each segment, then (a)

{
ξ ∗
t ut ,Ft

}
forms a strongly

mixing (α-mixing) sequence with size −4r/ (r − 2) for some
r > 2, (b) E(ut) = 0 and

∥∥ξ ∗
t ut
∥∥
2r+δ < M < ∞ for some δ > 0,

(c) Let Sk,j (`) =
∑T0j−1+`+k

T0j−1+`+1
ξ ∗
t ut , j = 1, . . . ,m + 1, for each

e ∈ Rn of length 1, var
(〈
e, Sk,j (0)

〉)
≥ v (k) for some function

v (k) → ∞ as k → ∞ (with 〈·〉, the usual inner product). If
ξ ∗
t ut is not weakly stationary within each segment, we assume
that (a)–(c) holds, and in addition, that there exists a positive
definite matrix Ω =

[
wi,s

]
such that for any i, s = 1, . . . , p,

we have, uniformly in `,
∣∣k−1E

((
Sk,j (`)

)
i

(
Sk,j (`)

)
s

)
− wi,s

∣∣ ≤

C2k−ψ , for some C2, ψ > 0. It is also assumed that {ξt} satisfies
the conditions stated in this assumption.

• Assumption A5: E(uxtut) = 0.
• Assumption A6: 0 < λ01 < · · · < λ0m < 1 with T 0

i =
[
Tλ0i

]
.

• Assumption A7: Let γ̄T ,i = γ 0
T ,i+1 − γ 0

T ,i, then γ̄T ,i =

diag(T−1/2Iqb , Ipb)γ̄ivT , for some γ̄i independent of T , where
vT > 0 is a scalar satisfying vT → 0 and T 1/2vT → ∞ as
T → ∞.

Assumption A1 is needed for multiple linear regressions
involving both stationary and integrated regressors and simply
indicates that sample moments of the regressors exists when
scaled as stated. Assumption A2 ensures that there is no local
collinearity problem so that the break points can be identified.
The use of the weighting matrices D0i and D̃ is due to the
presence of both I(1) and I(0) regressors. Assumption A3 is a
standard invertibility requirement to have well defined estimates.
Assumption A4 determines the dependence structure of the
processes ξ ∗

t ut and ξt . In particular, they imply that ξ ∗
t ut and ξt

are short memory processes having bounded fourth moments.
The assumptions are imposed to obtain a functional central limit
theorem, a generalized Hájek and Rényi (1955) type inequality
and a strong law of large numbers that allow us to show the
estimates to be consistent and to derive their rate of convergence.
The conditions are mild in the sense that they allow for substantial
conditional heteroskedasticity and autocorrelation. Also, if no
autocorrelation is present, i.e.,

{
ξ ∗
t ut
}

and {ξt} are martingale
difference sequences with respect to the filtration Ft , then
even the weak stationarity assumption can be dropped and
ξt allowed to be unconditionally heteroskedastic with bounded
fourth moments. The conditions for this to hold are very general
(see, e.g., Davidson (1994)). It can be shown to apply to a large
class of linear processes including those generated by all stationary
and invertible ARMA models. Note that Assumption A4 could be
replaced by other sufficient conditions that can yield the main
ingredients stated above.2

Assumption A5 specifies that the stationary regressors are con-
temporaneously uncorrelated with the errors. This is a standard
requirement to obtain consistent estimates. It is important to note
that no such assumption is imposed on the correlation between
the innovations to the I(1) regressors and the errors. Hence, we al-
low endogenous I(1) regressors. Assumption A6 implies asymptot-
ically distinct breaks, i.e. each regime contains a positive fraction
of the sample even in the limit. Assumption A7 implies a shrinking
shifts asymptotic framework where the magnitudes of the shifts
converge to zero as the sample size increases. Specifically, we as-
sume that the coefficients associatedwith the I(1) variables shrink
at a faster rate than those associated with the I(0) variables. Note
that Bai and Perron (1998) assume all coefficients to shrink at the
same rate since all regressors in their framework are assumed to
be stationary. Moreover, since breaks of larger magnitude are eas-
ier to identify, consistency of the break fractions assuming a small
magnitude of shift imply consistency for breaks of larger magni-
tude.

Our set of assumptions is considerably weaker than those of Bai
et al. (1998) who impose the following conditions: (a) the errors
ut are independent of the regressors at all leads and lags, which
precludes, among other things, endogenous I(1) regressors, (b)
the noise components are linear processes with i.i.d. errors, (c)
some bound on the expectation of some functions of the squared
regressors (see their Assumptions 3.3 and 3.4), (d) zero mean
stationary regressors. Hence, our framework allows a much wider
variety ofmodels that are of interest in appliedwork. For the rate at
which the magnitude of the breaks shrink to zero, Bai et al. (1998)
also impose the requirement that T 1/2vT/ log(T ) → ∞ as T → ∞.
Our condition is slightly weaker.

Estimates of the parameters are obtained by minimizing the
global sumof squared residuals. For eachm-partition (T1, . . . , Tm),
denoted {Tj}, the associated least squares estimates of α and γ are
obtained by minimizing

SSRT (T1, . . . , Tm) =

m+1∑
i=1

Ti∑
t=Ti−1+1

[
yt − ci − z ′

ftδf − x′

ftβf

− z ′

btδbi − x′

btβbi
]2
. (3)

Let α̂({Tj}) and γ̂ ({Tj}) be the resulting estimates. Substituting
these into the objective function and denoting the resulting sum
of squared residuals as ST (T1, . . . , Tm), the estimates of the break
dates (T̂1, . . . , T̂m) are such that

(T̂1, . . . , T̂m) = arg min
T1,...,Tm

ST (T1, . . . , Tm). (4)

Throughout, we also impose the following assumption on the set of
permissible partitions where ε acts as a trimming parameter and
imposes a minimal length for each regime.
• AssumptionA8: Theminimization (4) is takenover all partitions
(T1, . . . , Tm) = (Tλ1, . . . , Tλm) in the set

Λε =
{
(λ1, . . . , λm) ;

∣∣λj+1 − λj
∣∣ ≥ ε, λ1 ≥ ε, λm ≤ 1 − ε

}
.

(5)

This assumption is not very restrictive given that ε can be small.
The estimates of the regression coefficients are then α̂ = α̂({T̂j})

2 Examples of such conditions are discussed by Dehling and Philipp (1982),
Altissimo and Corradi (2003) and Lavielle and Moulines (2000), among others.



62 M. Kejriwal, P. Perron / Journal of Econometrics 146 (2008) 59–73
and γ̂ = γ̂ ({T̂j}). The estimates of the parameters can be obtained
using the algorithm of Bai and Perron (2003) with no modification
since the algorithm itself is valid irrespective of the nature of the
regressors and errors given that it is designed to obtain estimates of
the break dates that minimize the global sum of squared residuals
in a regression with some or all coefficients allowed to change
across a pre-specified number of regimes.

Finally, note that trends of the form (t/T )i for i = 1, . . . , d,
say, are allowed for the I(0) regressors. Extending the analysis
to I(0) and I(1) variables with unscaled trends of the form t i is
straightforward for I(0) variables with minor modifications of the
scaling matrices in Assumptions A1, A2 and A7. The results stated
below about the consistency and rate of convergence go through,
though not the result about the limit distribution, which would
require some modifications. We can allow I(1) regressors with
trend of the form

z∗

ft = ρf t + zft
z∗

bt = ρbt + zbt
by including a linear time trend as a regressor in (1). Moreover,
since z∗

bt behaves asymptotically like a time trend, the rate of
decrease of the shifts needs to be specified as δ0b,i+1 − δ0b,i =

T−1δ̄b,ivT and δ̄b,iρb 6= 0. Following the arguments in Bai et al.
(1998), all results about consistency, rate of convergence and even
limit distribution carry through.

3. Consistency and rates of convergence

3.1. Consistency

Let λ̂ = (λ̂1, . . . , λ̂m) with corresponding true values λ0 =

(λ01, . . . , λ
0
m). The following Theorem states the consistency of λ̂

for λ0.

Theorem 1. Under A1–A8: λ̂k
p

→ λ0k, k = 1, . . . ,m.

To prove the theorem, we need to establish two lemmas. Let
ût = yt − g ′

t α̂ − w′
t γ̂k, for t ∈ [T̂k−1 + 1, T̂k] and dt = g ′

t(α̂ −

α0) + w′
t(γ̂k − γ̂ 0

j ), for t ∈ [T̂k−1 + 1, T̂k] ∩ [T 0
j−1 + 1, T 0

j ] (k, j =

1, . . . ,m + 1). By the properties of projections,

T∑
t=1

û2
t ≤

T∑
t=1

u2
t . (6)

Since ût = ut − dt ,

T∑
t=1

û2
t =

T∑
t=1

u2
t +

T∑
t=1

d2t − 2
T∑

t=1

utdt . (7)

Now we have the following first lemma:

Lemma 1. Assume A1–A8 hold, then
∑T

t=1 utdt = Op(T 1/2vT ).

To prove the Theorem, we will prove that
∑T

t=1 d
2
t >

2
∑T

t=1 utdt in the limit as T → ∞. To do this, we show that∑T
t=1 d

2
t diverges at a faster rate than

∑T
t=1 utdt if any estimate

of the break fractions is not consistent. This gives us the desired
contradiction from (6). The following lemma states the rate of
divergence of

∑T
t=1 d

2
t in such a case.

Lemma 2. Assume A1–A8 hold and that λ̂j
p9 λ0j for some j; then

lim
T→∞

sup P

(
T−2

T∑
t=1

d2t > C
∥∥δ0bj − δ0bj+1

∥∥2) > ε0

for some C > 0 and ε0 > 0.
Since
∑T

t=1 d
2
t > T 2C‖δ0bj − δ0bj+1‖

2 > TC ′v2T ,
∑T

t=1 d
2
t >

2
∑T

t=1 utdt if Tv2T/T
1/2vT → ∞, which follows from Assumption

A7. This proves Theorem 1.

Remark 1. If the breaks occur only in the coefficients associated
with the I(0) regressors, Lemma 1 still holds. Moreover, we can
show that

∑T
t=1 d

2
t > TC‖β0

bj −β
0
bj+1‖

2 > TC ′v2T which also proves
Theorem 1 in this case.

3.2. Rates of convergence

We now show that λ̂k converges to λ0k at rate Tv2T , which is
stated in the following theorem.

Theorem 2. Under A1–A8, we have Tv2T (λ̂k − λ0k) = Op(1) for
k = 1, . . . ,m.

Remark 2. Note that Bai et al. (1998) assume T 1/2vT/ log T → ∞.
Thus our results on consistency and rates of convergence are valid
under weaker conditions.

Given the above rate of convergence, the limiting distribution
of the estimates of the regression coefficients is the same as that
obtained when the break dates are known.

Proposition 1. Let θ = (α, γ ), F̄ 0
= (G, W̄ 0). Define the ((m +

1)(qb + pb)× (m + 1)(qb + pb))matrices

D̃m+1 = diag(T−1Iqb , T
−1/2Ipb , . . . , T

−1Iqb , T
−1/2Ipb)

D̃T = diag(T−1Iqf , T
−1/2Ipf , D̃m+1).

Assume A1–A8 hold, then we have D̃−1
T (θ̂ − θ0)

d
→H−1κ , where

H = p limT→∞(D̃T F̄ 0′F̄ 0D̃T ) and κ is the limiting distribution of
D̃T F̄ 0′U.

3.3. The limiting distribution of the estimates of the break dates

We now consider the limit distribution of the estimates of the
break dates. We first impose the following condition:
• Assumption A9: Let 1T 0

j = T 0
j − T 0

j−1; for j = 1, . . . ,m,
as1T 0

j → ∞, uniformly in s ∈ [0, 1],

(1T 0
j )

−1∑T0j−1+[s1T0j ]

t=T0j−1+1
xtx′

t →p sQxx where

Qxx =

[
Q ff
xx Q fb

xx

Q bf
xx Q bb

xx

]
is a nonrandom positive definite matrix.

Assumption A9 rules out trending regressors with a stationary
noise component. Note also that we have imposed the same
distribution for the I(0) regressors across segments, contrary
to what is customary in the recent literature. Relaxing this
assumption would be relatively straightforward following the
same arguments as in Bai and Perron (1998), but allowing for
heterogeneity in the distribution of the errors underlying the I(1)
regressors would be considerably more difficult. Instead of having
a limit distribution in terms of standard Wiener processes, we
would have time-deformed Wiener processes according to the
variance profile of the errors through time; see, e.g., Cavaliere and
Taylor (2007). This would lead to important complications given
that, as shown below, the limit distribution of the estimates of the
break dates depends on the whole time profile of the limit Wiener
processes. For these reasons, we restrict the analysis to the case of
homogeneous distributions across segments, and do so for both the
I(1) and I(0) regressors aswell as the error of the regression. Given
this, Assumption A4 implies the following distributional results
which also sets up the notation to be used.
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A(v1, . . . , vm) =
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i=1
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0 if vi = 0
η
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1 (vi) if vi < 0
η
(i)
2 (vi) if vi > 0

W (i)
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Box I.
• The vector ξt = (ut , u
f ′
zt , ub′

zt , u
f ′
xt , ub′

xt)
′, of dimension n = qf +

pf + qb + pb + 1, satisfies the following multivariate functional
central limit theorem:

T−1/2
[Tr]∑
t=1

ξt ⇒ B(r)

where B(r) = (B1(r), B
f
z(r)′, Bb

z(r)
′, Bf

x(r)′, Bb
x(r)

′)′ is a n vector
Brownian motion with symmetric covariance matrix

Ω =


σ 2 Ω

f
1z Ωb

1z Ω
f
1x Ωb

1x

Ω
f
z1 Ω ff

zz Ω fb
zz Ω fb

zx Ω ff
zx

Ωb
z1 Ωbf

zz Ωbb
zz Ωbf

zx Ωbb
zx

Ω
f
x1 Ω ff

xz Ω fb
xz Ω ff

xx Ω fb
xx

Ωb
x1 Ωbf

xz Ωbb
xz Ωbf

xx Ωbb
xx


1
qf
qb
pf
pb

= lim
T→∞

T−1E(ST S ′

T ) = Σ +Λ+Λ′

where ST =
∑T

t=1 ξt ,Σ = limT→∞ T−1∑T
t=1 E(ξtξ

′
t ) and

Λ = lim
T→∞

T−1
T−1∑
j=1

T−j∑
t=1

E(ξtξ ′

t+j).

with σ 2 > 0 and p limT→∞ T−1∑T
t=1 u

2
t = limT→∞ T−1∑T

t=1 E[u2
t ] ≡ σ 2

u . When the errors are stationary processes,
we also have Ω = 2π fξ (0) where fξ (0) is the spectral density
function of {ξt} at zero frequency.

• T−1/2∑[Tr]
t=1(u

f
xt , ub

xt)ut ⇒ Q 1/2
xu W ∗

x (r), where W ∗
x (r) =

(W ∗

xf (r)
′,W ∗

xb(r)
′)′ is a (pf + pb) vector of independent Wiener

processes and

Qxu =

(
∞∑

h=−∞

E(uxtu2
t u

′

xt−h)

)
≡

[
Q ff
xu Q bf

xu

Q fb
xu Q bb

xu

]
.

We shall also impose the following condition:

• Assumption A10: For all t and s: (a) E(uxtutz ′
s) = 0; (b)

E(uxtutus) = 0; (c) E(uxtutu′
xs) = 0.

Assumption A10 restricts somewhat the class of models
applicable but is quite mild. Sufficient, though not necessary,
conditions for it to hold are: for (a) that the I(0) regressors are
uncorrelated with the errors contemporaneously even conditional
on the I(1) variables; for (b) that the autocovariance structure of
the I(0) regressors be independent of the errors and, similarly, for
(c) that the autocovariance structure of the errors be independent
of the I(0) regressors. This assumption is needed to guarantee that
W ∗

x (·) and B(·) are uncorrelated and, being Gaussian, are therefore
independent. Without this condition, the analysis would be much
more complex.

Finally, we need the following assumption which rules out
cointegration among the I(1) regressors:

• Assumption A11:
(
Ωbb

zz Ω
fb
zz

Ω
bf
zz Ω

ff
zz

)
> 0.

Consistent estimates of the matrices Σ and Λ (and hence Ω)
are Σ̂ = T−1∑T

t=1 ξ̂t ξ̂
′
t and Λ̂ = T−1∑T−1

j=1 w(j/lT )
∑T−j

t=1 ξ̂t ξ̂t+j,
where ξ̂t = (ût ,1z ′

ft ,1z ′

bt , (xft − x̄f )′, (xbt − x̄b)′)′ with ût the
OLS residuals from regression (1), x̄i = T−1∑T

t=1 xit (i = f , b)
and w(j/lT ) is a kernel function that is continuous and even with
w(0) = 1 and

∫
∞

−∞
k2(x)dx < ∞. Also, lT → ∞ as T → ∞ and

lT = o(T 1/2). Consistency of these covariance matrix estimates has
been shown in Hansen (1992a). The following proposition states
the limiting distribution of the estimates of the break dates under
strict exogeneity of the I(1) regressors.

Theorem 3. For i = 1, . . . ,m, let η(i)(vi) andW (i)
xb (vi) are two sided

Wiener processes independent of each other. Also, η(i)1 (vi) and η
(i)
2 (vi)

are independent, and η(i)j (vi) (j = 1, 2) are independent across i.
Similarly, W (i)

xb,1(vi) andW (i)
xb,2(vi) are independent, andW (i)

xb,j(vi) (j =

1, 2) are independent across i. Then, under Assumptions A1–A11 and
Ω

f
1z = Ωb

1z = 0,(
v2TΠ1(T̂1 − T 0

1 ), . . . , v
2
TΠm(T̂m − T 0

m)
)

⇒ arg max
(v1,...,vm)

H(v1, . . . , vm)

with

H(v1, . . . , vm) = B(v1, . . . , vm)−
1
2
A(v1, . . . , vm)

where A(v1, . . . , vm) and B(v1, . . . , vm) are given in Box I.
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This theorem shows how different inference about the break
dates is when the coefficient of an I(1) regressor is allowed to
change. In this case, the limit distribution of the estimates of
the break dates are not asymptotically independent even if the
break dates are separated by a positive fraction of the sample
size. This can be seen by noting that the function H(v1, . . . , vm)
involves the same Wiener processes (those corresponding to the
I(1) regressors) evaluated at v1, . . . , vm. This gives rise to the
correlation between the estimates of the break dates even in the
limit. This result contrasts with the case of regression models
with I(0) regressors, in which case the limit distributions of
the estimates of the break dates are asymptotically independent
(see Bai and Perron (1998)). As shown in Corollary 3 below, this
asymptotic independence continues to hold when I(1) regressors
are included but their coefficients are not allowed to change.
Note that from a computational aspect, evaluating the limit
distribution involves considering 2m cases corresponding to the
possible combinations of the signs of v1, . . . , vm. In the single break
case, the limit distribution is different from that in Bai et al. (1998)
becausewe do not assume zeromean stationary regressors. Hence,
the limit distribution is a function ofµb, which can nevertheless be
consistently estimated.

The cumulative distribution function of the random variable
argmax(v1,...,vm)H(v1, . . . , vm) does not have a tractable analyti-
cal formula and hence needs to be obtained by simulations. Ac-
cordingly, we first generate a realization of H(v1, . . . , vm) by
replacing the true value of the parameters with consistent es-
timates and simulating the Brownian motion processes over an
appropriate range, say, [−M,M]. Then, we obtain the global
maximum of the function H(v1, . . . , vm) over (v1, . . . , vm) ∈

[−M,M] × · · · × [−M,M]. This is repeated until we have an es-
timate of the joint distribution over an appropriate range. A stan-
dardmethod to construct joint confidence intervals is to use the so
called Bonferroni procedure. In this case, we simulate themarginal
distributions of T̂1, . . . , T̂m and form (1−α/m)% confidence inter-
vals for each. The joint confidence interval at significance level α is
then the intersection of the intervals for each of them break dates
(see, e.g., Gourieroux and Monfort (1995, p. 218)). Other methods
of constructing joint confidence intervals are discussed in Lehmann
and Romano (2005).

Often, special cases of the general regressionmodel (1) are used.
We classify them in two categories: (a) models involving only I(1)
regressors; (b) models involving both I(1) and I(0) regressors.
Category (a), Models with I(1) variables only (pf = pb = 0, for all
cases):

1. cj = 0 for all j = 1, . . . ,m + 1, qf = 0: yt = z ′

btδbj + ut ;
2. qf = 0: yt = cj + z ′

btδbj + ut ;
3. qb = 0: yt = cj + z ′

ftδf + ut ;
4. cj = c for all j = 1, . . . ,m + 1, qf = 0: yt = c + z ′

btδbj + ut ;
5. no restriction: yt = cj + z ′

ftδf + z ′

btδbj + ut ;
6. cj = c for all j = 1, . . . ,m + 1: yt = c + z ′

ftδf + z ′

btδbj + ut .

Category (b),Models with both I(1) and I(0) variables:

1. cj = c for all j = 1, . . . ,m + 1, pf = qb = 0: yt = c + z ′

ftδf +

x′

btβbj + ut ;
2. cj = c for all j = 1, . . . ,m + 1, pb = qf = 0: yt = c + z ′

btδbj +

x′

ftβf + ut ;
3. cj = c for all j = 1, . . . ,m + 1, pf = qf = 0: yt = c + z ′

btδbj +

x′

btβbj + ut ;
4. pf = qf = 0: yt = cj + z ′

btδbj + x′

btβbj + ut ;
5. pb = qb = 0: yt = cj + z ′

ftδf + x′

ftβf + ut ;
6. pb = qf = 0: yt = cj + z ′

btδbj + x′

ftβf + ut ;
7. pf = qb = 0: yt = cj + z ′

ftδf + x′

btβbj + ut ;
8. qf = 0: yt = cj + z ′

btδbj + x′

ftβf + x′

btβbj + ut ;
9. qb = 0: yt = cj + z ′

ftδf + x′

ftβf + x′

btβbj + ut ;

We nowgive a brief description of each of themodels in the two
categories. Consider first Category (a). Case 1 is a pure structural
change model without an intercept in which all I(1) coefficients
are allowed to change across regimes. Case 2 is a pure structural
change model which allows for a change in the intercept as well.
Case 3 is a partial change model in which only the intercept is
allowed to change. Case 4 is again a partial change model where
the intercept is not allowed to change. Cases 5 and 6 are block
partial models in which a subset of the I(1) coefficients is allowed
to change. In Category (b), Cases 1 to 3 are partial change models
where the intercept is not allowed to change across regimes. Case
4 is a pure change model where all I(1) and I(0) coefficients as
well as the intercept is allowed to change. Case 5 is a partial
change model, which involves only an intercept shift. Case 6 is a
partial change model where the I(0) coefficients are not allowed
to change. Similarly, Case 7 is a partial change model where the
I(1) coefficients are not allowed to change. Cases 8–9 are block
partial models in which a subset of coefficients of at least one type
of regressor is not allowed to change. The limit distribution stated
in Theorem 3 simplifies according to particular subgroups of these
special cases, as stated in the following Corollaries.

Corollary 1. For Cases (1), (4) and (6) in Category (a) and
Case (2) in Category (b) we have
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The cases covered by this Corollary are those for which the
constant is held fixed (or constrained to be zero) and only
coefficients on I(1) regressors are allowed to change.

Corollary 2. For Cases (2) and (5) in Category (a) and Case (6) in
Category (b), we have
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The cases covered by this corollary are those for which the
constant is allowed to change and none of the coefficients on
the I(0) regressors is allowed to change. The combination of
Corollaries 1 and 2 show that the limit distribution of the break
dates is different whether the constant is allowed to change or not,
when coefficients on I(1) regressors change. This is in contrast to
the stationary casewhere having apure or partial structural change
model implies the same limit distribution.

Corollary 3. For Case (3) in Category (a) and Cases 1, 5 and 9 in
Category (b), we have

Πi = γ̄ ′

i γ̄i

B(v1, . . . , vm) =
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i ση
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]
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Box II.
The cases covered by this Corollary are those for which no
coefficient associated with I(1) regressors are allowed to change.
Note that in this case, the limits do not involve the Wiener
processes corresponding to the I(1) regressors. This is because
the coefficients of the I(1) regressors are not allowed to change
and, hence, they do not matter asymptotically as far as the limit
distribution of the break dates are concerned. Here, the estimates
of the break dates are therefore asymptotically independent and
we have, for i = 1, . . . ,m,

γ̄ ′2
i

σ 2
v2T (T̂i − T 0

i ) ⇒ argmax
v

{
η(i)(v)−

|v|

2

}
where

η(i)(v) =

{
η
(i)
1 (v) if v < 0
η
(i)
2 (v) if v > 0

which reduces to the limit distribution stated in Bai and Perron
(1998) for the stationary case.

Corollary 4. For Case 3 in Category (b), we have in Box II.

Here coefficients on the I(1) and I(0) regressors are allowed to
change but the constant is not. The following Corollary shows how
allowing the constant to vary or not affects the limit distribution
when both I(1) and I(0) regressors are allowed to change.

Corollary 5. The limit distribution for Cases 4 and 8 in Category (b) is
the same as that for the general case given by regression (1).

Here all coefficients associated with I(1) variables are allowed
to change as well as the constant and the coefficients on some
I(0) regressors. When combined with the other results, this
points to the fact that, when at least one coefficient associated
with an I(1) regressor is allowed to change, what influences
the limit distribution are: (1) the number of I(1) regressors
whose coefficients are allowed to change; (2) the number of
I(0) regressors whose coefficients are allowed to change, and
(3) whether the constant is allowed to change. Of particular
interest is the fact that the limit distribution obtained holding a
subset of the coefficients fixed is the same that prevails when
not including these regressors. This is different from what occurs
when doing hypothesis testing about whether breaks are present
or not (see, Kejriwal and Perron (2008)). In this case, including
regressors whose coefficients are not allowed to change affects the
limit distribution of the tests.

3.4. Extension to the dynamic OLS regression model

To deal with the possibility of endogenous I(1) regressors, a
popular method is to use the so-called dynamic OLS regression
where leads and lags of the first-differences of the I(1) variables are
added as regressors, as suggested by Saikkonen (1991) and Stock
and Watson (1993). The regression model is then

yt = ĉi + z ′

ft δ̂f + x′

ft β̂f + z ′

bt δ̂bi + x′

bt β̂bi +

kT∑
j=−kT

1z ′

t−jΠ̂j + v̂∗

t

(t = Tj−1 + 1, . . . , Tj) (8)
for j = 1, . . . ,m + 1, where v∗
t = vt +

∑
|j|>kT

ζ ′

z,t−jΠj ≡

vt + et . Note that since these additional regressors are introduced
to modify the limit distribution of the estimates of the main
parameters of the models, the coefficients associated with the
leads and lags of the first-differenced I(1) variables are held fixed
across regimes.3 It is well known that to obtain estimates that
are asymptotically optimal and test statistics that have the usual
chi-square limit distribution, kT must increase at some rate as T
increases. This makes the problem different from that discussed
so far, since in the previous sections the number of regressors is
held fixed as the sample size increases. The aim of this section
is to show that, under some conditions, the results discussed so
far remain valid in this context. To establish this, we need the
following assumption on the rate of increase of kT .

• Assumption A11: As T → ∞, kT → ∞, k2T/T → 0,
kT
∑

|j|>kT

∥∥Πj
∥∥ → 0, and k1/2T vT → ∞.

Except for the last condition, this assumption is the same
as used in Kejriwal and Perron (in press) who showed that
the results stated in Saikkonen (1991) under more restrictive
conditions remain valid. For instance, if the Πj are eventually
exponentially decaying (as in the case of an ARMA process), the
lower bound condition kT

∑
|j|>kT

∥∥Πj
∥∥ → 0 permits a logarithmic

rate of increase for kT so that a data dependent rule based on an
information criterion can be used to select the number of leads and
lags. Given the fact that the magnitude of the breaks is decreasing
as T increases, here things are more complex and there is a need
for an additional lower bound condition given by the requirement
that k1/2T vT → ∞. The relevant result is stated in the following
Theorem.

Theorem 4. Suppose that the break dates are obtained byminimizing
the sum of squared residuals from regression (8), then under
Assumptions A1–A11, Theorems 1–3 remain valid.

Remark 3. Bai et al. (1998) assume that T 1/2vT/ log T → ∞.
Suppose that kT is selected using data dependent rules based on
information criteria such as the AIC or BIC so that kT = O(log T ).
Then we need (log T )1/2vT → ∞. We can show that the latter
condition implies T 1/2vT/ log T → ∞, but not vice-versa. Hence,
their assumption is not sufficient to guarantee that the same limit
distribution applies when adding an increasing sequence of leads
and leads of the first-differenced I(1) regressors.

4. Simulation experiments

In this section, we conduct simulation experiments to assess
the adequacy of the asymptotic distribution as an approximation
to the finite sample distributions. We investigate the finite sample
coverage rate of asymptotic confidence intervals based on the

3 Note that the number of leads and lags of1zt need not be the same.We specify
the same value for simplicity. Alternatively, one can interpret kT as the maximum
of the number of leads and lags.



66 M. Kejriwal, P. Perron / Journal of Econometrics 146 (2008) 59–73
Table 1
Coverage rates for the single break case

Model Values S1 S2 S3 S4
T = 120 T = 240 T = 120 T = 240 T = 120 T = 240 T = 120 T = 240
80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90%

c2 = 2, δ2 = 2, λ0 = .50 .92 .94 .95 .97 .87 .90 .90 .92 .91 .93 .95 .97 .93 .94 .95 .96
c2 = 2, δ2 = 1.5, λ0 = .50 .81 .87 .90 .93 .78 .82 .85 .88 .79 .86 .88 .92 .86 .89 .91 .92

A c2 = 2, δ2 = 2, λ0 = .25 .87 .91 .91 .93 .83 .86 .88 .90 .83 .86 .91 .93 .91 .92 .91 .92
c2 = 2, δ2 = 1.5, λ0 = .25 .78 .84 .85 .90 .77 .83 .80 .85 .75 .83 .85 .91 .85 .88 .88 .90
c2 = 2, δ2 = 2, λ0 = .75 .92 .94 .96 .97 .89 .92 .93 .94 .92 .95 .96 .97 .95 .96 .96 .97
c2 = 2, δ2 = 1.5, λ0 = .75 .85 .89 .92 .95 .82 .87 .87 .89 .83 .87 .91 .94 .87 .90 .94 .95

c2 = 2.5, λ0 = .50 .86 .91 .87 .93 .91 .97 .90 .96 .81 .86 .86 .92 .80 .86 .85 .90
c2 = 2, λ0 = .50 .76 .84 .77 .86 .88 .93 .89 .96 .69 .76 .75 .83 .67 .77 .76 .83

B c2 = 2.5, λ0 = .25 .83 .88 .86 .92 .92 .96 .89 .96 .79 .85 .84 .90 .79 .85 .86 .92
c2 = 2, λ0 = .25 .74 .83 .80 .87 .84 .92 .89 .95 .66 .75 .77 .84 .68 .76 .77 .84
c2 = 2.5, λ0 = .75 .81 .87 .85 .91 .88 .95 .89 .95 .72 .79 .83 .89 .73 .79 .83 .88
c2 = 2, λ0 = .75 .70 .78 .75 .83 .84 .91 .87 .95 .58 .67 .72 .80 .59 .67 .72 .79

δ2 = 2, λ0 = .50 .92 .94 .95 .96 .88 .91 .91 .93 .92 .94 .94 .96 .93 .94 .95 .96
δ2 = 1.5, λ0 = .50 .84 .88 .87 .91 .78 .84 .83 .86 .81 .86 .89 .92 .87 .89 .91 .93

C δ2 = 2, λ0 = .25 .88 .92 .93 .95 .82 .85 .88 .90 .86 .90 .92 .95 .90 .91 .92 .93
δ2 = 1.5, λ0 = .25 .79 .85 .86 .91 .75 .83 .79 .84 .77 .83 .84 .90 .81 .84 .88 .90
δ2 = 2, λ0 = .75 .93 .95 .96 .97 .90 .91 .92 .94 .92 .94 .96 .97 .94 .95 .96 .97
δ2 = 1.5, λ0 = .75 .86 .90 .92 .95 .82 .86 .87 .90 .85 .89 .91 .94 .89 .91 .92 .94

c2 = 2, δ2 = 2, λ0 = .50 .91 .94 .94 .95 .88 .90 .92 .94 .91 .93 .94 .96 .93 .94 .96 .97
c2 = 2, δ2 = 1.5, λ0 = .50 .81 .86 .90 .93 .79 .83 .84 .88 .82 .87 .87 .90 .87 .90 .92 .93

D c2 = 2, δ2 = 2, λ0 = .25 .88 .92 .92 .94 .85 .88 .87 .90 .85 .89 .91 .93 .92 .93 .94 .96
c2 = 2, δ2 = 1.5, λ0 = .25 .76 .83 .85 .90 .72 .77 .78 .83 .73 .81 .83 .88 .85 .88 .87 .90
c2 = 2, δ2 = 2, λ0 = .75 .93 .95 .96 .97 .88 .90 .93 .94 .93 .95 .94 .96 .94 .95 .96 .97
c2 = 2, δ2 = 1.5, λ0 = .75 .86 .89 .90 .93 .78 .84 .87 .91 .83 .88 .90 .93 .88 .90 .92 .93
limiting distribution for cases where the Data Generating Process
(DGP) involves one and two breaks. Our choice of data generating
processes enables comparisons with the results obtained by Bai
et al. (1998) for the single break case. The number of replications
used is 1000. The level of trimming is set at ε = 0.15. The sample
sizes used are T = 120 and T = 240. Throughout, we consider a
single I(1) regressor zt generated by:
zt = zt−1 + ηt

and an I(0) regressor xt ∼ i.i.d. N(1, 1). Here ηt ∼ i.i.d. N(0, 1)
and independent of xt . Also, let et ∼ i.i.d. N(0, 1) where
Cov(ηt , et) = Cov(xt , et) = 0.

4.1. The case with one break

We consider four models: the first involving shifts in both the
intercept and the cointegrating coefficient, the second involving
a shift in the intercept only, the third involving only a shift in
the cointegrating coefficient and the fourth which is the same as
the first except that xt is also included in the regression but its
coefficient is not allowed to change. Themodels considered are the
following:
• Model-A (Change in intercept and slope):

yt = c1 + δ1zt + ut if t ≤
[
Tλ0

]
yt = c2 + δ2zt + ut if t >

[
Tλ0

]
.

• Model-B (Change in intercept only):

yt = c1 + zt + ut if t ≤
[
Tλ0

]
yt = c2 + zt + ut if t >

[
Tλ0

]
.

• Model-C (Change in slope only):

yt = 1 + δ1zt + ut if t ≤
[
Tλ0

]
yt = 1 + δ2zt + ut if t >

[
Tλ0

]
.

• Model-D: Same as Model-A except that the (irrelevant) I(0)
regressor xt , whose coefficient is not allowed to change, is also
included.
For each model, we consider the following four specifications
for ut : S1 (i.i.d. errors, exogenous regressor): ut = et; S2 (MA(1)
errors, exogenous regressor): ut = et − 0.5et−1; S3 (i.i.d. errors,
endogenous regressor): ut = 0.5ηt + et; S4 (MA(1) errors,
endogenous regressor): ut = 0.5vt + ηt , vt = et − 0.5et−1.
For S2, we correct for serial correlation by constructing the long-
run variance estimator based on the Quadratic Spectral kernel and
an AR(1) approximation for the bandwidth. For S3, we use the
dynamic OLS estimator discussed in Section 3.4 with kT = 2.
Finally, for S4, we use the correction for serial correlation as in S2
and the endogeneity correction as in S3.

We set c1 = 1 and δ1 = 1. Table 1 presents finite sample
coverage rates of 80% and 90% asymptotic confidence intervals.
For model A, when the magnitude of the break in the slope is
large, the confidence intervals are conservative, irrespective of the
sample size. For a smaller change in slope, however, the coverage
rates are usually lower for T = 120 but become conservative
when the sample size is doubled. A similar picture applies for
model B except that here the coverage rates are usually lower than
the corresponding asymptotic confidence levels when the break
is small and occurs at the beginning or the end of the sample.
For model C, the coverage rates are adequate for small breaks and
T = 120. With larger breaks or with T = 240, they are somewhat
conservative. The results for model D are qualitatively similar to
those for model A. The simulations presented in Bai et al. (1998)
show that the confidence intervals are too tight for most of the
cases considered. This is not the case in our simulations. Indeed, our
results show the asymptotic approximation to be more accurate
than reported in Bai et al. (1998). Overall, the coverage rates are
reasonably accurate or somewhat conservative.

4.2. The case with two breaks

With two breaks the models considered are the following:

• Model-E (Change in Intercept and Slope)

yt = c1 + δ1zt + ut if t ≤ [Tλ01]
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Table 2
Coverage rates for the two breaks case (λ01 = 1/3, λ02 = 2/3)

Model Values S1 S2 S3 S4
T = 120 T = 240 T = 120 T = 240 T = 120 T = 240 T = 120 T = 240
80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90%

c2 = 1.5, c3 = 2, δ2 = 1.5, δ3 = 2 .72 .75 .81 .83 .78 .79 .85 .87 .67 .69 .79 .81 .70 .72 .80 .82
E c2 = 2, c3 = 3, δ2 = 2, δ3 = 3 .89 .91 .92 .94 .90 .91 .92 .93 .84 .86 .92 .93 .87 .88 .90 .91

c2 = 2, c3 = 3, δ2 = 1.5, δ3 = 2 .74 .77 .82 .84 .77 .79 .83 .84 .66 .70 .79 .81 .71 .74 .79 .81

F δ2 = 1.5, δ3 = 2 .79 .82 .83 .85 .82 .84 .86 .88 .79 .82 .86 .88 .89 .90 .93 .94
δ2 = 2, δ3 = 3 .90 .92 .93 .94 .90 .91 .93 .94 .91 .92 .92 .94 .95 .96 .97 .98

c2 = 1.5, c3 = 2, δ2 = 1.5, δ3 = 2 .73 .76 .83 .85 .80 .82 .85 .86 .69 .73 .80 .83 .63 .67 .81 .82
G c2 = 2, c3 = 3, δ2 = 2, δ3 = 3 .89 .91 .92 .93 .92 .93 .93 .94 .86 .88 .91 .92 .83 .86 .93 .94

c2 = 2, c3 = 3, δ2 = 1.5, δ3 = 2 .71 .74 .81 .84 .79 .81 .86 .88 .70 .72 .79 .81 .65 .68 .82 .84
Table 3
Coverage rates for the two breaks case (λ01 = 1/4, λ02 = 3/4)

Model Values S1 S2 S3 S4
T = 120 T = 240 T = 120 T = 240 T = 120 T = 240 T = 120 T = 240
80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90% 80% 90%

c2 = 1.5, c3 = 2, δ2 = 1.5, δ3 = 2 .72 .76 .82 .84 .76 .78 .84 .86 .65 .69 .77 .81 .64 .67 .80 .83
E c2 = 2, c3 = 3, δ2 = 2, δ3 = 3 .88 .90 .92 .93 .87 .88 .93 .94 .86 .87 .90 .92 .85 .87 .91 .92

c2 = 2, c3 = 3, δ2 = 1.5, δ3 = 2 .76 .78 .82 .85 .78 .80 .86 .87 .69 .71 .78 .80 .67 .70 .81 .83

F δ2 = 1.5, δ3 = 2 .76 .79 .84 .86 .77 .81 .87 .88 .77 .82 .86 .87 .88 .89 .93 .94
δ2 = 2, δ3 = 3 .90 .92 .93 .94 .89 .90 .93 .94 .89 .90 .93 .95 .95 .96 .97 .98

c2 = 1.5, c3 = 2, δ2 = 1.5, δ3 = 2 .72 .75 .83 .86 .76 .79 .82 .85 .69 .71 .81 .83 .67 .70 .80 .82
G c2 = 2, c3 = 3, δ2 = 2, δ3 = 3 .90 .91 .93 .94 .89 .90 .93 .94 .86 .88 .91 .93 .85 .87 .91 .92

c2 = 2, c3 = 3, δ2 = 1.5, δ3 = 2 .74 .77 .83 .85 .76 .78 .84 .86 .68 .71 .82 .84 .68 .72 .79 .82
yt = c2 + δ2zt + ut if [Tλ01] < t ≤ [Tλ02]

yt = c3 + δ3zt + ut if [Tλ02] < t ≤ T .

• Model-F (Change in Slope only)

yt = 1 + δ1zt + ut if t ≤ [Tλ01]

yt = 1 + δ2zt + ut if [Tλ01] < t ≤ [Tλ02]

yt = 1 + δ3zt + ut if [Tλ02] < t ≤ T .

• Model-G: Same as Model-E except that the (irrelevant) I(0)
regressor xt , whose coefficient is not allowed to change, is also
included.

Again, we set c1 = 1 and δ1 = 1. As in the
one break case, we consider the error specifications S1–S4
with the corresponding corrections for serial correlation and/or
endogeneity. The confidence intervals are constructed jointly using
the Bonferroni procedure discussed in Section 3. The coverage rates
are presented in Tables 2 and 3. Consider first Model E. When
the change in slope is small, the coverage rates are inadequate;
however, the confidence intervals become conservative as the
magnitude of the change increases. An interesting feature is that
the coverage rates remain almost unaffected when the magnitude
of the intercept change increases but the magnitude of the slope
change remains the same. ForModel F, the confidence intervals are
again conservative provided the magnitude of the breaks is large.
Again, the results for model G are similar to those for model E.
For all models, the coverage rates increase when the sample size
increases. Note that, given the use of an asymptotic framework
with shrinking shifts, the accuracy of the approximations need
not improve as the sample size increases when the magnitudes
of the breaks are fixed. Overall, the coverage rates are reasonably
accurate and, as expected, somewhat conservative with larger
sample sizes. Hence, from these limited experiments, we can
conclude that the limiting distributions derived provide useful
approximations in finite samples.
5. Conclusion

This paper has presented a comprehensive treatment of issues
related to estimation and inference in cointegrated regression
models with multiple structural breaks. We analyzed models
with I(1) variables only as well as models which incorporate
both I(0) and I(1) regressors. The breaks are allowed to occur
in the intercept, the cointegrating coefficients, the parameters
of the I(0) regressors or any combination of these. The results
show that confidence intervals for the break dates need to be
constructed jointly whenever the coefficients associated with the
I(1) regressors are allowed to change even if the break dates are
separated by a positive fraction of the sample size. A comparison
of various methods to construct such confidence intervals in terms
of their performance in finite samples is an important avenue for
future research.

Appendix

We use ‖.‖ to denote the Euclidean norm, i.e. ‖x‖ =

(
∑p

i=1 x
2
i )

1/2 for xεRp. For a matrix A, we use the vector-induced
norm, i.e. ‖A‖ = supx 6=0 ‖Ax‖ / ‖x‖. We have ‖A‖ ≤

[
tr(A′A)

]1/2.
Also, for a projection matrix P , ‖PA‖ ≤ ‖A‖. W1,W

f
z ,W b

z ,W
f
x ,W b

x
are independentWiener processeswith dimensions corresponding
to those of B1, B

f
z, Bb

z , B
f
x, Bb

x . We also define the matrices D1T =

diag(T−1Iqf , T
−1/2Ipf ), D2T = diag(T−1Iqb , T

−1/2Ipb) and D3T =

diag(T−1/2Iqb , Ipb). Henceforth, we will refer to Bai and Perron
(1998) as [BP]. We first state a series of lemmas which will be used
subsequently.

Lemma A.1 (Qu and Perron, 2007). Let (ηi)i≥1 be a sequence of mean
zero Rd-valued random vectors. Define Fk as an increasing σ -field
generated by (ηi)i≤k. Suppose (ηi)i≥1 satisfies Assumption A4. We
have (a) (Generalized Hajek–Renyi inequality) there exists an L < ∞
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such that, for every c > 0 and k0 > 0, P(supk≥k0 k
−1

‖
∑k

i=1 ηi‖ >

c) ≤ (L/c2k0); (b) (FCLT) T−1/2∑[Tr]
t=1 ηt ⇒ ΩW ∗(r) where

W ∗(r) is a d-vector of independent Wiener processes and ⇒

denotes weak convergence under the Skorohod topology; (c) (SLLN)
k−1∑k

i=1 ηi →
a.s. 0 as k → ∞.

The following Lemma is a direct consequence of Lemma A.1(b)
applied to ξt .

Lemma A.2. Under A4, we have uniformly over all 0 < r < s < 1:
(a)

∑[Ts]
t=[Tr] ξt = Op(T 1/2), (b)

∑[Ts]
t=[Tr] zt = Op(T 3/2), (c)

∑[Ts]
t=[Tr]

ztz ′
t = Op(T 2), (d)

∑[Ts]
t=[Tr] ztξ

′
t = Op(T ).

Lemma A.3. Under A1, supT1,...,Tm(D1TG′MW̄GD1T )
−1

= Op(1),
where the supremum is taken over all possible partitions such that
|Ti − Ti−1| ≥ qb + pb (i = 1, . . . ,m + 1).

Proof. We have the identity G′MW̄G = G′

1MW1G1 + · · · +

G′

m+1MWm+1Gm+1. Each partition leaves at least one true regime
intact. That is, there exists an i such that (Gi,Wi) contains (G0

i ,W
0
i )

as a sub-matrix. Since G′

iMWiGi ≥ G0′
i MW0

i
G0
i (using Lemma A.1 of

[BP]), we have (D1TG′MW̄GD1T )
−1

≤ (D1TG0′
i MW0

i
G0
i D1T )

−1. This

implies
∥∥(D1TG′MW̄GD1T )

−1
∥∥ ≤ maxi ‖(D1TG0′

i MW0
i
G0
i D1T )

−1
‖ for

all partitions. The result follows from Assumption A1. �

Lemma A.4. Under A1, supT1,...,Tm D1TG′MW̄ W̄ 0
= Op(T ).

Proof. SinceMZ̄ is a projection matrix, we have
∥∥D1TG′MW̄ W̄ 0

∥∥ ≤∥∥D1TG′
∥∥ ∥∥W̄ 0

∥∥ uniformly over all partitions. The result then
follows from the facts that

∥∥D1TG′
∥∥ = Op(1) and ‖W̄ 0

‖ = Op(T ),
from Lemma A.2. �

Lemma A.5. Under A4 and A8, supT1,...,Tm

∥∥PW̄U
∥∥ = Op(1).

Proof. We shall prove
∣∣U ′PW̄U

∣∣ = Op(1) uniformly in T1, . . . , Tm.
Note that U ′PW̄U is the summation ofm+1 terms (

∑Ti+1
t=Ti+1wtut)

′

(
∑Ti+1

t=Ti+1wtw
′
t)

−1(
∑Ti+1

t=Ti+1wtut), for i = 0, . . . ,m. From

Lemma A.2, D2T (
∑Ti+1

t=Ti+1wtw
′
t)D2T = Op(1). Also, D2T

∑Ti+1
t=Ti+1wt

ut = Op(1). Accordingly,
∣∣U ′PW̄U

∣∣ = Op(1) uniformly in
T1, . . . , Tm. �

Lemma A.6. Under A1–A4, (a) supT1,...,Tm D1TG′PW̄U = Op(1);
(b) supT1,...,Tm W̄ 0PW̄U = Op(T ).

Proof. This follows from Lemma A.4,
∥∥D1TG′

∥∥ = Op(T ) and∥∥D1TG′PW̄U
∥∥ ≤

∥∥D1TG′
∥∥ ∥∥PW̄U

∥∥. Similar arguments can be used
to prove part (b). �

Proof of Lemma 1. Wehave
∑T

t=1 utdt = U ′G(α̂−α0)+U ′W̄ γ̂ −

U ′W̄ 0γ 0 where W̄ is the diagonal partition ofW at some arbitrary
partition (T1, . . . , Tm). We have

D−1
1T

(
α̂({Tj})− α0)

= (D1TG′MW̄GD1T )
−1D1TG′MW̄ W̄ 0γ 0

+ (D1TG′MW̄GD1T )
−1D1TG′MW̄U . (A.1)

NowD1TG′MW̄U = D1TG′U−D1TG′PW̄U . SinceD1TG′U = Op(1) and∥∥D1TG′PW̄U
∥∥ ≤

∥∥D1TG′
∥∥ ∥∥PW̄U

∥∥ = Op(1) so that the second term
of (A.1) is Op(1). From γ 0

T ,i+1 − γ 0
T ,i = D3TO(vT ) under Assumption

A7, we have γ 0
T ,i − γ

0
T ,j = D3TO(vT ) for all i and j. As in [BP], we use

the fact that (W̄ 0
− W̄ )γ 0 depends on changes in the parameters,

i.e., γ 0
i − γ 0

j . This implies that D1TG′MW̄ (W̄
0

− W̄ )γ 0 is at most
Op(T 1/2)vT . By Lemma A.3,

(D1TG′MW̄GD1T )
−1D1TG′MW̄ (W̄

0
− W̄ )γ 0

= Op(T 1/2vT )
which implies

D−1
1T (α̂({Tj})− α0) = Op(T 1/2vT )+ Op(1).

Thus,

U ′G(α̂({Tj})− α0) = Op(T 1/2vT )+ Op(1) (A.2)

over all partitions. Next, we have

U ′W̄ γ̂ ({Tj})− U ′W̄ 0γ 0
= U ′W̄ (W̄ ′MGW̄ )−1W̄ ′MGW̄ 0γ 0

+U ′W̄ (W̄ ′MGW̄ )−1W̄ ′MGU − U ′W̄ 0γ 0. (A.3)

Combine the first and third terms of (A.3) and rewrite them as

U ′W̄ (W̄ ′MGW̄ )−1W̄ ′MG(W̄ 0
− W̄ )γ 0

+ U ′(W̄ − W̄ 0)γ 0 (A.4)

which can be shown to be Op(T 1/2vT ). Using Lemmas A.3, A.5 and
A.6 the second term of (A.3) can be shown to be Op(1). Thus,

U ′W̄ γ̂ ({Tj})− U ′W̄ 0γ 0
= Op(T 1/2vT )+ Op(1). (A.5)

Thus, from (A.2) and (A.5), we get
∑T

t=1 utdt = Op(T 1/2vT ). �

Proof of Lemma 2. Following [BP], we have
T∑

t=1

d2t ≥

∑
1

d2t +

∑
2

d2t

=

(
α̂ − α0

γ̂k − γ 0
j

)′


∑
1

gtg ′

t

∑
1

gtw′

t∑
1

wtg ′

t

∑
1

wtw
′

t

( α̂ − α0

γ̂k − γ 0
j

)

+

(
α̂ − α0

γ̂k − γ 0
j+1

)′


∑
2

gtg ′

t

∑
2

gtw′

t∑
2

wtg ′

t

∑
2

wtw
′

t

( α̂ − α0

γ̂k − γ 0
j+1

)

where
∑

1 extends over the set T (λ0j − η) ≤ t ≤ Tλ0j and
∑

2

extends over the set Tλ0j + 1 ≤ t ≤ T (λ0j + η) and η > 0. Then,
with D4T = diag((Tη)−1Iqf , (Tη)

−1/2Ipf , (Tη)
−1Iqb , (Tη)

−1/2Ipb),

T∑
t=1

d2t ≥

(
α̂ − α0

γ̂k − γ 0
j

)′

D−1
4T A

∗

TD
−1
4T

(
α̂ − α0

γ̂k − γ 0
j

)

+

(
α̂ − α0

γ̂k − γ 0
j+1

)′

D−1
4T ATD−1

4T

(
α̂ − α0

γ̂k − γ 0
j+1

)
+ op(1) (A.6)

where

A∗

T = D4T


∑
1

gtg ′

t

∑
1

gtw′

t∑
1

wtg ′

t

∑
1

wtw
′

t

D4T

AT = D4T


∑
2

gtg ′

t

∑
2

gtw′

t∑
2

wtg ′

t

∑
2

wtw
′

t

D4T .

Let ρ∗

T and ρT be the smallest eigenvalue of A∗

T and AT . Then,∑
1

d2t +

∑
2

d2t ≥ ρ∗

T

[
(T 2η2)

∥∥∥δ̂f − δ0f

∥∥∥2 + (Tη)
∥∥∥β̂f − β0

f

∥∥∥2
+ (T 2η2)

∥∥∥δ̂bk − δ0bj

∥∥∥2 + (Tη)
∥∥∥β̂bk − β0

bj

∥∥∥2]
+ ρT

[
(T 2η2)

∥∥∥δ̂f − δ0f

∥∥∥2 + (Tη)
∥∥∥β̂f − β0

f

∥∥∥2
+ (T 2η2)

∥∥∥δ̂bk − δ0bj+1

∥∥∥2 + (Tη)
∥∥∥β̂bk − β0

bj+1

∥∥∥2]
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≥ T 2η2 min
{
ρT , ρ

∗

T

}(∥∥∥δ̂bk − δ0bj

∥∥∥2 +

∥∥∥δ̂bk − δ0bj+1

∥∥∥2)
≥ (1/2)T 2η2 min

{
ρT , ρ

∗

T

} ∥∥δ0bj − δ0bj+1

∥∥2 .
By Assumption A2, ρT and ρ∗

T are bounded away from zero. Hence,∑T
t=1 d

2
t > T 2C‖δ0bj − δ0bj+1‖

2 for some C > 0 with probability no
less than ε0 > 0. �

Proof of Theorem 2. The basic idea of the proof is same as that of
[BP]. We analyze the case with three breaks (m = 3). Without loss
of generality, we will consider the case T2 < T 0

2 . For each C > 0,
define

Vε(C) =
{
(T1, T2, T3);

∣∣Ti − T 0
i

∣∣ < εT , 1 ≤ i ≤ 3,

T2 − T 0
2 < −C/v2T

}
.

We investigate the behavior of the sum of squared residuals
ST (T1, T2, T3) on the set Vε(C). To prove Theorem 2, it is enough
to show that for each η, there exists C > 0 and ε > 0 such that for
large T ,

P(min{[ST (T1, T2, T3)− ST (T1, T 0
2 , T3)]/(T

0
2 − T2)} ≤ 0) < η

where the minimum is taken over the set Vε(C). This would im-
ply that with large probability, |T̂2 − T 0

2 | ≤ C/v2T . We use
the following additional notation: γ̂ ∗

2 = estimate of γ 0
2 asso-

ciated with the regressor (0, . . . , 0, wT1+1, . . . , wT2 , 0, . . . , 0)
′;

γ̂1 = estimate of γ 0
2 associated with the regressor W1 =

(0, . . . , 0, wT2+1, . . . , wT02
, 0, . . . , 0)′; γ̂ ∗

3 = estimate of γ 0
3 as-

sociated with the regressor (0, . . . , 0, wT02 +1, . . . , wT3 , 0, . . . , 0)
′;

SSR1 = ST (T1, T2, T3), SSR2 = ST (T1, T 0
2 , T3), and F̄ = (G, W̄ ).

Then,

(SSR1 − SSR2)/(T 0
2 − T2) ≥

(γ̂ ∗

3 − γ̂1)
′
[
W ′
1W1

]
(γ̂ ∗

3 − γ̂1)

(T 0
2 − T2)

−
(γ̂ ∗

3 − γ̂1)
′
[
W ′
1F̄
] [

F̄ ′F̄
]−1 [

F̄ ′W1

]
(γ̂ ∗

3 − γ̂1)

(T 0
2 − T2)

−
(γ̂ ∗

2 − γ̂1)
′
[
W ′
1W1/

]
(γ̂ ∗

2 − γ̂1)

(T 0
2 − T2)

.

We have, uniformly on the set Vε(C),

T0i∑
Ti+1

zbtz ′

bt =
∣∣Ti − T 0

i

∣∣Op(T ),

T0i∑
Ti+1

zbtx′

bt =
∣∣Ti − T 0

i

∣∣Op(T 1/2),

T0i∑
Ti+1

xbtx′

bt =
∣∣Ti − T 0

i

∣∣Op(1),

D−1
2T (γ̂

∗

i − γ 0
i ) = εOp(T 1/2vT )

and

D−1
2T (γ̂

∗

1 − γ 0
2 ) = (W ′

1W1)
−1W ′

1U + εOp(T 1/2vT ).

Using these results, we can show that

(SSR1 − SSR2)/(T 0
2 − T2)

≥ Av2T −
(W ′

1U)
′(W ′

1W1)
−1(W ′

1U)
(T 0

2 − T2)
− εOp(v

2
T )

≥ Av2T −
(q2 + p2)
T 0
2 − T2

q2+p2∑
l=1

 T02∑
t=T2+1

Wltut

2/ T02∑
t=T2+1

W 2
lt


− εOp(v
2
T )

where A is a positive constant and Wlt is the l-th component of
Wt . For every η > 0, we can choose a small ε > 0 such that
P(εOp(v

2
T ) > Av2T/2) < η. Then P(min {(SSR1−SSR2)/(T 0

2 −T2)} ≤

0) is bounded by

η + P

max

 (q2 + p2)
T 0
2 − T2

q2+p2∑
l=1

 T02∑
t=T2+1

Wltut

2/
 T02∑

t=T2+1

W 2
lt


 > Av2T/2

 .
To prove that the latter probability is less than η, it is sufficient to
show that for each l,

P

 max
T2<T02 −Cv−2

T

1
T 0
2 − T2

 T02∑
t=T2+1

Wltut

2/
 T02∑

t=T2+1

W 2
lt

 > Av2T/2

 < η. (A.7)

IfWlt is an I(1), we have

T02∑
t=T2+1

W 2
lt ≥ (T 0

2 − T2) min
t∈[T2+1,T02 ]

W 2
lt = (T 0

2 − T2)Op(T ).

Then (A.7) is bounded by

P

 max
T2<T02 −Cv−2

T

Op(1)

 1
T 0
2 − T2

T02∑
t=T2+1

T−1/2Wltut

2

> Av2T/2

 .
We can choose a B < ∞ such that P(Op(1) > B) < η so that this
probability is bounded by

η + P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ 1
T 0
2 − T2

T02∑
t=T2+1

T−1/2Wltut

∣∣∣∣∣∣ > (A/2B)1/2vT


= η + P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣
T−1/2WlT02

T 0
2 − T2

T02∑
t=T2+1

ut

+
T−1/2

T 0
2 − T2

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ > (A/2B)1/2vT


≤ η + P

 max
T2<T02 −Cv−2

T

|Op(1)|

∣∣∣∣∣∣ 1
T 0
2 − T2

T02∑
t=T2+1

ut

∣∣∣∣∣∣
> (A/8B)1/2vT

+ P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ T−1/2

T 0
2 − T2

×

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ > (A/8B)1/2vT

 .
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Now, we can choose a B1 < ∞ such that P(|Op(1)| > B1) < η so
that this probability is bounded by

2η + P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ 1
T 0
2 − T2

T02∑
t=T2+1

ut

∣∣∣∣∣∣ > (A/8BB2
1)

1/2vT


+ P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ T−1/2

T 0
2 − T2

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣
> (A/8B)1/2vT

 .
The first probability is bounded by η using Lemma A.1(a). Consider
now the second one. We have

P

 max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ T−1/2

T 0
2 − T2

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ > (A/8B)1/2vT


= P

 1
T 1/2vT

max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ 1
T 0
2 − T2

×

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ > (A/8B)1/2

 . (A.8)

Now,

max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ 1
T 0
2 − T2

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ = Op(1)

since
∑T02

t=T2+1(Wlt − WlT02
)ut =

∑T02 −T2
t=1 (Wlt+T2 − WlT02

)ut+T2 =∑T02 −T2
t=1 W ∗

t ut+T2 , say, whereW ∗
t is an I(1) process. Then using the

fact that T 1/2vT → ∞,

1
T 1/2vT

max
T2<T02 −Cv−2

T

∣∣∣∣∣∣ 1
T 0
2 − T2

T02∑
t=T2+1

(Wlt − WlT02
)ut

∣∣∣∣∣∣ = op(1).

Given that A and B are constants, the probability (A.8) is also
bounded by η, which shows that (A.7) holds when Wlt is an I(1)
variable. IfWlt is an I(0) variable, then we have

P

 max
T2<T02 −Cv−2

T

1
T 0
2 − T2

 T02∑
t=T2+1

Wltut

2/
 T02∑

t=T2+1

W 2
lt

 > Av2T/2


= P

 max
T2<T02 −Cv−2

T

1
(T 0

2 − T2)2

 T02∑
t=T2+1

Wltut

2/
 1
(T 0

2 − T2)

T02∑
t=T2+1

W 2
lt

 > Av2T/2


= P

 max
T2<T02 −Cv−2

T

Op(1)
(T 0

2 − T2)

 T02∑
t=T2+1

Wltut

 > (A/2)1/2vT

 .
We can choose B < ∞ such that P(Op(1) > B) < η so that the last
probability is bounded by

η + P

 max
T2<T02 −Cv−2

T

B
(T 0

2 − T2)

 T02∑
t=T2+1

Wltut

 > (A/2)1/2vT


< 2η.

The last inequality follows applying Lemma A.1(a). This completes
the proof. �

Proof of Proposition 1. Let W̄ ∗ be the matrix W̄ evaluated at the
estimated break points (T̂1, . . . , T̂m). The truemodel can bewritten
as Y = Gα+ W̄ ∗γ + U∗, where U∗

= U + (W̄ 0
− W̄ ∗)γ . Thus, we

have

D̃−1
T (θ̂ − θ0) =

(
D1TG′GD1T D1TG′W̄ ∗D̃m+1

D̃m+1W̄ ∗′GD1T D̃m+1W̄ ∗′W̄ ∗D̃m+1

)−1

×

(
D1TG′U + D1TG′(W̄ 0

− W̄ ∗)γ 0

D̃m+1W̄ ∗′U + D̃m+1W̄ ∗′(W̄ 0
− W̄ ∗)γ 0

)
. (A.9)

We need to show that the limit of the right hand side of (A.9) is the
same as the limit when W̄ ∗ is replaced by W̄ 0. Suppose Ti < T 0

i
for all i = 1, . . . ,m. Consider the term D̃m+1W̄ ∗′(W̄ 0

− W̄ ∗)γ 0.

This involves terms like T−3/2vT
∑T0i

t=Ti
zbtz ′

bt , T
−1/2vT

∑T0i
t=Ti

xbtx′

bt
etc. We have

T−3/2vT

T0i∑
t=Ti

zbtz ′

bt = T−1/2v−1
T

T−1v2T

T0i∑
t=T0i +sv−2

T

zbtz ′

bt


= op(1) · Op(1) = op(1)

T−1/2vT

T0i∑
t=Ti

xbtx′

bt = T−1/2v−1
T

v2T T0i∑
t=T0i +sv−2

T

xbtx′

bt


= op(1) · Op(1) = op(1).

The other terms can be handled similarly, and the result follows.
�

Proof of Theorem 3. We provide a detailed proof for the case of
two breaks. The extension tom breaks is straightforward. We have
(T̂1, T̂2) = argmin(T1,T2) SSR(T1, T2) or

(T̂1, T̂2) = arg max
(T1,T2)

{
SSR(T 0

1 , T
0
2 )− SSR(T1, T2)

}
.

Following Perron and Zhu (2005), we have

SSR(T 0
1 , T

0
2 )− SSR(T1, T2)

= −θ0′(F̄ 0
− F̄)′(I − PF̄ )(F̄

0
− F̄)θ0

− 2θ0′(F̄ 0
− F̄)′(I − PF̄ )U − U ′(PF̄0 − PF̄ )U

where F̄ = (G, W̄ ), F̄ 0
= (G, W̄ 0), θ0 = (α0′, γ 0′)′, γ 0

=

(c0, δ0′b , β
0′
b )

′. Let T1 = T 0
1 +

[
s1v−2

T

]
, T2 = T 0

2 +
[
s2v−2

T

]
. We

then have the following four possible cases: (1) s1 < 0, s2 < 0,
(2) s1 < 0, s2 > 0, (3) s1 > 0, s2 > 0, (4) s1 > 0, s2 < 0. We give
a detailed proof for Case 1 only, the proof for the other cases being
similar. Consider the term

θ0′(F̄ 0
− F̄)′(F̄ 0

− F̄)θ0 = γ̄ ′

T ,1

 T01∑
T1+1

wtw
′

t

 γ̄T ,1 + γ̄ ′

T ,2

 T01∑
T1+1

wtw
′

t

 γ̄T ,2
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θ0′(F̄ 0
− F̄)′(F̄ 0

− F̄)θ0

⇒ |s1| γ̄ ′

1

(Ωbb
zz )

1/2W b
z (λ

0
1)W

b
z (λ

0
1)

′(Ωbb
zz )

1/2 (Ωbb
zz )

1/2W b
z (λ

0
1) (Ωbb

zz )
1/2W b

z (λ
0
1)µ

′

b
W b

z (λ
0
1)

′(Ωbb
zz )

1/2 1 µ′

b
µbW b

z (λ
0
1)

′(Ωbb
zz )

1/2 µb Q bb
xx

 γ̄1
+ |s2| γ̄ ′

2

(Ωbb
zz )

1/2W b
z (λ

0
2)W

b
z (λ

0
2)

′(Ωbb
zz )

1/2 (Ωbb
zz )

1/2W b
z (λ

0
2) (Ωbb

zz )
1/2W b

z (λ
0
2)µ

′

b
W b

z (λ
0
2)

′(Ωbb
zz )

1/2 1 µ′

b
µbW b

z (λ
0
2)

′(Ωbb
zz )

1/2 µb Q bb
xx

 γ̄2
= Ã(s1, s2)

Box III.
=

2∑
i=1

γ̄
′

i



T−1v2T

T0i∑
Ti+1

zbtz ′

bt T−1/2v2T

T0i∑
Ti+1

zbt T−1/2v2T

T0i∑
Ti+1

zbtx′

bt

T−1/2v2T

T0i∑
Ti+1

z ′

bt (T 0
i − Ti)v2T v2T

T0i∑
Ti+1

x′

bt

T−1/2v2T

T0i∑
Ti+1

xbtz ′

bt v2T

T0i∑
Ti+1

xbt v2T

T0i∑
Ti+1

xbtx′

bt


γ̄i.

We consider each of the terms in the above matrices. For i = 1, 2,

we have, (i) T−1v2T
∑T0i

Ti+1 zbtz
′

bt = |si| (T−1/2zbT0i )(T
−1/2z ′

bT0i
) −

T−1v2T
∑T0i

T0i +siv
−2
T
(zbT01 z

′

bT01
− zbtz ′

bt). Since the second term is

op(1),we have T−1v2T
∑T0i

Ti+1 zbtz
′

bt ⇒ |si| (Ωbb
zz )

1/2W b
z (λ

0
i )W

b
z (λ

0
i )

′

(Ωbb
zz )

1/2; (ii) T−1/2v2T
∑T0i

Ti+1 zbt = |si| T−1/2zbT0i + op(1) ⇒

|si| (Ωbb
zz )

1/2W b
z (λ

0
i ); (iii) T

−1/2v2T
∑T0i

Ti+1 zbtx
′

bt ⇒ |si| (Ωbb
zz )

1/2W b
z

(λ0i )µ
′

b; (iv) v
2
T
∑T0i

Ti+1 xbt ⇒ |si|µb; (v) v2T
∑T0i

Ti+1 xbtx
′

bt ⇒ |si|Q bb
xx .

Thus, we get the equation in Box III.
Next, consider

θ0′(F̄ 0
− F̄)′U

= −γ̄ ′

1



T−1/2vT

T01∑
T1+1

zbtut

vT

T01∑
T1+1

ut

vT

T01∑
T1+1

xbtut


− γ̄ ′

2



T−1/2vT

T02∑
T2+1

zbtut

vT

T02∑
T2+1

ut

vT

T02∑
T2+1

xbtut


.

We have (i) vT
∑T0i

Ti+1 ut ⇒ σηi(si); (ii) T−1/2vT
∑T0i

Ti+1 zbtut ⇒

(Ωbb
zz )

1/2W b
z (λ

0
i )σηi(si); (iii) vT

∑T0i
Ti+1 xbtut ⇒ (Q bb

xu )
1/2W (i)

xb,i(si).
Hence, it follows that

θ0′(F̄ 0
− F̄)′U

⇒ −γ̄ ′

1

(Ωbb
zz )

1/2W b
z (λ

0
1)ση1(s1)

ση1(s1)
(Q bb

xu )
1/2W (1)

xb,1(s1)


− γ̄ ′

2

(Ωbb
zz )

1/2W b
z (λ

0
2)ση2(s2)

ση2(s2)
(Q bb

xu )
1/2W (2)

xb,2(s2)


= −B̃1(s1, s2).

Next, we need to establish that θ0′(F̄ 0
− F̄)′PF̄ (F̄

0
− F̄)θ0 =

op(1) and θ0′(F̄ 0
− F̄)′PF̄U = op(1). We will show the

former, the latter can be shown using similar arguments. Define
D̃∗
= diag(T−1Iqb , T

−1/2Ipb , . . . , T
−1Iqb , T

−1/2Ipb) and D̃T =

diag(T−1Iqf , T
−1/2Ipf , D̃

∗)̇. Then,

θ0′(F̄ 0
− F̄)′PF̄ (F̄

0
− F̄)θ0 = θ0′(F̄ 0

− F̄)′F̄ D̃T (D̃T F̄ ′F̄ D̃T )
−1

× D̃T F̄ ′(F̄ 0
− F̄)θ0.

We will show that D̃T F̄ ′(F̄ 0
− F̄)θ0 = op(1), which together with

(D̃T F̄ ′F̄ D̃T )
−1

= Op(1) gives the desired result. Now D̃T F̄ ′(F̄ 0
−

F̄)θ0 involves the following terms: (i) T−3/2vT
∑T0i

Ti+1 zftz
′

bt =

Op(T−1/2v−1
T ) = op(1); (ii) T−1vT

∑T0i
Ti+1 zftx

′

bt = Op(T−1v−2
T ) =

op(1); (iii) T−1vT
∑T0i

Ti+1 zft = Op(T−1/2v−1
T ) = op(1), T−1vT∑T0i

Ti+1 zbt = Op(T−1/2v−1
T ) = op(1); (iv) T−1vT

∑T0i
Ti+1 xftz

′

bt =

Op(T−1v−2
T ) = op(1), T−1vT

∑T0i
Ti+1 xbtz

′

bt = Op(T−1v−2
T ) =

op(1); (v) T−1vT
∑T0i

Ti+1 xftx
′

bt = Op(T−1v−1
T ) = op(1); (vi)

T−1/2vT
∑T0i

Ti+1 xft = Op(T−1/2) = op(1), T−1/2vT
∑T0i

Ti+1 xbt =

Op(T−1/2) = op(1); (vii) T−3/2vT
∑T0i

Ti+1 zbtz
′

bt = Op(T−1/2v−1
T ) =

op(1). Hence, D̃T F̄ ′(F̄ 0
− F̄)θ0 = op(1). Finally,

U ′(PF̄0 − PF̄ )U = U ′(F̄ 0
− F̄)D̃T (D̃T F̄ 0′F̄ 0D̃T )

−1D̃T F̄ 0′U

+U ′F̄ D̃T (D̃T F̄ ′F̄ D̃T )
−1(D̃T F̄ ′F̄ D̃T − D̃T F̄ 0′F̄ 0D̃T )(D̃T F̄ 0′F̄ 0D̃T )

−1

× (D̃T F̄ 0′U)+ U ′F̄ D̃T (D̃F̃ ′F̃ D̃T )
−1D̃T (F̄ 0

− F̄)′U .

We have U ′F̄ D̃T = Op(1), U ′F̄ 0D̃T = Op(1), (D̃T F̄ ′F̄ D̃T )
−1

=

Op(1), (D̃T F̄ ′0F̄ 0D̃T )
−1

= Op(1). Also, for i = 1, 2, we have

T−1∑T0i
Ti+1 z

′

btut = Op(T−1/2v−1
T ) = op(1), T−1/2∑T0i

Ti+1 ut =

Op(T−1/2v−1
T ) = op(1), T−1/2∑T0i

Ti+1 x
′

btut = Op(T−1/2v−1
T ) =

op(1). Hence, U ′(F̄ 0
− F̄)D̃T = op(1). Similarly, we can show that

(D̃T F̄ ′F̄ D̃T − D̃T F̄ 0′F̄ 0D̃T ) = op(1). Hence, U ′(PF̄0 − PF̄ )U = op(1).
We thus obtain

SSR(T 0
1 , T

0
2 )− SSR(T1, T2) = H̃T ,1

([
s1v−2

T

]
,
[
s2v−2

T

])
⇒ H̃1(s1, s2)

with H̃1(s1, s2) = −(1/2)Ã(s1, s2) + B̃1(s1, s2). For Case 2 with
s1 < 0, s2 > 0, we have

B̃2(s1, s2) = γ̄ ′

1

(Ωbb
zz )

1/2W b
z (λ
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
and

SSR(T 0
1 , T

0
2 )− SSR(T1, T2) = H̃T ,2

([
s1v−2

T

]
,
[
s2v−2

T

])
⇒ H̃2(s1, s2),
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with H̃2(s1, s2) = −(1/2)Ã(s1, s2) + B̃2(s1, s2). For Case 3 with
s1 > 0, s2 > 0, we have

B̃3(s1, s2) = γ̄ ′

1

(Ωbb
zz )

1/2W b
z (λ

0
1)ση4(s1)

ση4(s1)
(Q bb
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1/2W (1)
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1/2W b
z (λ

0
2)ση3(s2)
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(Q bb
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1/2W (2)

xb,2(s2)


and

SSR(T 0
1 , T

0
2 )− SSR(T1, T2) = H̃T ,3

([
s1v−2

T

]
,
[
s2v−2

T

])
⇒ H̃3(s1, s2)

with H3(s1, s2) = −(1/2)A(s1, s2) + B3(s1, s2). For Case 4 with
s1 > 0, s2 < 0, we have

B̃4(s1, s2) = γ̄ ′

1

(Ωbb
zz )

1/2W b
z (λ

0
1)ση4(s1)

ση4(s1)
(Q bb

xu )
1/2W (1)

xb,2(s1)


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2

(Ωbb
zz )
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z (λ

0
2)ση2(s2)
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1/2W (2)
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
and

SSR(T 0
1 , T

0
2 )− SSR(T1, T2) = H̃T ,4

([
s1v−2

T

]
,
[
s2v−2

T

])
⇒ H̃4(s1, s2)

with with H̃4(s1, s2) = −(1/2)Ã(s1, s2) + B̃4(s1, s2). The result
follows using the continuous mapping theorem and a change of
variable as in Bai (1997). �

Proof of Theorem 4. As a matter of notation, let ηt = (1z ′

t−kT
,

. . . ,1z ′

t+kT
)′. Following Perron and Zhu (2005), we have

SSR(T 0
1 , T

0
2 )− SSR(T1, T2) = −θ0′(F̄ 0

− F̄)′(I − PF̄ )(F̄
0
− F̄)θ0

− 2θ0′(F̄ 0
− F̄)′(I − PF̄ )V

∗
− V ∗′(PF̄0 − PF̄ )V

∗

where F̄ = (G, W̄ ), F̄ 0
= (G, W̄ 0), θ0 = (α0′, γ 0′)′, γ 0

=

(c0, δ0′b , β
0′
b )

′. Let T1 = T 0
1 +

[
s1v−2

T

]
, T2 = T 0

2 +
[
s2v−2

T

]
. We will

show that, under the stated conditions, θ0′(F̄ 0
− F̄)′PF̄ (F̄

0
− F̄)θ0 =

op(1), θ0′(F̄ 0
− F̄)′E = op(1), θ0′(F̄ 0

− F̄)′PF̄V
∗

= op(1), V ∗′(PF̄0 −

PF̄ )V
∗

= op(1), which implies that the limit distribution of the
estimates of the break dates is the same as when the number of
I(0) regressors is fixed.

As before, let D̃∗
= diag(T−1Iqb , T

−1/2Ipb , . . . , T
−1Iqb , T

−1/2Ipb)
and additionally define D̃T = diag(T−1Iqf , T

−1/2Ipf , T
−1/2

I(qf +qb)(2kT+1), D̃∗)̇. Consider first the term

θ0′(F̄ 0
− F̄)′PF̄ (F̄

0
− F̄)θ0 = θ0′(F̄ 0

− F̄)′F̄ D̃T (D̃T F̄ ′F̄ D̃T )
−1

× D̃T F̄ ′(F̄ 0
− F̄)θ0.

We have
∥∥∥(D̃T F̄ ′F̄ D̃T )

−1
∥∥∥ = Op(1). Now ‖D̃T F̄ ′(F̄ 0

− F̄)θ0‖
involves the following additional terms (compared with the
case with no leads and lags of the first-differences of the I(1)

regressors): (i) T−3/2vT

∥∥∥∥∑T0i
Ti+1 ηtz

′

bt

∥∥∥∥ = Op(k
1/2
T T−1) = op(1),

(ii) T−1/2vT

∥∥∥∥∑T0i
Ti+1 ηt

∥∥∥∥ = T−1/2Op(k
1/2
T ) = op(1) and (iii)

T−1/2vT

∥∥∥∥∑T0i
Ti+1 ηtx

′

bt

∥∥∥∥ = Op(T−1/2k1/2T ) = op(1). Thus we have

θ0′(F̄ 0
− F̄)′PF̄ (F̄

0
− F̄)θ0 ≤

∥∥∥θ0′(F̄ 0
− F̄)′F̄ D̃T

∥∥∥ ∥∥∥(D̃T F̄ ′F̄ D̃T )
−1
∥∥∥

× ‖D̃T F̄ ′(F̄ 0
− F̄)θ0‖ = op(1).
Next, consider the term θ0′(F̄ 0
− F̄)′E. This involves the following

components: (i) T−1/2vT

∥∥∥∥∑T0i
Ti+1 zbtet

∥∥∥∥ = op(v−1
T k−1

T ) = op(1), (ii)

vT

∥∥∥∥∑T0i
Ti+1 et

∥∥∥∥ = op(v−1
T k−1

T ) = op(1) and (iii) vT

∥∥∥∥∑T0i
Ti+1 xbtet

∥∥∥∥ =

op(v−1
T k−1

T ) = op(1). Next, consider the term

θ0′(F̄ 0
− F̄)′PF̄V

∗
= θ0′(F̄ 0

− F̄)′F̄ D̃T (D̃T F̄ ′F̄ D̃T )
−1D̃T F̄ ′V ∗.

The matrix D̃T F̄ ′V ∗ involves the following terms: (i) T−1∑Ti
1 zbtv∗

t

= Op(1), (ii) T−1/2∑Ti
1 xbtv∗

t = Op(1) and T−1/2
∥∥∥∑T

1 ηtv
∗
t

∥∥∥ =

op(T 1/2k−1/2
T ). Thus we get∥∥θ0′(F̄ 0
− F̄)′PF̄V

∗
∥∥

≤

∥∥∥θ0′(F̄ 0
− F̄)′F̄ D̃T

∥∥∥ ∥∥∥(D̃T F̄ ′F̄ D̃T )
−1
∥∥∥ ∥∥∥D̃T F̄ ′V ∗

∥∥∥
= Op(k

1/2
T T−1/2)Op(1)op(T 1/2k−1/2

T ) = op(1).

Last, consider the term

V ∗′(PF̄0 − PF̄ )V
∗

= V ∗′(F̄ 0
− F̄)D̃T (D̃T F̄ 0′F̄ 0D̃T )

−1D̃T F̄ 0′V ∗

+ V ∗′F̄ D̃T (D̃T F̄ ′F̄ D̃T )
−1(D̃T F̄ ′F̄ D̃T − D̃T F̄ 0′F̄ 0D̃T )(D̃T F̄ 0′F̄ 0D̃T )

−1

× (D̃T F̄ 0′V ∗)+ V ∗′F̄ D̃T (D̃F̃ ′F̃ D̃T )
−1D̃T (F̄ 0

− F̄)′V ∗.

We have
∥∥∥V ∗′F̄ D̃T

∥∥∥ = op(T 1/2k−1/2
T ),

∥∥∥V ∗′F̄ 0D̃T

∥∥∥ = op(T 1/2k−1/2
T ),∥∥∥(D̃T F̄ ′F̄ D̃T )

−1
∥∥∥ = Op(1),

∥∥∥(D̃T F̄ 0′F̄ 0D̃T )
−1
∥∥∥ = Op(1). Also,

for i = 1, 2, we have T−1∑T0i
Ti+1 z

′

btv
∗
t = Op(T−1/2v−1

T ) =

op(1), T−1/2∑T0i
Ti+1 v

∗
t = Op(T−1/2v−1

T ) = op(1), T−1/2∑T0i
Ti+1 x

′

bt

v∗
t = Op(T−1/2v−1

T ) = op(1). Thus we have∥∥∥V ∗′(F̄ 0
− F̄)D̃T (D̃T F̄ 0′F̄ 0D̃T )

−1D̃T F̄ 0′V ∗

∥∥∥
≤

∥∥∥V ∗′(F̄ 0
− F̄)D̃T

∥∥∥ ∥∥∥(D̃T F̄ 0′F̄ 0D̃T )
−1
∥∥∥ ∥∥∥D̃T F̄ 0′V ∗

∥∥∥
= Op(T−1/2v−1

T )Op(1)op(T 1/2k−1/2
T ) = op(k

−1/2
T v−1

T ) = op(1).

Using similar arguments, we can show that ‖V ∗′F̄ D̃T (D̃F̃ ′F̃ D̃T )
−1

D̃T (F̄ 0
− F̄)′V ∗

‖ = op(1). Finally, we have ‖(D̃T F̄ ′F̄ D̃T −

D̃T F̄ 0′F̄ 0D̃T )‖ = Op(T−1k1/2T v−1
T ). Hence, we get∥∥∥V ∗′F̄ D̃T (D̃T F̄ ′F̄ D̃T )

−1(D̃T F̄ ′F̄ D̃T

− D̃T F̄ 0′F̄ 0D̃T )(D̃T F̄ 0′F̄ 0D̃T )
−1(D̃T F̄ 0′V ∗)

∥∥∥
≤

∥∥∥V ∗′F̄ D̃T

∥∥∥ ∥∥∥(D̃T F̄ ′F̄ D̃T )
−1
∥∥∥ ∥∥∥(D̃T F̄ ′F̄ D̃T − D̃T F̄ 0′F̄ 0D̃T )

∥∥∥
×

∥∥∥(D̃T F̄ 0′F̄ 0D̃T )
−1
∥∥∥ ∥∥∥D̃T F̄ 0′V ∗

∥∥∥
= op(T 1/2k−1/2

T )Op(1)Op(T−1k1/2T v−1
T )Op(1)op(T 1/2k−1/2

T )

= op(k
−1/2
T v−1

T ) = op(1).

This proves that V ∗′(PF̄0 − PF̄ )V
∗

= op(1). �
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