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A sequential procedure to determine the
number of breaks in trend with an integrated
or stationary noise component

Mohitosh Kejriwal>*' and Pierre Perron®

Perron and Yabu (2009a) consider the problem of testing for a break occurring at an unknown date in the trend
function of a univariate time series when the noise component can be either stationary or integrated. This article
extends their work by proposing a sequential test that allows one to test the null hypothesis of, say, | breaks versus
the alternative hypothesis of (I + 1) breaks. The test enables consistent estimation of the number of breaks. In both
stationary and integrated cases, it is shown that asymptotic critical values can be obtained from the relevant
quantiles of the limit distribution of the test for a single break. Monte Carlo simulations suggest that the procedure
works well in finite samples.
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1. INTRODUCTION

This article considers the problem of selecting the number of breaks in the trend function of a univariate time series without any prior
knowledge as to whether the noise component is stationary, /(0), or contains an autoregressive unit root, /(1). This is an important
practical issue as typical macroeconomic series appear to be characterized by one or more breaks in trend. For instance, Lumsdaine
and Papell (1997) find evidence of structural change for 9 out of 13 macroeconomic series when allowing for two breaks in the trend
function. Ben-David and Papell (1997), using a data set consisting of 48 countries, show that most countries experienced statistically
significant structural changes in the paths of their export-GDP and import-GDP ratios in light of the substantial movement towards
trade liberalization during the postwar period. Ben-David and Papell (2000) find evidence of multiple breaks in per capita real GDP of
the G7 countries over 1870-1989. Given the discontinuity of the growth process, they then provide a demarcation between different
periods of growth along the development paths based on estimates of the break dates. In another interesting application, Loewy
and Papell (1996) find that allowing for trend breaks permits more rejections of the unit root hypothesis in relative per-capita income
among U.S. regions, an implication that follows from the notion of stochastic convergence among regions.

Testing whether a time series contains a broken trend is complicated by the fact that it is not known a priori whether the noise is
1(0) or I(1). First, doing a structural change test based on the level of the data entails different limit distributions in both cases. Further,
tests based on differenced data have very poor properties when the series contains an /(0) component (Vogelsang, 1998). On the
other hand, to conduct inference about the presence or absence of a unit root, it is useful to have information regarding the
presence or absence of changes (see Carrion-i-Silvestre et al., 2009; Kim and Perron, 2009). In particular, usual unit root tests based on
search procedures, suggested by Zivot and Andrews (1992) and others, are not invariant to the magnitude of the trend break if one is
present. The presence of a break in slope or level can adversely affect both the size and power properties of these tests. We thus have
a circular testing problem between tests on the parameters of the trend function and unit root tests.

To deal with this circular problem, various approaches have been suggested to test for the stability of the trend function that are
robust to whether the errors are /(0) or I(1). The first to provide such a solution is Vogelsang (2001), building on prior work related to
hypothesis testing on the coefficients of a polynomial time trend reported in Vogelsang (1998). He shows that Wald tests for
structural change in the coefficients of a linear trend function have non-degenerate limit distributions in both /(0) and /(1) cases. He
weights the test statistic by a unit root test scaled by some parameters so that, for a given significance level, the value of the scaling
parameter can be chosen to ensure that the asymptotic critical values will be the same.
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'PY also consider a model that involves an intercept shift only. However, the focus in this article is on models that allow for breaks in the slope of the trend function.
With a fixed break size, it is not possible to obtain a consistent estimate of the true number of pure level breaks with an I(1) noise component. An alternative
asymptotic framework in which the break size is modelled as an increasing function of the sample size in the I(1) case is explored in Harvey et al. (2009b).
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More recently, Harvey et al. (2009a) propose tests based on a weighted average of the regression t-statistics for a broken trend
appropriate for the case of /(0) and /(1) noise. The weighting function they employ is based on the KPSS stationarity test applied to
the levels and first-differenced data. In the unknown break date case, they use the supremum of the trend function t-statistics,
calculated for all permissible break dates, for both the /(0) and /(1) cases. As in Vogelsang (2001), they use a correction to ensure that
the weighted test has the same asymptotic critical value irrespective of whether the noise is /(0) or I(1).

Perron and Yabu (2009a, henceforth PY), propose an alternative approach based on a Feasible Generalized Least Squares
procedure that uses a super-efficient estimate of the sum of the autoregressive parameters & when o = 1. When the break date is
known, they show that the standard Wald test from the feasible GLS regression has the chi-square limit distribution. When the break
date is unknown, the limit distributions in the /(0) and /(1) cases are nearly the same when constructing the test using the Exp
functional of the Wald test across all permissible break dates (Andrews and Ploberger, 1994). To improve the finite sample properties
of their procedure, they also use a bias-corrected version of the OLS estimate of o (obtained from an autoregression based on the
residuals from estimating the trend function parameters by OLS) as suggested by Roy and Fuller (2001). Based on Monte Carlo
experiments, PY show their procedure to have a power function that is close to that attainable if one knew the true value of « in
many cases. The advantage of their method over those of Vogelsang (2001) and Harvey et al. (2009a) is that it does not involve any
random scaling so that the test used is more prone to have higher power and less size distortions (see, e.g. Perron and Yabu, 2009b
in a related context).

Building on the work of PY, we propose a sequential procedure that allows one to test the null hypothesis of, say, / changes, against
the alternative hypothesis of (/ + 1) changes. Such a sequential testing strategy has been developed by Bai and Perron (1998, 2003) in
the context of stationary regression models. For the model with / breaks, the estimated break dates are obtained by a global
minimization of the sum of squared residuals. The strategy proceeds by testing for the presence of an additional break in each of the
(I'+ 1) segments (obtained using the estimated partition). The test thus amounts to the application of (/ + 1) tests of the null
hypothesis of no change versus the alternative hypothesis of a single change. We derive the asymptotic distribution of the sequential
test and show that, in both /(0) and /(1) cases, asymptotic critical values can be obtained from the relevant quantiles of the limit
distribution of the test for a single break. Monte Carlo experiments indicate that the procedure performs adequately in finite samples.

It is important to note that our results do not follow as a mere corollary to those in Bai and Perron (1998, 2003) since the latter
studies are based on a stationary framework and do not allow for trending regressors or unit root errors. In fact, the result that the
limit distribution of the sequential test is a function of that for a single break is somewhat surprising in the light of the analysis in
Kejriwal and Perron (2008), who show that break date estimates are asymptotically dependent in the presence of unit root non-
stationarities. Finally, unlike the case of the stationary regression model, there is a need to reconnect the data at the break dates with
trending data in order to ensure that the initial conditions remain the same across different segments (see Section 3). For an
application of the advocated methodology in the context of persistence of per-capita output for OECD countries, see Kejriwal and
Lopez (2009).

The article is organized as follows. Section 2 presents the models allowing for a single break and reviews the PY testing
procedure. In Section 3, we develop the sequential testing procedure and derive its asymptotic properties. Section 4 provides some
Monte Carlo simulations, and Section 5 offers some concluding remarks. All technical derivations are included in a mathematical
appendix.

2. THE MODELS AND TEST STATISTICS: THE SINGLE BREAK CASE

Consider the following data generating process (DGP) for a scalar random variable y;:

Ye =X +
U = a1 + €, t:277T (1)
u =éeq,

where e, ~ i.i.d.(0, ¢, X, is an (r x 1) vector of deterministic components, and YW is an (r x 1) vector of unknown parameters. The
parameter oo € (—1, 1] so that u, can be stationary or have a unit root. For ease of exposition, we focus on the AR(1) case here and
defer the case of a generalized error structure for u, to Section 3. We will consider the following two models involving a break in the
slope of the trend function.! We denote the true break date as T9 = [T/9] for some 29 € (0, 1), where [] denotes the largest integer
that is less than or equal to the argument. Also, /(") is the indicator function.

e Model 1 (structural change in slope only). Here x, = (1, t, DT), ¥ = (uo, fo, 1), where DT, = I(t > T?)(t — T?).
e Model 2 (structural change in both intercept and slope). Here x, = (1, DU,, t, DTy) and ¥ = (uo, i1, o, f1) where DU, = I(t > T1°).

For Model 1, the null hypothesis of interest is Hy: f; = 0 while for Model 2 it is Ho: 13 = ff; = 0. Using the notation in (1), these
hypotheses can be expressed in the form RY = y where Ris a (g x r) full rank matrix and y is a (g x 1) vector, g being the number of
restrictions. For Model 1, R = (0, 0, 1), y = 0 and for Model 2,

(01 00) (0
“lo oo 1) ""\o)

We first discuss the testing procedure for some generic break date T; = [TA], where 2; € A . with A, = {Z:e <A< 1 — ¢} for
some ¢ > 0. If o were known, the GLS estimate of the parameters can be obtained by applying OLS to the regression
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(M —al)yy = (1 —al);¥ + (1 —al)u,, fort=2,...,T

2
y1=x%¥ + u. )

In practice, however, o is unknown and must be replaced by an estimate. Perron and Yabu (2009b) proposed the use of the
following super-efficient estimate of «:

_fa fTE-1>d
“5_{1, if 705 — 1] < d 3)

foro € (0, 1) and d > 0 where

ZLZ Uplie_1 (4)
T -
D2 U
and {;} are the OLS residuals from the regression of y, on x,. Perron and Yabu (2009b) showed that: (i) T'/2(&s — «) 4 N(0,1 — o?)
when || < 1 and (i) T(&s — 1) 2.0 when o = 1. These results remain valid both under the null of stability as well as under the
alternative of a structural break.

For testing Hy: RY = y, PY propose using the Wald statistic based on the feasible GLS regression that uses &s as an estimate
of o in (2):

A=

Wes(1) = (RY ) PROCX) 'R (RE — ),

where X = (x1,(1 — as)xa,..., (1 — as)xr), s> = T~ Z; €2 and & are the residuals associated with the feasible GLS regression.
If || < 1, PY show that

-1

Wes(r) = {R( /O F(s, 1 FG, ;@’d;)f1 /O 'FGs 1) aw(s)) R /0 F(s (5.0 ds)qR’}

X {R(/O1 F(s,A})F(s’;q)/dS)ﬂ /01

where F(s,4;) = [1,50(s > 1)(s — 47)] for Model 1 and F(s,4;) = [1,/(s > J).sl(s > A)(s — A1)] for Model 2. Here W() represents a
standard Brownian motion on [0,1]. If & = 1,

F(S7 i]) dW(S):| = Go(/q)

[aW(1) = W(h)P?
(=4

j _ 2
i L W

for Model 1
WFS(;L]) =
for Model 2

)»1(1 — M

= G1 ()»1 )

In practice, since the break date is unknown, PY propose using the exp functional over the set of permissible break dates:

W, )
exp-Wes = log | T~' E exp( Fsz(/h)) = log [/ exp (g(;ﬂ) dM}
[Th]:AeA. JEA.

where g(/,) denotes Gy(4,) and G,(4,) for the i(0) and i(1) cases respectively. They show that using the exp-functional, asymptotic
critical values in the /(1) and /(0) cases are very close so that using the larger of the two can be expected to provide tests with the
correct size for both stationary and integrated errors.

Given that the OLS estimate of o may suffer from a serious downward bias especially when « is close to one, PY use a
bias-corrected estimate based on the procedure proposed in Roy and Fuller (2001). The super-efficient estimate is then based
on this bias-corrected estimate as opposed to the OLS estimate. The bias-corrected estimate is a function of a unit root test,
namely the t-ratio T = (& — 1)/6,, where & is the OLS estimate and &, is its standard deviation. The bias-corrected estimate is
given by

b = &+ C(2)64,

-1, if 7> Tpet
A LT %= (1 +nii+ai+a)l’, if—a<i<rtp
€@ = LT 8= (140, if —c/?<t<-a
0, if t < —c)/?

where ¢; = (1 + NT with r the dimension of ¥ in (2), c; = [(1 + NT — 2, (l + T)][tpct(a@ + Tpet)(lp + 7)), ais a constant and
Tpct is @ percentile of the limit distribution of © when o = 1. Also, I, = (p + 1)/2, where p is the order of the autoregressive process
considered for the noise component. Based on extensive simulation experiments, a = 10 is selected and 1q 4, is used as the choice
for Tpct.
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3. THE SEQUENTIAL PROCEDURE

We consider a DGP for y, that allows for the possibility of (/ + 1) breaks in the trend function. Following the notation in (1), it is:

e Model 1 ((/ + 1) breaks in slope only). Here x, = (1, t, DTyq,..., DTgsn0) , Psi = (tto, Bos B .., Bir1) Where DT, =I(t > TO)(t — TO).

e Model 2 ((/ + 1) breaks in both intercept and slope). Here x; = (1, DUy, ..., DUgyq)s t, DTg.., DT(,H)r)', W = (uo, 11, -0 tsrs Por

1, -..r Bi1) where DU = I(t > T?).

We are interested in testing the null hypothesis of / breaks against the alternative hypothesis that there are (/ + 1) breaks. For

Model 1, this implies the null hypothesis Hy: 31,1 = 0 while for Model 2, the implication is Ho: 51,1 = w1 = 0. In Section 3.1, we

present the sequential test and derive its limit distribution for the case where u, is an AR(1) process. Section 3.2 subsequently extends
the results to a general error structure for u;.

3.1. The AR(1) case

Here we continue to assume that u, is generated by (1). The sequential test of the null hypothesis of / breaks versus the alternative of
(I + 1) breaks is implemented as follows. First, we obtain the estimates of the break dates T;, .. ., T; as global minimizers of the sum of
squared residuals from the model with | breaks estimated by OLS:

(Ti,...,T)) =argming, 7 SSR(Ty,....T)).

This can be achieved using the dynamic programming algorithm proposed by Bai and Perron (2003). Next, we test for the presence

of an additional break in each of the (/ + 1) segments obtained using the estimated partition (71, ..., T)). In order to construct the test
for the ith segment (i =1, ..., | + 1), we first estimate the following regression by OLS:
ye=x"¥D pu, fort="Tq+1,... T, (5)

where, for Model 1, we have xt(i) = (1,t = Tiq, (t — K)I(t > k))’, pi = (ug),ﬁ?,ﬁﬁ’))’; while for Model 2, we have
x) = (1,0 > k).t = T, (6 = R)Ie > k), 0 = (0, 1, B, B). Here k = [Te] where © € A= {t:hiy + (4 — 4i1)
e<t< 4 — () — i 1)e} with 4; = T/T We use the convention T, = 0 and T,H = 0. Note that the trend included in the ith
segment is (t — T,,]) instead of t. This modification is needed to ensure that the initial conditions are the same across segments. The
residuals from this regression denoted LAlr' are then used to compute the OLS estimate of « as in (4) for the ith segment. This estimate
in turn is used to construct a super-efficient estimate of «, denoted & ocs ,asin (3).

Given the estimate ocs , the feasible GLS regression for the ith segment is

(1= Lye = (1= & Dx" PO + (1 - & Ly, (6)

fort € [Ti-y + 2,...,T] together with Vi1 = x;i)'Jr]‘{’() + up g Let X0 = (x <Ti)1+17(1 - aé))xr s (1= &g))xﬁ_)' and the

feasible GLS estimate of ¥ be denoted by ¥ . The Wald statistic for a given © € A;. is then given by
Wes (i1, 7, 41) = (RYY — ) [sTRXUXD) R RPD — ), (7)

where s? = (T, — Ti4) " ZZ’ - [egi)]2 and &\ are the residuals from OLS estimation of (6). As in PY, we use the exp functional

over all permissible break dates:
i A A _ W j.', 5 Ty j
oo}~ o (1 ! 3 o M0
TEA;,
Given exp-WéiS) fori=1, ..., 1+ 1, the sequential test is defined by
_ W
Fr(l+1]l) = 1Q§/§1{6Xp Wes }-
We conclude in favour of a model with (/+1) breaks if the maximum of the exp—WéQ tests is sufficiently large. The test thus amounts to

the application of (/ + 1) tests of the null hypothesis of no change versus the alternative hypothesis of a single change. The following
theorem states the limit distribution of the sequential test under the null hypothesis of | breaks.

THeorem 1. Assume that u(t = 1,...,T) is generated by (1). Under the null hypothesis that the true number of breaks is I, we have
lim 7. ooP(F-( + 1)) < x) = H.)"™" with H.(x) being the distribution function of log [ Jr,ene exp (g(21)/2) diq] where g(iq) = Go(hy)
if |OC| < 1 and g(/h) = G1()L1) if oo = 1.

The proof is in the appendix. The theorem states that, in both /(0) and /(1) cases, asymptotic critical values for the sequential
test can be obtained from the relevant quantiles of the limit distribution for the single break test. A similar result was obtained
by Bai and Perron (1998) in the context of stationary regression models. In our context, however, the result is somewhat
surprising in view of the analysis in Kejriwal and Perron (2008), who show that break date estimates are asymptotically
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dependent in the presence of unit root non-stationarities. We calculated the critical values by simulations using i.i.d. N(0,1)
random variables to approximate the Wiener process. The integrals are approximated by normalized sums with 2000 steps and
the number of replications used is 10,000. Table 1 presents critical values for a wide range of values of the trimming parameter
€. As is evident from the tables, the quantiles in the /(0) and /(1) cases are quite close, and hence using the larger of the two can
be expected to provide tests with the correct size in both cases. The argument for the consistency of the sequential test is the
same as that in Bai and Perron (1998). Note also that the result continues to hold when using the bias-corrected estimates given
that the bias correction procedure results in different finite sample properties but does not alter the rate of convergence of the
estimates.

The test based on F{/ + 1|/) can be used to provide an estimate of the number of breaks in the following way. First, apply the one
break test Fr{1 | 0) to determine if there is at least one break. Upon a rejection, use the test F{2 | 1) to determine if there is more than
one break. This process is repeated by increasing / sequentially until the test fails to reject the null hypothesis of no additional
structural breaks. The estimated number of breaks is then obtained as the number of rejections. The sequential procedure can be
made consistent by allowing the significance level of the test F{/ + 1|/) to decrease to zero at a suitable rate as the sample size
increases. It can be shown that if the true number of breaks is at least / + 1, F7{(/ + 1|) diverges at rate O,(T°) if [x| < 1 and at rate
Op(T) if o = 1. Thus, if the critical value is allowed to increase at rate Op(T1’8), 0 < ¢ < 1, the size of the test converges to zero at
T increases while ensuring the consistency of the test. This leads to the Theorem 2 whose proof is similar to that of Hosoya (1989)
and is, therefore, omitted.

Table 1. Asymptotic critical values of the sequential test F-{/ + 1|/) for Models 1 and 2

10) 11
/ /

€ o 1 2 3 4 5 1 2 3 4 5
Model 1
0.01 0.90 2.02 2.33 2.60 2.82 2.97 2.08 2.37 2.65 2.81 2.99
0.95 2.61 2.98 3.24 3.41 3.59 2.66 3.03 3.25 3.47 3.62
0.975 3.24 3.60 3.85 4.04 4.22 3.27 3.62 3.86 4.14 4.31
0.99 4,04 4.40 475 5.09 5.30 4.14 4.50 479 495 5.07
0.05 0.90 1.90 2.25 2.52 2.72 2.88 1.93 223 2.46 2.62 2.82
0.95 2.55 2.92 3.15 3.31 3.47 2.49 2.84 3.04 3.22 3.37
0.975 3.15 3.49 3.63 3.86 4.04 3.05 3.38 3.68 3.80 3.98
0.99 3.86 4.25 4.52 4.76 497 3.80 432 4.67 4.84 490
0.10 0.90 1.75 2.08 2.30 2.50 2.68 1.82 2.12 2.40 2.56 2.71
0.95 2.32 2.72 3.00 3.23 3.38 241 2.73 2.90 3.07 3.25
0.975 3.04 3.39 3.66 3.79 3.91 2.91 3.25 3.51 3.76 3.90
0.99 3.79 411 453 4.76 4.86 3.76 4.18 4.51 472 4.82
0.15 0.90 1.67 1.94 2.18 2.36 2.53 1.66 1.97 2.20 2.37 2.54
0.95 2.19 2.54 2.85 3.10 3.24 2.22 2.56 2.78 2.94 3.15
0.975 2.88 3.25 3.41 3.64 3.79 2.78 3.15 3.44 3.66 3.82
0.99 3.64 4.01 4.22 437 481 3.66 4.04 4.20 443 4.56
0.25 0.90 1.29 1.62 1.87 2.08 2.24 1.27 1.62 1.85 2.01 2.15
0.95 1.89 2.27 245 2.61 2.73 1.88 2.19 241 2.61 2.75
0.975 2.45 2.73 2.98 3.17 3.42 2.41 2.75 3.04 3.27 3.42
0.99 3.17 3.61 4.01 413 4.34 3.27 3.59 3.93 4.07 4.25
Model 2
0.01 0.90 3.34 3.70 3.97 4.19 4.38 3.52 3.86 411 434 4.52
0.95 3.99 441 473 496 5.20 413 4,53 4.83 4,99 5.20
0.975 4.74 5.21 5.39 5.53 5.88 4.84 5.20 5.42 5.59 5.72
0.99 5.53 6.05 6.28 6.60 6.82 5.59 5.94 6.20 6.73 7.10
0.05 0.90 3.20 3.57 3.84 4.08 4.25 3.36 3.70 3.97 4.14 433
0.95 3.87 427 456 4.74 4,94 4,02 437 4.67 4.87 5.02
0.975 4.59 494 5.23 541 5.57 4.69 4.02 5.31 5.58 5.74
0.99 5.41 5.81 6.13 6.34 6.76 5.58 5.97 6.16 6.30 6.52
0.10 0.90 2.96 337 3.64 3.87 413 3.26 3.60 3.83 3.99 4.10
0.95 3.67 4.15 437 4.56 4.67 3.85 4.15 4.38 457 472
0.975 439 4.67 5.06 5.21 5.45 439 4.74 5.00 5.15 5.34
0.99 5.21 5.65 5.92 6.10 6.59 5.15 5.65 5.84 6.08 6.19
0.15 0.90 291 3.34 3.60 3.86 4.03 3.09 3.44 3.64 3.84 3.99
0.95 3.63 4.06 434 459 479 3.66 4.00 4.28 461 473
0.975 4.38 4.79 5.05 5.28 5.46 4.30 4.73 498 5.17 5.43
0.99 5.28 5.70 5.83 5.98 6.22 5.17 5.57 5.93 6.07 6.15
0.25 0.90 2.54 2.88 3.16 3.36 3.57 2.72 3.05 3.31 3.52 3.69
0.95 3.17 3.58 3.88 4.08 433 3.34 3.71 3.96 413 4.29
0.975 3.90 435 457 4.77 5.00 3.99 4.30 4.55 4.80 495
0.99 4.77 5.22 5.50 5.81 6.00 4.80 5.21 5.39 5.63 5.73
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THeorem 2. Let m be the true number of breaks and m be the number of breaks obtained using the sequential procedure based on the test
statistic F{l + 1|l applied with some size ar. Consider a sequence of critical values cv = ¢T' %,0 < & < 1so that arconverges to zero while
ensuring that F{I+1|l) remains consistent. Then P(mM =m) — 1as T — oc.

3.2. The general case
We now provide an extension of the previous analysis to the case where u; is allowed to have the following more general structure:

Ut = oWr—1 + V¢

ve =d(L)e; ®

fort = 1,...,T with d(L) = 3%, dil’, e, ~ iid. (0,6%), e; being defined on the set of integers. We make the following assumption
regarding the polynomial d(L):

AssumpTion 1. We assume that d(2)] # 0 for all |z2] < 1 and 3", ildi| < oc.

These restrictions on the polynomial d(L) ensure the invertibility and weak stationarity of v, (see Chang and Park, 2002 for a detailed
discussion of these assumptions). Under these conditions, u; has an autoregressive representation, say A(L)u; = e, where
AlL) =1 =32 ail. In (8), we wish to have o represent the sum of the autoregressive coefficients, >, a;. Accordingly, we
consider the representation

o
Ur = olp_q + aj‘Aut,j + ey, 9)
=
where g = _Z?im a;. The infinite order autoregression in Au,_; is approximated by a truncated version whose order kr is a
function of the number of observations, T:
kr

ur = a1 + g afAuH- + e,
=

where ey = Zj>kr aj‘AuH + e;. Let 05") be the residuals from estimating (5) by OLS. Then the estimate of « considered is the OLS

estimate & obtained from the regression

kr . - . N N
o) = a0, + 3" A, el t=Tiy k2, T (10)
j=1

The order ky of the autoregression (10) is assumed to satisfy both an upper bound and a lower bound condition. This is stated in
Assumption 2:

AssumpTioN 2. The order kt is assumed to satisfy (as T — oo) (a) (upper bound condition) k% /T — 0 and (b) (lower bound condition)
kr Zi>kT lai| — 0.

The upper bound condition is the same as that used by Chang and Park (2002) in the context of unit root tests and is weaker than
the assumption k; = op(T”3) made in Ng and Perron (1995). Note that the lower bound condition allows a logarithmic rate of
increase of kr thereby permitting the use of data-dependent rules such as information criteria for selecting k7 in practice. PY
recommend using the Bayesian information criterion (BIC) for choosing k. Again a bias-correction is applied and the super-efficient
estimate 4 is constructed as in (3) and used in the feasible GLS regression (6).

The specific form of the Wald test depends on the nature of the errors, /(0) or /(1), and the model. Consider first the /(0) case.
For both models, we need to simply replace si2 in (7) by fr,(,'), an estimate of (27 times) the spectral density function at frequency zero
of vi = (1 — al)u,. PY propose using an estimator based on a weighted sum of autocovariances using the quadratic spectral kernel
and the bandwidth selected according to the plug-in method advocated by Andrews (1991) using an AR(1) approximation. The
estimator is

i fi-dig 1 i
) =@=T)™ 30 WP+ @-T)™ D w3 W
t=Ti_1+1 j=1 t=Ti_q4j+1

where Vt(’) are the residuals from the regression analogous to (6) for the general case. The kernel function w(:) is assumed to satisfy

the following:

AsSUMPTION 3. The kernel function w(") is a continuous and even function with |w()| < 1, w(0) = 1, and [~ _w?(x) < oc; and the
bandwidth Iy is such that Iy — oo and I = o(T"?) as T — oc.
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Consider now the case where the errors are /(1). For Model 1, the form of the test statistic is the same as in (7), except that we
replace s? by an autoregressive spectral density estimate with the lag length of the autoregression again selected by BIC. The
autoregression is

() _ =200 50
Al All) ~ (1 ~(I
Vel = S Vel ey
=1
Denote the estimate by
O ==L =gl and (4P =(Ti-T -k Y &
t=Ti_q+kr+1
Then,
~()y2
o Aoy
R

For Model 2, PY propose a modified test statistic, which ensures that the limit distribution is the same as that in the AR(1) case. See
PY for details on the modification used.

Given Assumptions 1-3, we are now in a position to state the result for the general case. This is presented in Theorem 3 whose
proof can be found in the Appendix:

THeorem 3. Suppose that u, is generated by (8). Then, under Assumptions 1-3, Theorems 1 and 2 remain valid.

4. SIMULATION EXPERIMENTS

We conduct simulation experiments to assess the finite sample performance of the proposed sequential procedure. We consider
cases where the DGP involve either one or two breaks. The sample sizes used are T = 120, 240, 360. The level of trimming is set at
e = 0.15. The maximum number of allowable breaks is set at three. In all experiments, {er}tr:0 denotes a sequence of i.i.d. standard
normal random variables. The sequence {ur}rT:1 is generated by the ARMA(1,1) model

Up=ole 1 +e+0e_q, t=1,...,T
up = 0.

We consider six values for the autoregressive parameter: o = 0.5, 0.8, 0.85, 0.9, 0.95, 1 and five values for the moving average
parameter: 0 =—0.5,—0.3, 0, 0.3, 0.5. We report results for 0 = 0 and 0 = 0.5. The results for the other values of 0 are qualitatively
similar to those for 6 = 0.5 and are available upon request. All experiments are based on 1000 replications.

The estimate of the autoregressive parameter is obtained from an autoregression where the lag length is selected using BIC.
Regarding the choice of parameters ¢ and d, we experimented with 6 = 0.3, 0.4, 0.5, 0.6 and d = 0.5, 1, 2 as in Perron and Yabu
(2009b). The results indicated that the choice 6 = 0.5, d = 1 works relatively well in finite samples, and therefore we use these values
for the construction of the super-efficient estimate. We construct the bias-corrected estimate of the autoregressive parameter using
the method of Roy and Fuller (2001) as used in PY. We present our results in terms of the probabilities of selecting a given number of
breaks, i.e. p(m = m*) form =0, 1, 2, 3.

4.1. The case with one break

We consider two models, the first involving a break in the slope of the trend only and the second involving a break in both level and
slope. The data are generated by

e Model 1 (a single break in slope only): y, = #DT, + uy,
e Model 2 (a Single break in level and slope): y, = #(2DU, + DT,) + u,

where the break date is set to T? = T/2, at mid-sample.

Table 2 presents the probability of break selection corresponding to different values of 5 for Model 1 when 6 = 0. First, when
o = 0.5 so that the process exhibits only moderate persistence, the procedure selects one break with probability at least 90%
irrespective of the magnitude of break and the sample size. When the degree of persistence increases, the probability of
underestimation increases, at least for small break sizes. This is expected, given that power of the one break test declines as o
approaches 1. The performance of the procedure generally improves as the magnitude of the break increases, mirroring
corresponding increases in the power of the single break test. As expected, the probabilities of selecting a single break increase when
the sample size is increased. The corresponding probabilities when 6 = 0.5 are reported in Table 3. Here the results are broadly
similar to those for 0 = 0 except that there is a larger probability of underestimation, especially for small break sizes with T = 120.
This probability, however, diminishes relatively rapidly with increasing break size and/or increasing sample size.

J. Time Ser. Anal. 2010, 31 305-328 Copyright © 2010 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa
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Table 4 presents results for Model 2 with 0 = 0. Again, the procedure performs relatively better when « = 0.5, although now
there is a non-negligible probability of overestimation which increases as « increases. This is due to the fact that the tests suffer from
size distortions which become more severe with increases in « and the number of breaks assumed under the null hypothesis. These
size inaccuracies persist for « =1 and small break sizes even with the two larger sample sizes. However, as with Model 1, the
probabilities of selecting one break are higher relative to those with the smallest sample size. The selection probabilities in Table 5
for 6 = 0.5 again demonstrate the higher underestimation probability in the presence of a general error structure.

4.2, The case with two breaks

With two breaks the DGPs considered are the following:

e Model 1 (two breaks in slope only): y; = 17;DT¢ + nDTy: + uy,
e Model 2 (two breaks in level and slope):

Ye=Mm (DT]I + ZDU‘Ir) + ﬂ(DTzr + 2DU21) + U¢.

We set 1, = 1 and report results for a range of values of 5. The dates of the breaks are set at 7Y = T/3 and T9 = 2T/3.

The results for Model 1 with =0 are reported in Table 6. With « = 0.5, the probabilities of selecting the true number of breaks is
close to 90% even with T = 120 and small break sizes. However, in contrast to the one break case, these probabilities are reduced as
o approached 1. This suggests that the power of the one-versus-two breaks test is low relative to that of the zero-versus-one break
test. For o > 0.5, there is also a non-negligible probability of overestimation reflecting the size distortions of the two-versus-three
breaks test. As for the one break case, the selection probabilities for two breaks increase with the sample size.

Table 7 reports corresponding results for Model 2. As in the one break case, there is a substantial probability of overestimation,
especially for values of o close to 1. Noticeably, the probability of underestimation is negligible even for small break sizes and

= 120. When the sample size increases to T = 240, the probabilities of selecting two breaks increase to about 80-85% for
moderate break sizes when o < 0.95. These probabilities further increase when T is increased to 360. For o = 1, the size distortions
are still in play even for large magnitudes of the breaks and large sample sizes. For both models, the probabilities reported in
Tables 8 and 9 for 0 = 0.5 can be interpreted in a manner similar to the one break case.

In summary, the performance of the proposed sequential procedure is qualitatively different for Models 1 and 2. For Model 1,
there is a tendency to underestimate the true number of breaks while for Model 2, there is a probability of overestimation. This
difference can be traced to the finite sample properties of the tests for these models with low power being more of an issue
for Model 1 and size distortions being the dominant factor for Model 2. The power problem is alleviated to a considerable
extent for large magnitudes of the breaks while the size distortions in Model 2 remain somewhat of a concern, especially in the
presence of strong persistence in the error component, though these concerns are mitigated for larger sample sizes.
The simulation results point to the importance of the choice of the maximal value of the number of breaks in relation to the
size of the sample available. For example, when testing for two breaks in a sample of size 120, one ends up with fewer than
40 observations per segments. It is then not surprising to see low power and/or size distortions. Hence, practitioners must
exercise caution to allow a sufficient number of observations in each segment and chose the maximum number of breaks
permissible accordingly.

5. CONCLUSION

Testing whether a time series contains a broken trend is complicated by the fact that we do not have a priori knowledge of whether
the noise is stationary or integrated. This has motivated the development of tests that are robust to the extent of persistence in the
error component. These are designed to evaluate the null hypothesis of no structural change versus the alternative of a single
change in trend but do not allow researchers to select the number of changes. Given that selecting the number of breaks is an
important practical issue, we attempted to fill a gap in the literature by proposing a sequential procedure that enables consistent
estimation of the number of breaks. Monte Carlo evidence demonstrated that the procedure works well in samples sizes that are
common in applied work.

APPENDIX

In what follows, WG = 1,..., | + 1) denotes a set of (I + 1) independent standard Brownian motions on [0,1] and W denotes a
standard Brownian motion on [0,1] that is independent of W for all i. Also, Aj. = {t: /i 1+ (4 — Jia)e <t < 4 — (4 — Ai1)e}
and A.={r1 —e<r<e} for some ¢ > 0. We use || to denote the Euclidean norm, ie. for a pxq matrix
AAL = 7 X5 Xuz)1/2_ Also, we use ||A]|; to denote the vector-induced norm, i.e. ||A|| = sup y.ol|Ax||/||x]|. We shall also use
the fact that the estimates of the break fractions are consistent for the true break fractions. As shown in Perron and Zhu (2005):
T32(J; — 7)) = 0,(1) for Model 1 with /(0) errors, T(4; — 40) = 0O,(1) for Model 2 with /(0) errors, while T'/2(J; — 1) = 0,(1) for
Models 1 and 2 with /(1) errors. Though their proof is for the single-break case, the results continue to hold with multiple breaks (see
Oka and Perron, 2009 for the case of /(0) errors).

wileyonlinelibrary.com/journal/jtsa Copyright © 2010 Blackwell Publishing Ltd. J. Time Ser. Anal. 2010, 31 305-328
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Proor oF Theorem 1. Consider first Model 1. Let X = { ;i) (1= &gi))x;i) e (1 &(Si))xg)}/ with )(j(i)(j =1,2,3) being the
jth column of X?. For a given © € A,,, the Wald test of f\" =0 can be expressed as '

(B2 06" mMOx)

2
5i

WFS(jV,'_h‘L',}L,') = (11)
with MO = @) — z() (z<f>'z<f>)‘1z<f>',z<f> = (X", x{7) and 52 the residual error variance from the feasible GLS regression. Denoting
09 = {u, — &g)“H}tTi:f,,H' we have, under the null hypothesis of | breaks,

!

o0 X;')’M(i)(:/(i) B X3([) oo — X;’)’Z(D 20z~ Zr G
( )

T XB(i)/M(,»)Xs(i) - X3(i)’X§i) _ X;i)/zm

RO RN ()
i) i i di1 4912 I
£ (qgls) q§’§)< () (f)) ( <f>> (12)
B a2 92 r;
- - - -1 -
0 _( G ay qgg fﬂ’i
A3 = \di3 923 W0 0
Gz Ax a3
where
g =1+ (T =T = 1)1 = &)’
T
i =1+0-) 3 (t=Ti) +8’ (1 —a)) (T =Ty 1)
t=T; 1+2
a3 = (1 =) > (k) +a (1 =) (T — k)
t=k+1
T . , T .
gn=1+0-ay 3 t-Ta?+@ P H-Ta-n+20ad0-4a) Y (t-T)
t=Ti1+2 t=Ti 42
0] ()2 - (P) (P a () 0] !
I A
O = (1 -45) Z(t—ﬂ,1)(l’—k)+0€5 (1-4a5") Z (t=Tiq) +a5' (1 —a5) Z( )+ [as']7(Ti = k)
t=k+1 t=k+1 t=k+1
T ) T
a5 =(1=8)" 3 (=" + (3 P(T — k) + 2660 (1 =) D (£~ k)
t=k+1 t=k+1
&
W=y -+ (=ad) > (- au)
t=Tj-1+2
. . . Ti T
B =un g = (=) Y e T (- ) +i Y ()
t:-r,' 142 f:i'i 142
. i , o 4
i =0 ST =k —au )+ > (- uey)
t=k+1 t=k+1
Next, we derive the limit of each term separately for || < 1 and « = 1.
StaTioNARY CasEt (ju| < 1). We use the fact that
[Ts] ) [Ts] .
T2 Z(Ur —adu ) =T Z[(“ — & )uey + e
t=1 t=1
[Ts] . [Ts]
—_T112 Zef _ T*1/2[T1/2(&§') _ ac)]T”/z ZUH
t=1 t=1
[Ts]
=T e+0,(1) = aW(s)
t=1
The convergence results for each of the components are then as follows: T”qﬁ i(i? =20 =), T*Zqﬁg 2
(1= [ (s - Aads = (1= @GP~ 21)%/2, T2 20 = (B = o) T2an 50 = (] = 20)°/3 T2qn >

(= a)zﬂ (s — 22)(s — 1) ds, T3q53 % (1 — a2 [F(s — 12ds, TV 5 (1 = WaW(i0) — W), T = (1 - a)
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afﬁ)’g W(°) — W(s)ds and T-3/2) = (1 — oc)af:"o[W(/l?) — W(s)]ds. Using these results in (11) together with the fact that
-1
s2 2 62 for each i, we obtain

. . A?
Wes(Aiz1, T, i) = 3= &i()
where '
29
A 7/ (W(2) = W(s)|ds — ( (10 — 1)? / (s—2,)(s—1)ds)
2\ 1! ,
(0 =0,y P W) = W)
LR DD, 3 W) - w(s)] ds
4 5 -/l?
B,:/ (s—1) dS—((Z 7)° / (s — 2 1)(s—r)ds)
) 1
() M (3 =
X (070 )2 (7970 >3 ),? )
i 2#4 i ;71 f‘r (5 — /Li71)(5 — ‘L') ds
Note that the random variables ¢;,...,¢,,; are independent. This follows since, for s; € [A 1 ,] the processes
W) — W(s),W(i3) — W(s3),...,W(2,) — W(si1) are independent. Next, we use the fact that W(i)) — W(s) has the same

distribution as

. G s=290
\/20 =0 [W(I>(1) —wh <57'1>}
, . =2

fors € [, 29). Then with the change of variable r = (v — /2 ,)/(20 — 22 ,), &(x) has the same distribution as & (r) = [A*]*/B!
where

We then obtain

|ﬁf Ze@ﬂi%FmMﬂMM

t€A; .

which is the limit distribution of the zero-versus-one break test. Usmg the independence of &7,&5,..., &, the result follows.
UNIT Root Case (o = 1). Here, we use the fact that T(“(s) - 1) 2,0. Also, we have

[Ts] ) [Ts] ) [Ts]
T2 (e — 6 uey) =172 Ze, TG =T uy = aW(s).
t=1 t=1 t=1

Then the convergence results for the components in (12) are: g1} 21, ¢\) 21, q\) 20, T1q 270 — 20, T'qY) — 1° — ¢,

Tg0 270 — ¢, /) = limr_ ey T2 i = W20 — W2 ,)) and T-/24) = 6[W(2%) — W(1)]. Again, using these
results in (11) together with the fact that s; 22, 52 for each i, we obtain
. . 2
WFS()L/,1,T, A,) = E’ = ﬂi(’f)
where '

(i = DW(E) - W0 4)]
W=,

G =W — W) -
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Again, it is straightforward to verify that 5,...,11,,1 are independent. Then, as in Model 1, we use the fact that W(2?) — W(s) has

the same distribution as
. ) )0
Ty [W<,>(1) —w <5:1>}
I l =2

fors € [/ ,,2)). With the change of variable r = (¢t — 27 ,)/(4) — ), ni(z) has the same distribution as

oy WO () — WO (1))
i () = r(1—r) '

We thus have

g {(ﬂ )Y e (M)} = |og[/EA exp(n?‘(r))]

€A,

which is the limit distribution of the zero-versus-one break test. Again, the result follows from the independence of
’7?,’7§7~~-,’77+1-
(i)

Consider now the proof for Model 2. Again, let X() = {xgiﬁﬂ (1 —a )Xg),ﬁf (= &“’)X?}' with ij(f = 1,2,3,4) being

the jth column of X, For a given t € A;., the Wald test for testing ygi) = ﬁﬁi) = 0 can be expressed as

(Z"MPZ )

Wes (41,7, 4) = [37] 2 13

with 50 = (20 g0y 20 = (X X M = 0 — 20z 217207 70 = (xD X)) and s2 the residual error variance from the
feasible GLS regression.
Stamionary Case (|| < 1). Using arguments similar to those for Model 1, we have

Wps(j,,'_'] , T, }»,’) = F,{(E,‘)71F,' = (I),'(‘L')

0 2 0 i
. -t Ji(s—1)ds =t Ji(s—1)ds
= 20 2 I T R Y] 0
[i(s—1)ds [f(s—1)°ds A =1 [f(s—2)(s—1)ds
050 2\ ! .
ey T e 09 o
B E-R) [P(s—1)ds  [7(s—2°,)(s—1)ds
2 3 T T =1
. ( W) - W(o)] > # -z S (s =) ds
i= 20 -
JI WD) — w(s))ds (2= [H(s—10 ) (s—7)ds
0 50 2\ !
(20— 70, G W) = W)
x .
Gl Ui f) W(20) — W(s)| ds
Applying the same transformations as in Model 1, ®,(7) has the same distribution as ®:(r) = F/'(E})"'F: where
B 1—r f,1(s—r)ds 1—r f:(s—r)ds
a f:(sfr) f:(sfr)zds (1—r)? f:s(sfr)ds
1IN - (1-1)?
X

33 [s—ryds ['s(s—r)ds
[

woa)y —wimy \ [ 1=r  fls—r)ds
' (1=r? ['s(s—r)ds

(1) Lo )
X ; ;
2 3) \ () - wis)ds

which is the limit distribution of the zero-versus-one break test in a model that allows for a break in intercept as well as the slope.

Using the independence of @7, ..., ®},,, the result follows.
Unit Root Case (« = 1). Derivations similar to those used for Model 1 yield

where
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Wes (4o, 4i) = [“mhooze[rfm]z , (70— 70.)
1 (A4 —1)(t— ) ) "
2
(2 — )W) — W)
X [W(Z?) - W(r) — o

Under the assumption that e, is i.i.d. normal, for v € A;., erg4q is asymptotically independent of both T- 1/2 Zr . and
T2 Zr o e; so that the the first and second terms in (14) are independent. Then using the same variable and dlstrlbution

transformatlons as in Model 1 and the fact that lim 1. erg+1 has the same distribution as

the result of the theorem follows from the independence of the tests over the (/ + 1) regimes.

Proor oF THeorRem 3. We will prove the theorem for Model 1. The proof for Model 2 is similar and hence omitted. As in the proof of
Theorem 1, we analyze the stationary and unit root cases separately.

StaTIoNARY CASE (la < 1). Let z; = (Au¢_1,AUr_5,.. ., AUy ), by = Aur_-a?‘ and ¢ = (a*,az,...,a: ). Here we have
j>kr ) 1,42, s Ykr

T’”ZZ (= ueg) =T 1/22{a_ag>)u, 1+t boted

t=1

[Ts] ) [Ts]
=T2N e~ T2 — ) T2 up (15)
=1

t=1
[Ts] [Ts]
+ {T”Z Zz;}g+ T2 by,
t=1 t=1
As in the AR(1) case, the second term in (15) is op(1). For the third term, note that

T_1/ZZZ

Op(ky*T~1/2) = 0,(1).

The last term in (15) is

[Ts]

T’”ZZZAut a; =T~ 1/22 ZAUU<T 1/2

t=1 j>kr >k t=1 j>kr

= Op(kr T 1/2) =0p(1),

[Ts]
Z AUr,j
t=1

where we use the fact that || Zt 1Aui_j|| = Op(1) uniformly over j and s. We thus have
[Ts] ) [Ts]
T2 (ur =) = T2 ) e+ 0p(1)
= =1
= alW(s).

The result of the theorem then follows if h ) 2, 52 for each i. Now, let f; = zjc + by + e = Z Aug —ja; + e = F(L)et, where
FIL) =14 (1 —al) '(1 = L)d(L )2 *UJ. Then (2 times) the spectral den5|ty function of f, at the zero frequency is

he = F(1)%6? = o2, (16)
since F(1) = 1. Thus, we have that
o T o TiTi—1 7
T=Ti) > R+@=To)™ . wii/l) D ffij=d+0,(1). (17)
t=Ti 1 +1 J=1 t=Ti 1 +j+1

Next, we write

W =y —alyer — (4 = 6xeq) PO

R N ’ ) i ;
= {0 0" = ax") } {Drr (¥ =)} + (2= 80 Yuen + £

where D;7 = diag(T"/%, %2, 7’?). We then have, for s > 0,
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7 o T 5
ST W =T Y A+ Sg.(say)
t=Ti 1 +s+1 t=Ti 1 +s+1 g=1

We now consider each of the terms S1, ... ,S5 in turn.

S1:
1= 7 {0y (0 ¥y 0 D7 (7 s, — A D5 (D %0
t=Ti_1+s+1
Note that [Dir (¥ — ¥0)|| = 0p(1), D7 55, 067 = s6'x %) 0 — ' )'Di | = Op(1). Thus, 51 = O,(T )
S2:
s2=T" > 0 = ax ) D Dy (w0 — )}
t=T;1+5+1
FTHD(P - YD DD ! = a8 e
t=Ti 14541
Note that
s Y ; () _ 400
! HU) 5 "D i ~() (i f ~—
ft(XFS — Og Xr—s—1) D]T1 < ;I Zr(X[,S — Og'X; g 1) DlTl
t=Tia+s+1 t=Tj 14541
+ Z belxy — a0 o[]S e - ax?, D,
t=Tirtst1 t=Ti 151
where
; (i) (1), () 1/2
i () (i ! ~— _
J Z zi (Xl — O Xr—s—l)Dw] =0, (k/*T 1/2)
t=Ti 1 +s+1

Z be(x rs 1)'Di7 SZ‘“;’ Z A“t/ _“5 5:)5 1)'Di7

t=T; 1 +s+1 J>kr t=Ti 1 +s+1

= 0p(kr)0p(T/2)

ety — x| = 0,(1).
t=T; 1 +s+1
The first term in S2 is thus O,(T ). Similar arguments can be used to show the second term in 52 is also O,(T ).
S3:

T ) oo e
$3=(a— &él)) T Z Ut (Xr@s - &é”xﬁ?H)’D# D1T(q"<l) - \y(’))
t=Ti1+s+1
Ho—a )T ST () —ax ) D b D (P — ).

t=T; 1 +s+1
Note that ZZLT e Ue W — aX0 YDy ‘ = 0,(1) and o — &) = 0,(T~"/2). Thus, the first term in S3 is O,(T *?).
Similarly, the second term in S3 is also O,(T~>/?).

S4:
) T
S4 = (00— 65<5'))2T_1 Z Ut—qUt—s—1.
t=T; 1 +s+1
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Since |7 Zt f g Uto1Ueos | = 0p(1), it follows that S4 = O,(T ).
S5:
) T ) T
5= ()T > weafit (@—a)T > uaf
t=Ti 1 +s+1 t=Ti_q+s+1

Here, we have

T % T T

T Y usaf|[ <> g ST tsaBug| T uae
t=Ti 1 +s+1 j=1 t=Ti_1+s+1 t=Ti 1 +s+1

=0,(1) +0,(T"2) = 0,(1).

so that the first term in S5 is O,(T~'?). That the second term in S5 is also O, (TW) foIIows in an analogous manner.
Hence, combining the results for terms $1-S5, using (17) and the fact that I E Yw(/Ir)| — Jo" Iw(s)| ds, we have

» o T N2 Ti—Tiy—1 T
A = (G=Ti ™ Y (W =TT Y wim Y WY,
t=Ti 141 =1 t=Ti g 441
=a’ +0p(1).
This proves the theorem for the /(0) case.
UNIT Root Case (e = 1). Note that in this case

[Ts] ) ) [Ts] [Ts]
T2 Z(Ut - &?)UM) = (1 - &2'))7’”2 Z Ue—1 + T2 Z Vi
t=1 t=1 t=1
) [Ts] [Ts]
=T =T ua ] + 7723 v
t=1 t=1

with v, = Au,. Now since 1 — ocg) = 0p(T7"), T3/2 ZETﬂ Ur—1 = Op(1), the first term in (18) is 0,(1). For the second term, note that
c(L)v: = e, where ¢(L) = (1 — >, a;l/). We thus have T~ 1/2 E vi = h,W(s), where h, = ¢°/c(1)>. Again, it suffices to show that
)= {Agk)}z/{é 1(1)}? is a consistent estimate of h,.
Let D,y = diag(1,7T"2T"3), e = Ve Ve t), il = (\7[(917...7\7§Qh)’ and &0 = (& . 75,(('3)/. Then we can write
W= e 4 @) Note that

(18)

W = (Do (" — %)Y {Dar (¥ ¥ O)} + (1 — 8 )uey + v
Next, it is straightforward to verify that, uniformly in j € [0, k7,

T T

ST W =TT ST v+ 0 (T,
t=Ti_1+j+1 t=Ti 1 Hj+1
This implies that
T Z v =17 Z nevi + Op(ky*T7)
t=Ti_q+kr+1 t=T;_1+kr+1
and
T o T
_— A ~ / _— —
N AR =T STt + OplkeTY).
t=Ti_1+kr+1 t=Ti_q+kr+1
Now, let
N -1 N -1
)y R ,
n={T" > ala | =Tt >
t=Ti_q+kr+1 t=T;_q+kr+1

. Then, observe that

-1
and n H [T Zt . 'It"lr}

1
i o i
_ ~ ~ / _—
n<{nan T ST R =T ST |

t=Ti_1+kr+1 t=T;_1+kr+1

wileyonlinelibrary.com/journal/jtsa Copyright © 2010 Blackwell Publishing Ltd. J. Time Ser. Anal. 2010, 31 305-328



Journal of

DETERMINATION OF NUMBER OF BREAKS IN TREND Time Series Analysis

From Lemma 3.2(a) in Chang and Park (2002), it follows that n; = O,(1). Thus, we get
_ 0(1)0p(ks T )

= Op(ksT™!
S =0,k T ) p(krT™)
Next, we have
N -1 N
. SO 00
=1 S i >y
t=T;_q+kr+1 t=Tiq+kr+1
so that
. T
=< D> ne] el
t=T;_1+kr+1 1
7 7
) [T Y ) g |+ (T > ne + 0, (k2T ) (19)
t=Ti1+kr+1  J>kr t=Ti_q+kr+1
= Op(krT™)0, (1) + [Op(kr T ™) + Op(1)][0p (k7 ') + Op(ky*T™/2)] + O (ks *T )

= Op(k;1/2)~
Next, denoting 1 as the (kr x 1) vector of ones and using the result in (19), we have

Y =) I = <l = 0l )o (k) = 0p(1).

We therefore get &0 (1)2 2 ¢(1)2,
Finally, the fact that {&E,’k) % is a consistent estimate of a2 follows using steps similar to those employed above for showing the
consistency of ¢()(1)? for ¢(1)2. The details are omitted to conserve space.
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